101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
|
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
|
||
|
|
||
|
Usage:
|
||
|
import torch
|
||
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
|
||
|
"""
|
||
|
|
||
|
dependencies = ['torch', 'yaml']
|
||
|
|
||
|
import os
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from models.yolo import Model
|
||
|
from utils import google_utils
|
||
|
|
||
|
|
||
|
def create(name, pretrained, channels, classes):
|
||
|
"""Creates a specified YOLOv5 model
|
||
|
|
||
|
Arguments:
|
||
|
name (str): name of model, i.e. 'yolov5s'
|
||
|
pretrained (bool): load pretrained weights into the model
|
||
|
channels (int): number of input channels
|
||
|
classes (int): number of model classes
|
||
|
|
||
|
Returns:
|
||
|
pytorch model
|
||
|
"""
|
||
|
config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) # model.yaml path
|
||
|
try:
|
||
|
model = Model(config, channels, classes)
|
||
|
if pretrained:
|
||
|
ckpt = '%s.pt' % name # checkpoint filename
|
||
|
google_utils.attempt_download(ckpt) # download if not found locally
|
||
|
state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32
|
||
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
|
||
|
model.load_state_dict(state_dict, strict=False) # load
|
||
|
return model
|
||
|
|
||
|
except Exception as e:
|
||
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
||
|
s = 'Cache maybe be out of date, deleting cache and retrying may solve this. See %s for help.' % help_url
|
||
|
raise Exception(s) from e
|
||
|
|
||
|
|
||
|
def yolov5s(pretrained=False, channels=3, classes=80):
|
||
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
||
|
|
||
|
Arguments:
|
||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||
|
channels (int): number of input channels, default=3
|
||
|
classes (int): number of model classes, default=80
|
||
|
|
||
|
Returns:
|
||
|
pytorch model
|
||
|
"""
|
||
|
return create('yolov5s', pretrained, channels, classes)
|
||
|
|
||
|
|
||
|
def yolov5m(pretrained=False, channels=3, classes=80):
|
||
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
||
|
|
||
|
Arguments:
|
||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||
|
channels (int): number of input channels, default=3
|
||
|
classes (int): number of model classes, default=80
|
||
|
|
||
|
Returns:
|
||
|
pytorch model
|
||
|
"""
|
||
|
return create('yolov5m', pretrained, channels, classes)
|
||
|
|
||
|
|
||
|
def yolov5l(pretrained=False, channels=3, classes=80):
|
||
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
||
|
|
||
|
Arguments:
|
||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||
|
channels (int): number of input channels, default=3
|
||
|
classes (int): number of model classes, default=80
|
||
|
|
||
|
Returns:
|
||
|
pytorch model
|
||
|
"""
|
||
|
return create('yolov5l', pretrained, channels, classes)
|
||
|
|
||
|
|
||
|
def yolov5x(pretrained=False, channels=3, classes=80):
|
||
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
||
|
|
||
|
Arguments:
|
||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||
|
channels (int): number of input channels, default=3
|
||
|
classes (int): number of model classes, default=80
|
||
|
|
||
|
Returns:
|
||
|
pytorch model
|
||
|
"""
|
||
|
return create('yolov5x', pretrained, channels, classes)
|