diff --git a/test.py b/test.py new file mode 100644 index 0000000..b1e6a23 --- /dev/null +++ b/test.py @@ -0,0 +1,278 @@ +import argparse +import json + +from models.experimental import * +from utils.datasets import * + + +def test(data, + weights=None, + batch_size=16, + imgsz=640, + conf_thres=0.001, + iou_thres=0.6, # for NMS + save_json=False, + single_cls=False, + augment=False, + verbose=False, + model=None, + dataloader=None, + save_dir='', + merge=False, + save_txt=False): + # Initialize/load model and set device + training = model is not None + if training: # called by train.py + device = next(model.parameters()).device # get model device + + else: # called directly + device = torch_utils.select_device(opt.device, batch_size=batch_size) + merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels + if save_txt: + out = Path('inference/output') + if os.path.exists(out): + shutil.rmtree(out) # delete output folder + os.makedirs(out) # make new output folder + + # Remove previous + for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')): + os.remove(f) + + # Load model + model = attempt_load(weights, map_location=device) # load FP32 model + imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size + + # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 + # if device.type != 'cpu' and torch.cuda.device_count() > 1: + # model = nn.DataParallel(model) + + # Half + half = device.type != 'cpu' # half precision only supported on CUDA + if half: + model.half() + + # Configure + model.eval() + with open(data) as f: + data = yaml.load(f, Loader=yaml.FullLoader) # model dict + nc = 1 if single_cls else int(data['nc']) # number of classes + iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 + niou = iouv.numel() + + # Dataloader + if not training: + img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img + _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once + path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images + dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, + hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0] + + seen = 0 + names = model.names if hasattr(model, 'names') else model.module.names + coco91class = coco80_to_coco91_class() + s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') + p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. + loss = torch.zeros(3, device=device) + jdict, stats, ap, ap_class = [], [], [], [] + for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): + img = img.to(device, non_blocking=True) + img = img.half() if half else img.float() # uint8 to fp16/32 + img /= 255.0 # 0 - 255 to 0.0 - 1.0 + targets = targets.to(device) + nb, _, height, width = img.shape # batch size, channels, height, width + whwh = torch.Tensor([width, height, width, height]).to(device) + + # Disable gradients + with torch.no_grad(): + # Run model + t = torch_utils.time_synchronized() + inf_out, train_out = model(img, augment=augment) # inference and training outputs + t0 += torch_utils.time_synchronized() - t + + # Compute loss + if training: # if model has loss hyperparameters + loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls + + # Run NMS + t = torch_utils.time_synchronized() + output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge) + t1 += torch_utils.time_synchronized() - t + + # Statistics per image + for si, pred in enumerate(output): + labels = targets[targets[:, 0] == si, 1:] + nl = len(labels) + tcls = labels[:, 0].tolist() if nl else [] # target class + seen += 1 + + if pred is None: + if nl: + stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) + continue + + # Append to text file + if save_txt: + gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh + txt_path = str(out / Path(paths[si]).stem) + pred[:, :4] = scale_coords(img[si].shape[1:], pred[:, :4], shapes[si][0], shapes[si][1]) # to original + for *xyxy, conf, cls in pred: + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + with open(txt_path + '.txt', 'a') as f: + f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format + + # Clip boxes to image bounds + clip_coords(pred, (height, width)) + + # Append to pycocotools JSON dictionary + if save_json: + # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... + image_id = Path(paths[si]).stem + box = pred[:, :4].clone() # xyxy + scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape + box = xyxy2xywh(box) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(pred.tolist(), box.tolist()): + jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id, + 'category_id': coco91class[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5)}) + + # Assign all predictions as incorrect + correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) + if nl: + detected = [] # target indices + tcls_tensor = labels[:, 0] + + # target boxes + tbox = xywh2xyxy(labels[:, 1:5]) * whwh + + # Per target class + for cls in torch.unique(tcls_tensor): + ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices + pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices + + # Search for detections + if pi.shape[0]: + # Prediction to target ious + ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices + + # Append detections + for j in (ious > iouv[0]).nonzero(): + d = ti[i[j]] # detected target + if d not in detected: + detected.append(d) + correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn + if len(detected) == nl: # all targets already located in image + break + + # Append statistics (correct, conf, pcls, tcls) + stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) + + # Plot images + if batch_i < 1: + f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename + plot_images(img, targets, paths, str(f), names) # ground truth + f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i) + plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions + + # Compute statistics + stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy + if len(stats) and stats[0].any(): + p, r, ap, f1, ap_class = ap_per_class(*stats) + p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] + mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() + nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class + else: + nt = torch.zeros(1) + + # Print results + pf = '%20s' + '%12.3g' * 6 # print format + print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) + + # Print results per class + if verbose and nc > 1 and len(stats): + for i, c in enumerate(ap_class): + print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) + + # Print speeds + t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple + if not training: + print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) + + # Save JSON + if save_json and len(jdict): + f = 'detections_val2017_%s_results.json' % \ + (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename + print('\nCOCO mAP with pycocotools... saving %s...' % f) + with open(f, 'w') as file: + json.dump(jdict, file) + + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + from pycocotools.coco import COCO + from pycocotools.cocoeval import COCOeval + + imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] + cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api + cocoDt = cocoGt.loadRes(f) # initialize COCO pred api + cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') + cocoEval.params.imgIds = imgIds # image IDs to evaluate + cocoEval.evaluate() + cocoEval.accumulate() + cocoEval.summarize() + map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) + except Exception as e: + print('ERROR: pycocotools unable to run: %s' % e) + + # Return results + model.float() # for training + maps = np.zeros(nc) + map + for i, c in enumerate(ap_class): + maps[c] = ap[i] + return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(prog='test.py') + parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') + parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path') + parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') + parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') + parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') + parser.add_argument('--task', default='val', help="'val', 'test', 'study'") + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--merge', action='store_true', help='use Merge NMS') + parser.add_argument('--verbose', action='store_true', help='report mAP by class') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + opt = parser.parse_args() + opt.save_json |= opt.data.endswith('coco.yaml') + opt.data = check_file(opt.data) # check file + print(opt) + + if opt.task in ['val', 'test']: # run normally + test(opt.data, + opt.weights, + opt.batch_size, + opt.img_size, + opt.conf_thres, + opt.iou_thres, + opt.save_json, + opt.single_cls, + opt.augment, + opt.verbose) + + elif opt.task == 'study': # run over a range of settings and save/plot + for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']: + f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to + x = list(range(352, 832, 64)) # x axis + y = [] # y axis + for i in x: # img-size + print('\nRunning %s point %s...' % (f, i)) + r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) + y.append(r + t) # results and times + np.savetxt(f, y, fmt='%10.4g') # save + os.system('zip -r study.zip study_*.txt') + # plot_study_txt(f, x) # plot