ADD file via upload
This commit is contained in:
parent
e050ee0514
commit
e9656a0f32
|
@ -0,0 +1,519 @@
|
|||
import argparse
|
||||
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torch.optim.lr_scheduler as lr_scheduler
|
||||
import torch.utils.data
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
import test # import test.py to get mAP after each epoch
|
||||
from models.yolo import Model
|
||||
from utils import google_utils
|
||||
from utils.datasets import *
|
||||
from utils.utils import *
|
||||
|
||||
mixed_precision = True
|
||||
try: # Mixed precision training https://github.com/NVIDIA/apex
|
||||
from apex import amp
|
||||
except:
|
||||
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
|
||||
mixed_precision = False # not installed
|
||||
|
||||
# Hyperparameters
|
||||
hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD
|
||||
'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
'momentum': 0.937, # SGD momentum/Adam beta1
|
||||
'weight_decay': 5e-4, # optimizer weight decay
|
||||
'giou': 0.05, # giou loss gain
|
||||
'cls': 0.5, # cls loss gain
|
||||
'cls_pw': 1.0, # cls BCELoss positive_weight
|
||||
'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320)
|
||||
'obj_pw': 1.0, # obj BCELoss positive_weight
|
||||
'iou_t': 0.20, # iou training threshold
|
||||
'anchor_t': 4.0, # anchor-multiple threshold
|
||||
'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
|
||||
'hsv_h': 0.015, # image HSV-Hue augmentation (fraction)
|
||||
'hsv_s': 0.7, # image HSV-Saturation augmentation (fraction)
|
||||
'hsv_v': 0.4, # image HSV-Value augmentation (fraction)
|
||||
'degrees': 0.0, # image rotation (+/- deg)
|
||||
'translate': 0.0, # image translation (+/- fraction)
|
||||
'scale': 0.5, # image scale (+/- gain)
|
||||
'shear': 0.0} # image shear (+/- deg)
|
||||
|
||||
|
||||
def train(hyp, tb_writer, opt, device):
|
||||
print(f'Hyperparameters {hyp}')
|
||||
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory
|
||||
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory
|
||||
os.makedirs(wdir, exist_ok=True)
|
||||
last = wdir + 'last.pt'
|
||||
best = wdir + 'best.pt'
|
||||
results_file = log_dir + os.sep + 'results.txt'
|
||||
epochs, batch_size, total_batch_size, weights, rank = \
|
||||
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank
|
||||
# TODO: Init DDP logging. Only the first process is allowed to log.
|
||||
# Since I see lots of print here, the logging configuration is skipped here. We may see repeated outputs.
|
||||
|
||||
# Save run settings
|
||||
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
||||
yaml.dump(hyp, f, sort_keys=False)
|
||||
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
||||
yaml.dump(vars(opt), f, sort_keys=False)
|
||||
|
||||
# Configure
|
||||
init_seeds(2 + rank)
|
||||
with open(opt.data) as f:
|
||||
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
||||
train_path = data_dict['train']
|
||||
test_path = data_dict['val']
|
||||
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
|
||||
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
||||
|
||||
# Remove previous results
|
||||
if rank in [-1, 0]:
|
||||
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
|
||||
os.remove(f)
|
||||
|
||||
# Create model
|
||||
model = Model(opt.cfg, nc=nc).to(device)
|
||||
|
||||
# Image sizes
|
||||
gs = int(max(model.stride)) # grid size (max stride)
|
||||
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
||||
|
||||
# Optimizer
|
||||
nbs = 64 # nominal batch size
|
||||
# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
|
||||
# all-reduce operation is carried out during loss.backward().
|
||||
# Thus, there would be redundant all-reduce communications in a accumulation procedure,
|
||||
# which means, the result is still right but the training speed gets slower.
|
||||
# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
|
||||
# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
|
||||
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
||||
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
||||
|
||||
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
||||
for k, v in model.named_parameters():
|
||||
if v.requires_grad:
|
||||
if '.bias' in k:
|
||||
pg2.append(v) # biases
|
||||
elif '.weight' in k and '.bn' not in k:
|
||||
pg1.append(v) # apply weight decay
|
||||
else:
|
||||
pg0.append(v) # all else
|
||||
|
||||
if hyp['optimizer'] == 'adam': # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
||||
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
||||
else:
|
||||
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
||||
|
||||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||||
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
||||
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||||
del pg0, pg1, pg2
|
||||
|
||||
# Load Model
|
||||
with torch_distributed_zero_first(rank):
|
||||
google_utils.attempt_download(weights)
|
||||
start_epoch, best_fitness = 0, 0.0
|
||||
if weights.endswith('.pt'): # pytorch format
|
||||
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
||||
|
||||
# load model
|
||||
try:
|
||||
exclude = ['anchor'] # exclude keys
|
||||
ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
|
||||
if k in model.state_dict() and not any(x in k for x in exclude)
|
||||
and model.state_dict()[k].shape == v.shape}
|
||||
model.load_state_dict(ckpt['model'], strict=False)
|
||||
print('Transferred %g/%g items from %s' % (len(ckpt['model']), len(model.state_dict()), weights))
|
||||
except KeyError as e:
|
||||
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
|
||||
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
|
||||
% (weights, opt.cfg, weights, weights)
|
||||
raise KeyError(s) from e
|
||||
|
||||
# load optimizer
|
||||
if ckpt['optimizer'] is not None:
|
||||
optimizer.load_state_dict(ckpt['optimizer'])
|
||||
best_fitness = ckpt['best_fitness']
|
||||
|
||||
# load results
|
||||
if ckpt.get('training_results') is not None:
|
||||
with open(results_file, 'w') as file:
|
||||
file.write(ckpt['training_results']) # write results.txt
|
||||
|
||||
# epochs
|
||||
start_epoch = ckpt['epoch'] + 1
|
||||
if epochs < start_epoch:
|
||||
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||||
(weights, ckpt['epoch'], epochs))
|
||||
epochs += ckpt['epoch'] # finetune additional epochs
|
||||
|
||||
del ckpt
|
||||
|
||||
# Mixed precision training https://github.com/NVIDIA/apex
|
||||
if mixed_precision:
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
|
||||
|
||||
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
||||
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.8 + 0.2 # cosine
|
||||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||||
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
|
||||
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||
|
||||
# DP mode
|
||||
if device.type != 'cpu' and rank == -1 and torch.cuda.device_count() > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# SyncBatchNorm
|
||||
if opt.sync_bn and device.type != 'cpu' and rank != -1:
|
||||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||
print('Using SyncBatchNorm()')
|
||||
|
||||
# Exponential moving average
|
||||
ema = torch_utils.ModelEMA(model) if rank in [-1, 0] else None
|
||||
|
||||
# DDP mode
|
||||
if device.type != 'cpu' and rank != -1:
|
||||
model = DDP(model, device_ids=[rank], output_device=rank)
|
||||
|
||||
# Trainloader
|
||||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
||||
cache=opt.cache_images, rect=opt.rect, local_rank=rank,
|
||||
world_size=opt.world_size)
|
||||
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
||||
nb = len(dataloader) # number of batches
|
||||
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
||||
|
||||
# Testloader
|
||||
if rank in [-1, 0]:
|
||||
# local_rank is set to -1. Because only the first process is expected to do evaluation.
|
||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False,
|
||||
cache=opt.cache_images, rect=True, local_rank=-1, world_size=opt.world_size)[0]
|
||||
|
||||
# Model parameters
|
||||
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
||||
model.nc = nc # attach number of classes to model
|
||||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
||||
model.names = names
|
||||
|
||||
# Class frequency
|
||||
if rank in [-1, 0]:
|
||||
labels = np.concatenate(dataset.labels, 0)
|
||||
c = torch.tensor(labels[:, 0]) # classes
|
||||
# cf = torch.bincount(c.long(), minlength=nc) + 1.
|
||||
# model._initialize_biases(cf.to(device))
|
||||
plot_labels(labels, save_dir=log_dir)
|
||||
if tb_writer:
|
||||
# tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
|
||||
tb_writer.add_histogram('classes', c, 0)
|
||||
|
||||
# Check anchors
|
||||
if not opt.noautoanchor:
|
||||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||
|
||||
# Start training
|
||||
t0 = time.time()
|
||||
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
if rank in [0, -1]:
|
||||
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
||||
print('Using %g dataloader workers' % dataloader.num_workers)
|
||||
print('Starting training for %g epochs...' % epochs)
|
||||
# torch.autograd.set_detect_anomaly(True)
|
||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||
model.train()
|
||||
|
||||
# Update image weights (optional)
|
||||
# When in DDP mode, the generated indices will be broadcasted to synchronize dataset.
|
||||
if dataset.image_weights:
|
||||
# Generate indices.
|
||||
if rank in [-1, 0]:
|
||||
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
|
||||
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
|
||||
dataset.indices = random.choices(range(dataset.n), weights=image_weights,
|
||||
k=dataset.n) # rand weighted idx
|
||||
# Broadcast.
|
||||
if rank != -1:
|
||||
indices = torch.zeros([dataset.n], dtype=torch.int)
|
||||
if rank == 0:
|
||||
indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int)
|
||||
dist.broadcast(indices, 0)
|
||||
if rank != 0:
|
||||
dataset.indices = indices.cpu().numpy()
|
||||
|
||||
# Update mosaic border
|
||||
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||
|
||||
mloss = torch.zeros(4, device=device) # mean losses
|
||||
if rank != -1:
|
||||
dataloader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(dataloader)
|
||||
if rank in [-1, 0]:
|
||||
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||
pbar = tqdm(pbar, total=nb) # progress bar
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||
ni = i + nb * epoch # number integrated batches (since train start)
|
||||
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
||||
|
||||
# Warmup
|
||||
if ni <= nw:
|
||||
xi = [0, nw] # x interp
|
||||
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
||||
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
||||
for j, x in enumerate(optimizer.param_groups):
|
||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||
if 'momentum' in x:
|
||||
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
|
||||
|
||||
# Multi-scale
|
||||
if opt.multi_scale:
|
||||
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
||||
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||
if sf != 1:
|
||||
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||
|
||||
# Forward
|
||||
pred = model(imgs)
|
||||
|
||||
# Loss
|
||||
loss, loss_items = compute_loss(pred, targets.to(device), model) # scaled by batch_size
|
||||
if rank != -1:
|
||||
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
||||
if not torch.isfinite(loss):
|
||||
print('WARNING: non-finite loss, ending training ', loss_items)
|
||||
return results
|
||||
|
||||
# Backward
|
||||
if mixed_precision:
|
||||
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
# Optimize
|
||||
if ni % accumulate == 0:
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
if ema is not None:
|
||||
ema.update(model)
|
||||
|
||||
# Print
|
||||
if rank in [-1, 0]:
|
||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
||||
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||
pbar.set_description(s)
|
||||
|
||||
# Plot
|
||||
if ni < 3:
|
||||
f = str(Path(log_dir) / ('train_batch%g.jpg' % ni)) # filename
|
||||
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
|
||||
if tb_writer and result is not None:
|
||||
tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||||
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
||||
|
||||
# end batch ------------------------------------------------------------------------------------------------
|
||||
|
||||
# Scheduler
|
||||
scheduler.step()
|
||||
|
||||
# Only the first process in DDP mode is allowed to log or save checkpoints.
|
||||
if rank in [-1, 0]:
|
||||
# mAP
|
||||
if ema is not None:
|
||||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
|
||||
final_epoch = epoch + 1 == epochs
|
||||
if not opt.notest or final_epoch: # Calculate mAP
|
||||
results, maps, times = test.test(opt.data,
|
||||
batch_size=total_batch_size,
|
||||
imgsz=imgsz_test,
|
||||
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
|
||||
model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
|
||||
single_cls=opt.single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=log_dir)
|
||||
|
||||
# Write
|
||||
with open(results_file, 'a') as f:
|
||||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
||||
if len(opt.name) and opt.bucket:
|
||||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||
|
||||
# Tensorboard
|
||||
if tb_writer:
|
||||
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
|
||||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
|
||||
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
|
||||
tb_writer.add_scalar(tag, x, epoch)
|
||||
|
||||
# Update best mAP
|
||||
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
|
||||
if fi > best_fitness:
|
||||
best_fitness = fi
|
||||
|
||||
# Save model
|
||||
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
||||
if save:
|
||||
with open(results_file, 'r') as f: # create checkpoint
|
||||
ckpt = {'epoch': epoch,
|
||||
'best_fitness': best_fitness,
|
||||
'training_results': f.read(),
|
||||
'model': ema.ema.module if hasattr(ema, 'module') else ema.ema,
|
||||
'optimizer': None if final_epoch else optimizer.state_dict()}
|
||||
|
||||
# Save last, best and delete
|
||||
torch.save(ckpt, last)
|
||||
if (best_fitness == fi) and not final_epoch:
|
||||
torch.save(ckpt, best)
|
||||
del ckpt
|
||||
# end epoch ----------------------------------------------------------------------------------------------------
|
||||
# end training
|
||||
|
||||
if rank in [-1, 0]:
|
||||
# Strip optimizers
|
||||
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
|
||||
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
|
||||
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
|
||||
if os.path.exists(f1):
|
||||
os.rename(f1, f2) # rename
|
||||
ispt = f2.endswith('.pt') # is *.pt
|
||||
strip_optimizer(f2) if ispt else None # strip optimizer
|
||||
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
|
||||
# Finish
|
||||
if not opt.evolve:
|
||||
plot_results(save_dir=log_dir) # save as results.png
|
||||
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||
|
||||
dist.destroy_process_group() if rank not in [-1, 0] else None
|
||||
torch.cuda.empty_cache()
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
|
||||
parser.add_argument('--data', type=str, default='data/mydata.yaml', help='data.yaml path')
|
||||
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
|
||||
parser.add_argument('--epochs', type=int, default=5)
|
||||
parser.add_argument('--batch-size', type=int, default=1, help="Total batch size for all gpus.")
|
||||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
||||
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||
parser.add_argument('--resume', nargs='?', const='get_last', default=False,
|
||||
help='resume from given path/to/last.pt, or most recent run if blank.')
|
||||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
||||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
||||
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
||||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||||
parser.add_argument('--weights', type=str, default='./weights/csgo_for_train.pt', help='initial weights path')
|
||||
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
|
||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
||||
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||||
opt = parser.parse_args()
|
||||
|
||||
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
|
||||
if last and not opt.weights:
|
||||
print(f'Resuming training from {last}')
|
||||
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
||||
if opt.local_rank in [-1, 0]:
|
||||
check_git_status()
|
||||
opt.cfg = check_file(opt.cfg) # check file
|
||||
opt.data = check_file(opt.data) # check file
|
||||
if opt.hyp: # update hyps
|
||||
opt.hyp = check_file(opt.hyp) # check file
|
||||
with open(opt.hyp) as f:
|
||||
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps
|
||||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||||
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
||||
opt.total_batch_size = opt.batch_size
|
||||
opt.world_size = 1
|
||||
if device.type == 'cpu':
|
||||
mixed_precision = False
|
||||
elif opt.local_rank != -1:
|
||||
# DDP mode
|
||||
assert torch.cuda.device_count() > opt.local_rank
|
||||
torch.cuda.set_device(opt.local_rank)
|
||||
device = torch.device("cuda", opt.local_rank)
|
||||
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||||
|
||||
opt.world_size = dist.get_world_size()
|
||||
assert opt.batch_size % opt.world_size == 0, "Batch size is not a multiple of the number of devices given!"
|
||||
opt.batch_size = opt.total_batch_size // opt.world_size
|
||||
print(opt)
|
||||
|
||||
# Train
|
||||
if not opt.evolve:
|
||||
if opt.local_rank in [-1, 0]:
|
||||
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
|
||||
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
|
||||
else:
|
||||
tb_writer = None
|
||||
train(hyp, tb_writer, opt, device)
|
||||
|
||||
# Evolve hyperparameters (optional)
|
||||
else:
|
||||
assert opt.local_rank == -1, "DDP mode currently not implemented for Evolve!"
|
||||
|
||||
tb_writer = None
|
||||
opt.notest, opt.nosave = True, True # only test/save final epoch
|
||||
if opt.bucket:
|
||||
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
||||
|
||||
for _ in range(10): # generations to evolve
|
||||
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
|
||||
# Select parent(s)
|
||||
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
n = min(5, len(x)) # number of previous results to consider
|
||||
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||
w = fitness(x) - fitness(x).min() # weights
|
||||
if parent == 'single' or len(x) == 1:
|
||||
# x = x[random.randint(0, n - 1)] # random selection
|
||||
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||
elif parent == 'weighted':
|
||||
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||
|
||||
# Mutate
|
||||
mp, s = 0.9, 0.2 # mutation probability, sigma
|
||||
npr = np.random
|
||||
npr.seed(int(time.time()))
|
||||
g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
|
||||
ng = len(g)
|
||||
v = np.ones(ng)
|
||||
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||||
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||||
hyp[k] = x[i + 7] * v[i] # mutate
|
||||
|
||||
# Clip to limits
|
||||
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
|
||||
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
|
||||
for k, v in zip(keys, limits):
|
||||
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
||||
|
||||
# Train mutation
|
||||
results = train(hyp.copy(), tb_writer, opt, device)
|
||||
|
||||
# Write mutation results
|
||||
print_mutation(hyp, results, opt.bucket)
|
||||
|
||||
# Plot results
|
||||
# plot_evolution_results(hyp)
|
Loading…
Reference in New Issue