162 lines
7.2 KiB
Python
162 lines
7.2 KiB
Python
import argparse
|
|
|
|
import torch.backends.cudnn as cudnn
|
|
|
|
from models.experimental import *
|
|
from utils.datasets import *
|
|
from utils.utils import *
|
|
|
|
|
|
def detect(save_img=False):
|
|
out, source, weights, view_img, save_txt, imgsz = \
|
|
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
|
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
|
|
|
# Initialize
|
|
device = torch_utils.select_device(opt.device)
|
|
if os.path.exists(out):
|
|
shutil.rmtree(out) # delete output folder
|
|
os.makedirs(out) # make new output folder
|
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
|
|
|
# Load model
|
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
|
if half:
|
|
model.half() # to FP16
|
|
|
|
# Second-stage classifier
|
|
classify = False
|
|
if classify:
|
|
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
|
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
|
|
modelc.to(device).eval()
|
|
|
|
# Set Dataloader
|
|
vid_path, vid_writer = None, None
|
|
if webcam:
|
|
view_img = True
|
|
cudnn.benchmark = True # set True to speed up constant image size inference
|
|
dataset = LoadStreams(source, img_size=imgsz)
|
|
else:
|
|
save_img = True
|
|
dataset = LoadImages(source, img_size=imgsz)
|
|
|
|
# Get names and colors
|
|
names = model.module.names if hasattr(model, 'module') else model.names
|
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
|
|
|
|
# Run inference
|
|
t0 = time.time()
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
|
for path, img, im0s, vid_cap in dataset:
|
|
img = torch.from_numpy(img).to(device)
|
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
if img.ndimension() == 3:
|
|
img = img.unsqueeze(0)
|
|
|
|
# Inference
|
|
t1 = torch_utils.time_synchronized()
|
|
pred = model(img, augment=opt.augment)[0]
|
|
|
|
# Apply NMS
|
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
|
t2 = torch_utils.time_synchronized()
|
|
|
|
# Apply Classifier
|
|
if classify:
|
|
pred = apply_classifier(pred, modelc, img, im0s)
|
|
|
|
# Process detections
|
|
for i, det in enumerate(pred): # detections per image
|
|
if webcam: # batch_size >= 1
|
|
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
|
|
else:
|
|
p, s, im0 = path, '', im0s
|
|
|
|
save_path = str(Path(out) / Path(p).name)
|
|
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
|
|
s += '%gx%g ' % img.shape[2:] # print string
|
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
|
if det is not None and len(det):
|
|
# Rescale boxes from img_size to im0 size
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
|
|
|
# Print results
|
|
for c in det[:, -1].unique():
|
|
n = (det[:, -1] == c).sum() # detections per class
|
|
s += '%g %ss, ' % (n, names[int(c)]) # add to string
|
|
|
|
# Write results
|
|
for *xyxy, conf, cls in det:
|
|
if save_txt: # Write to file
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
|
with open(txt_path + '.txt', 'a') as f:
|
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
|
|
|
|
if save_img or view_img: # Add bbox to image
|
|
label = '%s %.2f' % (names[int(cls)], conf)
|
|
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
|
|
|
# Print time (inference + NMS)
|
|
print('%sDone. (%.3fs)' % (s, t2 - t1))
|
|
|
|
# Stream results
|
|
if view_img:
|
|
cv2.imshow(p, im0)
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
raise StopIteration
|
|
|
|
# Save results (image with detections)
|
|
if save_img:
|
|
if dataset.mode == 'images':
|
|
cv2.imwrite(save_path, im0)
|
|
else:
|
|
if vid_path != save_path: # new video
|
|
vid_path = save_path
|
|
if isinstance(vid_writer, cv2.VideoWriter):
|
|
vid_writer.release() # release previous video writer
|
|
|
|
fourcc = 'mp4v' # output video codec
|
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
|
|
vid_writer.write(im0)
|
|
|
|
if save_txt or save_img:
|
|
print('Results saved to %s' % os.getcwd() + os.sep + out)
|
|
if platform == 'darwin' and not opt.update: # MacOS
|
|
os.system('open ' + save_path)
|
|
|
|
print('Done. (%.3fs)' % (time.time() - t0))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', nargs='+', type=str, default='weights/best_200.pt', help='model.pt path(s)')
|
|
parser.add_argument('--source', type=str, default='data/video/csgo.mp4', help='source') # file/folder, 0 for webcam
|
|
parser.add_argument('--output', type=str, default='inference/output/temp', help='output folder') # output folder
|
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
|
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
|
|
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
parser.add_argument('--update', action='store_true', help='update all models')
|
|
opt = parser.parse_args()
|
|
print(opt)
|
|
|
|
with torch.no_grad():
|
|
if opt.update: # update all models (to fix SourceChangeWarning)
|
|
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
|
detect()
|
|
create_pretrained(opt.weights, opt.weights)
|
|
else:
|
|
detect()
|