ADD file via upload
This commit is contained in:
parent
2116671ef6
commit
713d417ce2
|
@ -0,0 +1,59 @@
|
|||
import numpy as np
|
||||
import cv2
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
from keras.layers import Dense, Dropout, Flatten
|
||||
from keras.layers import Conv2D
|
||||
from keras.optimizers import Adam
|
||||
from keras.layers import MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
|
||||
# 照片路径
|
||||
train_dir = 'D:\\my\\college\\31\\machinelearning\\archive\\train'
|
||||
val_dir = 'D:\\my\\college\\31\\machinelearning\\archive\\test'
|
||||
|
||||
# 把灰度值从0-255映射到0-1
|
||||
train_datagen = ImageDataGenerator(rescale=1./255)
|
||||
val_datagen = ImageDataGenerator(rescale=1./255)
|
||||
|
||||
# 图像增强
|
||||
train_generator = train_datagen.flow_from_directory(
|
||||
train_dir,
|
||||
target_size=(48,48),
|
||||
batch_size=64,
|
||||
color_mode="grayscale",
|
||||
class_mode='categorical')
|
||||
|
||||
validation_generator = val_datagen.flow_from_directory(
|
||||
val_dir,
|
||||
target_size=(48,48),
|
||||
batch_size=64,
|
||||
color_mode="grayscale",
|
||||
class_mode='categorical')
|
||||
|
||||
emotion_model = Sequential()
|
||||
|
||||
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
|
||||
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
|
||||
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
emotion_model.add(Dropout(0.25))
|
||||
|
||||
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
|
||||
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
|
||||
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
emotion_model.add(Dropout(0.25))
|
||||
|
||||
emotion_model.add(Flatten())
|
||||
emotion_model.add(Dense(1024, activation='relu'))
|
||||
emotion_model.add(Dropout(0.5))
|
||||
emotion_model.add(Dense(7, activation='softmax'))
|
||||
|
||||
emotion_model.load_weights('emotion_model.h5')
|
||||
frame = cv2.imread('angry1.jpg')
|
||||
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
cropped_frame = np.expand_dims(np.expand_dims(cv2.resize(gray_frame, (48, 48)), -1), 0)
|
||||
|
||||
emotion_prediction = emotion_model.predict(cropped_frame)
|
||||
maxindex = int(np.argmax(emotion_prediction))
|
||||
emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}
|
||||
print(emotion_dict[maxindex])
|
Loading…
Reference in New Issue