370 lines
16 KiB
Python
370 lines
16 KiB
Python
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
"""
|
||
|
Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
|
||
|
TensorFlow exports authored by https://github.com/zldrobit
|
||
|
|
||
|
Usage:
|
||
|
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs
|
||
|
|
||
|
Inference:
|
||
|
$ python path/to/detect.py --weights yolov5s.pt
|
||
|
yolov5s.onnx (must export with --dynamic)
|
||
|
yolov5s_saved_model
|
||
|
yolov5s.pb
|
||
|
yolov5s.tflite
|
||
|
|
||
|
TensorFlow.js:
|
||
|
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
||
|
$ npm install
|
||
|
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
||
|
$ npm start
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import json
|
||
|
import os
|
||
|
import subprocess
|
||
|
import sys
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||
|
|
||
|
FILE = Path(__file__).resolve()
|
||
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||
|
if str(ROOT) not in sys.path:
|
||
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||
|
|
||
|
from models.common import Conv
|
||
|
from models.experimental import attempt_load
|
||
|
from models.yolo import Detect
|
||
|
from utils.activations import SiLU
|
||
|
from utils.datasets import LoadImages
|
||
|
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, colorstr, file_size, print_args,
|
||
|
url2file)
|
||
|
from utils.torch_utils import select_device
|
||
|
|
||
|
|
||
|
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
||
|
# YOLOv5 TorchScript model export
|
||
|
try:
|
||
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||
|
f = file.with_suffix('.torchscript.pt')
|
||
|
|
||
|
ts = torch.jit.trace(model, im, strict=False)
|
||
|
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
||
|
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
||
|
(optimize_for_mobile(ts) if optimize else ts).save(f, _extra_files=extra_files)
|
||
|
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'{prefix} export failure: {e}')
|
||
|
|
||
|
|
||
|
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
||
|
# YOLOv5 ONNX export
|
||
|
try:
|
||
|
check_requirements(('onnx',))
|
||
|
import onnx
|
||
|
|
||
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
||
|
f = file.with_suffix('.onnx')
|
||
|
|
||
|
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
|
||
|
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
||
|
do_constant_folding=not train,
|
||
|
input_names=['images'],
|
||
|
output_names=['output'],
|
||
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
||
|
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||
|
} if dynamic else None)
|
||
|
|
||
|
# Checks
|
||
|
model_onnx = onnx.load(f) # load onnx model
|
||
|
onnx.checker.check_model(model_onnx) # check onnx model
|
||
|
# LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print
|
||
|
|
||
|
# Simplify
|
||
|
if simplify:
|
||
|
try:
|
||
|
check_requirements(('onnx-simplifier',))
|
||
|
import onnxsim
|
||
|
|
||
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||
|
model_onnx, check = onnxsim.simplify(
|
||
|
model_onnx,
|
||
|
dynamic_input_shape=dynamic,
|
||
|
input_shapes={'images': list(im.shape)} if dynamic else None)
|
||
|
assert check, 'assert check failed'
|
||
|
onnx.save(model_onnx, f)
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'{prefix} export failure: {e}')
|
||
|
|
||
|
|
||
|
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
||
|
# YOLOv5 CoreML export
|
||
|
ct_model = None
|
||
|
try:
|
||
|
check_requirements(('coremltools',))
|
||
|
import coremltools as ct
|
||
|
|
||
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||
|
f = file.with_suffix('.mlmodel')
|
||
|
|
||
|
model.train() # CoreML exports should be placed in model.train() mode
|
||
|
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
||
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||
|
ct_model.save(f)
|
||
|
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||
|
|
||
|
return ct_model
|
||
|
|
||
|
|
||
|
def export_saved_model(model, im, file, dynamic,
|
||
|
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
||
|
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
|
||
|
# YOLOv5 TensorFlow saved_model export
|
||
|
keras_model = None
|
||
|
try:
|
||
|
import tensorflow as tf
|
||
|
from tensorflow import keras
|
||
|
|
||
|
from models.tf import TFDetect, TFModel
|
||
|
|
||
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||
|
f = str(file).replace('.pt', '_saved_model')
|
||
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||
|
|
||
|
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||
|
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
|
||
|
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||
|
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
||
|
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||
|
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
||
|
keras_model.trainable = False
|
||
|
keras_model.summary()
|
||
|
keras_model.save(f, save_format='tf')
|
||
|
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||
|
|
||
|
return keras_model
|
||
|
|
||
|
|
||
|
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||
|
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||
|
try:
|
||
|
import tensorflow as tf
|
||
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||
|
|
||
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||
|
f = file.with_suffix('.pb')
|
||
|
|
||
|
m = tf.function(lambda x: keras_model(x)) # full model
|
||
|
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||
|
frozen_func = convert_variables_to_constants_v2(m)
|
||
|
frozen_func.graph.as_graph_def()
|
||
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
||
|
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||
|
|
||
|
|
||
|
def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
|
||
|
# YOLOv5 TensorFlow Lite export
|
||
|
try:
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from models.tf import representative_dataset_gen
|
||
|
|
||
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||
|
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||
|
f = str(file).replace('.pt', '-fp16.tflite')
|
||
|
|
||
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||
|
converter.target_spec.supported_types = [tf.float16]
|
||
|
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||
|
if int8:
|
||
|
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
||
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
||
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||
|
converter.target_spec.supported_types = []
|
||
|
converter.inference_input_type = tf.uint8 # or tf.int8
|
||
|
converter.inference_output_type = tf.uint8 # or tf.int8
|
||
|
converter.experimental_new_quantizer = False
|
||
|
f = str(file).replace('.pt', '-int8.tflite')
|
||
|
|
||
|
tflite_model = converter.convert()
|
||
|
open(f, "wb").write(tflite_model)
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||
|
|
||
|
|
||
|
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
||
|
# YOLOv5 TensorFlow.js export
|
||
|
try:
|
||
|
check_requirements(('tensorflowjs',))
|
||
|
import re
|
||
|
|
||
|
import tensorflowjs as tfjs
|
||
|
|
||
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
||
|
f = str(file).replace('.pt', '_web_model') # js dir
|
||
|
f_pb = file.with_suffix('.pb') # *.pb path
|
||
|
f_json = f + '/model.json' # *.json path
|
||
|
|
||
|
cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
|
||
|
f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
|
||
|
subprocess.run(cmd, shell=True)
|
||
|
|
||
|
json = open(f_json).read()
|
||
|
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
||
|
subst = re.sub(
|
||
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
||
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
|
||
|
r'{"outputs": {"Identity": {"name": "Identity"}, '
|
||
|
r'"Identity_1": {"name": "Identity_1"}, '
|
||
|
r'"Identity_2": {"name": "Identity_2"}, '
|
||
|
r'"Identity_3": {"name": "Identity_3"}}}',
|
||
|
json)
|
||
|
j.write(subst)
|
||
|
|
||
|
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||
|
except Exception as e:
|
||
|
LOGGER.info(f'\n{prefix} export failure: {e}')
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
||
|
weights=ROOT / 'yolov5s.pt', # weights path
|
||
|
imgsz=(640, 640), # image (height, width)
|
||
|
batch_size=1, # batch size
|
||
|
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
|
include=('torchscript', 'onnx', 'coreml'), # include formats
|
||
|
half=False, # FP16 half-precision export
|
||
|
inplace=False, # set YOLOv5 Detect() inplace=True
|
||
|
train=False, # model.train() mode
|
||
|
optimize=False, # TorchScript: optimize for mobile
|
||
|
int8=False, # CoreML/TF INT8 quantization
|
||
|
dynamic=False, # ONNX/TF: dynamic axes
|
||
|
simplify=False, # ONNX: simplify model
|
||
|
opset=12, # ONNX: opset version
|
||
|
topk_per_class=100, # TF.js NMS: topk per class to keep
|
||
|
topk_all=100, # TF.js NMS: topk for all classes to keep
|
||
|
iou_thres=0.45, # TF.js NMS: IoU threshold
|
||
|
conf_thres=0.25 # TF.js NMS: confidence threshold
|
||
|
):
|
||
|
t = time.time()
|
||
|
include = [x.lower() for x in include]
|
||
|
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
|
||
|
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
||
|
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
|
||
|
|
||
|
# Load PyTorch model
|
||
|
device = select_device(device)
|
||
|
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
||
|
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
|
||
|
nc, names = model.nc, model.names # number of classes, class names
|
||
|
|
||
|
# Input
|
||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||
|
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
||
|
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
||
|
|
||
|
# Update model
|
||
|
if half:
|
||
|
im, model = im.half(), model.half() # to FP16
|
||
|
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
||
|
for k, m in model.named_modules():
|
||
|
if isinstance(m, Conv): # assign export-friendly activations
|
||
|
if isinstance(m.act, nn.SiLU):
|
||
|
m.act = SiLU()
|
||
|
elif isinstance(m, Detect):
|
||
|
m.inplace = inplace
|
||
|
m.onnx_dynamic = dynamic
|
||
|
# m.forward = m.forward_export # assign forward (optional)
|
||
|
|
||
|
for _ in range(2):
|
||
|
y = model(im) # dry runs
|
||
|
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
|
||
|
|
||
|
# Exports
|
||
|
if 'torchscript' in include:
|
||
|
export_torchscript(model, im, file, optimize)
|
||
|
if 'onnx' in include:
|
||
|
export_onnx(model, im, file, opset, train, dynamic, simplify)
|
||
|
if 'coreml' in include:
|
||
|
export_coreml(model, im, file)
|
||
|
|
||
|
# TensorFlow Exports
|
||
|
if any(tf_exports):
|
||
|
pb, tflite, tfjs = tf_exports[1:]
|
||
|
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||
|
model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
|
||
|
topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
|
||
|
iou_thres=iou_thres) # keras model
|
||
|
if pb or tfjs: # pb prerequisite to tfjs
|
||
|
export_pb(model, im, file)
|
||
|
if tflite:
|
||
|
export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
|
||
|
if tfjs:
|
||
|
export_tfjs(model, im, file)
|
||
|
|
||
|
# Finish
|
||
|
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
||
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||
|
f'\nVisualize with https://netron.app')
|
||
|
|
||
|
|
||
|
def parse_opt():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
||
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
||
|
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
||
|
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
||
|
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
||
|
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
||
|
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
||
|
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
|
||
|
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
||
|
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
||
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
||
|
parser.add_argument('--include', nargs='+',
|
||
|
default=['torchscript', 'onnx'],
|
||
|
help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
|
||
|
opt = parser.parse_args()
|
||
|
print_args(FILE.stem, opt)
|
||
|
return opt
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
run(**vars(opt))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
opt = parse_opt()
|
||
|
main(opt)
|