ADD file via upload
This commit is contained in:
parent
0f47f23128
commit
560bd8a98e
|
@ -0,0 +1,142 @@
|
|||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
|
||||
|
||||
Usage:
|
||||
import torch
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
"""Creates a specified YOLOv5 model
|
||||
|
||||
Arguments:
|
||||
name (str): name of model, i.e. 'yolov5s'
|
||||
pretrained (bool): load pretrained weights into the model
|
||||
channels (int): number of input channels
|
||||
classes (int): number of model classes
|
||||
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
|
||||
verbose (bool): print all information to screen
|
||||
device (str, torch.device, None): device to use for model parameters
|
||||
|
||||
Returns:
|
||||
YOLOv5 pytorch model
|
||||
"""
|
||||
from pathlib import Path
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
from utils.downloads import attempt_download
|
||||
from utils.general import check_requirements, intersect_dicts, set_logging
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
file = Path(__file__).resolve()
|
||||
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
|
||||
set_logging(verbose=verbose)
|
||||
|
||||
save_dir = Path('') if str(name).endswith('.pt') else file.parent
|
||||
path = (save_dir / name).with_suffix('.pt') # checkpoint path
|
||||
try:
|
||||
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
|
||||
|
||||
if pretrained and channels == 3 and classes == 80:
|
||||
model = attempt_load(path, map_location=device) # download/load FP32 model
|
||||
else:
|
||||
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
|
||||
model = Model(cfg, channels, classes) # create model
|
||||
if pretrained:
|
||||
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
||||
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
||||
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
||||
model.load_state_dict(csd, strict=False) # load
|
||||
if len(ckpt['model'].names) == classes:
|
||||
model.names = ckpt['model'].names # set class names attribute
|
||||
if autoshape:
|
||||
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
||||
return model.to(device)
|
||||
|
||||
except Exception as e:
|
||||
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
||||
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
|
||||
raise Exception(s) from e
|
||||
|
||||
|
||||
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5 custom or local model
|
||||
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
||||
|
||||
|
||||
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-nano model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
||||
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
|
||||
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
||||
# model = custom(path='path/to/model.pt') # custom
|
||||
|
||||
# Verify inference
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
imgs = ['data/images/zidane.jpg', # filename
|
||||
Path('data/images/zidane.jpg'), # Path
|
||||
'https://ultralytics.com/images/zidane.jpg', # URI
|
||||
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
||||
Image.open('data/images/bus.jpg'), # PIL
|
||||
np.zeros((320, 640, 3))] # numpy
|
||||
|
||||
results = model(imgs) # batched inference
|
||||
results.print()
|
||||
results.save()
|
Loading…
Reference in New Issue