flappybird/RL.py

62 lines
2.1 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import numpy as np
import MDP
class RL:
def __init__(self,mdp,sampleReward):
'''Constructor for the RL class
Inputs:
mdp -- Markov decision process (T, R, discount)
sampleReward -- Function to sample rewards (e.g., bernoulli, Gaussian).
This function takes one argument: the mean of the distributon and
returns a sample from the distribution.
'''
self.mdp = mdp
self.sampleReward = sampleReward
def sampleRewardAndNextState(self,state,action):
'''Procedure to sample a reward and the next state
reward ~ Pr(r)
nextState ~ Pr(s'|s,a)
Inputs:
state -- current state
action -- action to be executed
Outputs:
reward -- sampled reward
nextState -- sampled next state
'''
reward = self.sampleReward(self.mdp.R[action,state]) #按照当前R值为均值根据高斯密度函数得到随机奖励
cumProb = np.cumsum(self.mdp.T[action,state,:])#把
nextState = np.where(cumProb >= np.random.rand(1))[0][0]
return [reward,nextState]
def qLearning(self,s0,initialQ,nEpisodes,nSteps,epsilon=0,temperature=0):
'''
qLearning算法需要将Epsilon exploration和 Boltzmann exploration 相结合。
以epsilon的概率随机取一个动作否则采用 Boltzmann exploration取动作。
当epsilon和temperature都为0时将不进行探索。
Inputs:
s0 -- 初始状态
initialQ -- 初始化Q函数 (|A|x|S| array)
nEpisodes -- 回合episodes的数量 (one episode consists of a trajectory of nSteps that starts in s0
nSteps -- 每个回合的步数(steps)
epsilon -- 随机选取一个动作的概率
temperature -- 调节 Boltzmann exploration 的参数
Outputs:
Q -- 最终的 Q函数 (|A|x|S| array)
policy -- 最终的策略
rewardList -- 每个episode的累计奖励|nEpisodes| array
'''
return [Q,policy,rewardList]