FedP2P/peer.go

904 lines
25 KiB
Go
Raw Normal View History

package torrent
import (
"errors"
"fmt"
"io"
"net"
"strings"
"sync/atomic"
"time"
"github.com/RoaringBitmap/roaring"
"github.com/anacrolix/chansync"
. "github.com/anacrolix/generics"
"github.com/anacrolix/log"
"github.com/anacrolix/missinggo/iter"
"github.com/anacrolix/missinggo/v2/bitmap"
"github.com/anacrolix/multiless"
"github.com/anacrolix/torrent/internal/alloclim"
"github.com/anacrolix/torrent/mse"
pp "github.com/anacrolix/torrent/peer_protocol"
request_strategy "github.com/anacrolix/torrent/request-strategy"
"github.com/anacrolix/torrent/typed-roaring"
)
type (
Peer struct {
// First to ensure 64-bit alignment for atomics. See #262.
_stats ConnStats
t *Torrent
peerImpl
callbacks *Callbacks
outgoing bool
Network string
RemoteAddr PeerRemoteAddr
// The local address as observed by the remote peer. WebRTC seems to get this right without needing hints from the
// config.
localPublicAddr peerLocalPublicAddr
bannableAddr Option[bannableAddr]
// True if the connection is operating over MSE obfuscation.
headerEncrypted bool
cryptoMethod mse.CryptoMethod
Discovery PeerSource
trusted bool
closed chansync.SetOnce
// Set true after we've added our ConnStats generated during handshake to
// other ConnStat instances as determined when the *Torrent became known.
reconciledHandshakeStats bool
lastMessageReceived time.Time
completedHandshake time.Time
lastUsefulChunkReceived time.Time
lastChunkSent time.Time
// Stuff controlled by the local peer.
needRequestUpdate string
requestState request_strategy.PeerRequestState
updateRequestsTimer *time.Timer
lastRequestUpdate time.Time
peakRequests maxRequests
lastBecameInterested time.Time
priorInterest time.Duration
lastStartedExpectingToReceiveChunks time.Time
cumulativeExpectedToReceiveChunks time.Duration
_chunksReceivedWhileExpecting int64
choking bool
piecesReceivedSinceLastRequestUpdate maxRequests
maxPiecesReceivedBetweenRequestUpdates maxRequests
// Chunks that we might reasonably expect to receive from the peer. Due to latency, buffering,
// and implementation differences, we may receive chunks that are no longer in the set of
// requests actually want. This could use a roaring.BSI if the memory use becomes noticeable.
validReceiveChunks map[RequestIndex]int
// Indexed by metadata piece, set to true if posted and pending a
// response.
metadataRequests []bool
sentHaves bitmap.Bitmap
// Stuff controlled by the remote peer.
peerInterested bool
peerChoking bool
peerRequests map[Request]*peerRequestState
PeerPrefersEncryption bool // as indicated by 'e' field in extension handshake
PeerListenPort int
// The highest possible number of pieces the torrent could have based on
// communication with the peer. Generally only useful until we have the
// torrent info.
peerMinPieces pieceIndex
// Pieces we've accepted chunks for from the peer.
peerTouchedPieces map[pieceIndex]struct{}
peerAllowedFast typedRoaring.Bitmap[pieceIndex]
PeerMaxRequests maxRequests // Maximum pending requests the peer allows.
PeerExtensionIDs map[pp.ExtensionName]pp.ExtensionNumber
PeerClientName atomic.Value
logger log.Logger
}
PeerSource string
peerRequestState struct {
data []byte
allocReservation *alloclim.Reservation
}
PeerRemoteAddr interface {
String() string
}
peerRequests = orderedBitmap[RequestIndex]
)
const (
PeerSourceTracker = "Tr"
PeerSourceIncoming = "I"
PeerSourceDhtGetPeers = "Hg" // Peers we found by searching a DHT.
PeerSourceDhtAnnouncePeer = "Ha" // Peers that were announced to us by a DHT.
PeerSourcePex = "X"
// The peer was given directly, such as through a magnet link.
PeerSourceDirect = "M"
)
// Returns the Torrent a Peer belongs to. Shouldn't change for the lifetime of the Peer. May be nil
// if we are the receiving end of a connection and the handshake hasn't been received or accepted
// yet.
func (p *Peer) Torrent() *Torrent {
return p.t
}
func (p *Peer) initRequestState() {
p.requestState.Requests = &peerRequests{}
}
func (cn *Peer) updateExpectingChunks() {
if cn.expectingChunks() {
if cn.lastStartedExpectingToReceiveChunks.IsZero() {
cn.lastStartedExpectingToReceiveChunks = time.Now()
}
} else {
if !cn.lastStartedExpectingToReceiveChunks.IsZero() {
cn.cumulativeExpectedToReceiveChunks += time.Since(cn.lastStartedExpectingToReceiveChunks)
cn.lastStartedExpectingToReceiveChunks = time.Time{}
}
}
}
func (cn *Peer) expectingChunks() bool {
if cn.requestState.Requests.IsEmpty() {
return false
}
if !cn.requestState.Interested {
return false
}
if !cn.peerChoking {
return true
}
haveAllowedFastRequests := false
cn.peerAllowedFast.Iterate(func(i pieceIndex) bool {
haveAllowedFastRequests = roaringBitmapRangeCardinality[RequestIndex](
cn.requestState.Requests,
cn.t.pieceRequestIndexOffset(i),
cn.t.pieceRequestIndexOffset(i+1),
) == 0
return !haveAllowedFastRequests
})
return haveAllowedFastRequests
}
func (cn *Peer) remoteChokingPiece(piece pieceIndex) bool {
return cn.peerChoking && !cn.peerAllowedFast.Contains(piece)
}
func (cn *Peer) cumInterest() time.Duration {
ret := cn.priorInterest
if cn.requestState.Interested {
ret += time.Since(cn.lastBecameInterested)
}
return ret
}
func (cn *Peer) locker() *lockWithDeferreds {
return cn.t.cl.locker()
}
func (cn *Peer) supportsExtension(ext pp.ExtensionName) bool {
_, ok := cn.PeerExtensionIDs[ext]
return ok
}
// The best guess at number of pieces in the torrent for this peer.
func (cn *Peer) bestPeerNumPieces() pieceIndex {
if cn.t.haveInfo() {
return cn.t.numPieces()
}
return cn.peerMinPieces
}
func (cn *Peer) completedString() string {
have := pieceIndex(cn.peerPieces().GetCardinality())
if all, _ := cn.peerHasAllPieces(); all {
have = cn.bestPeerNumPieces()
}
return fmt.Sprintf("%d/%d", have, cn.bestPeerNumPieces())
}
func eventAgeString(t time.Time) string {
if t.IsZero() {
return "never"
}
return fmt.Sprintf("%.2fs ago", time.Since(t).Seconds())
}
// Inspired by https://github.com/transmission/transmission/wiki/Peer-Status-Text.
func (cn *Peer) statusFlags() (ret string) {
c := func(b byte) {
ret += string([]byte{b})
}
if cn.requestState.Interested {
c('i')
}
if cn.choking {
c('c')
}
c('-')
ret += cn.connectionFlags()
c('-')
if cn.peerInterested {
c('i')
}
if cn.peerChoking {
c('c')
}
return
}
func (cn *Peer) downloadRate() float64 {
num := cn._stats.BytesReadUsefulData.Int64()
if num == 0 {
return 0
}
return float64(num) / cn.totalExpectingTime().Seconds()
}
func (cn *Peer) DownloadRate() float64 {
cn.locker().RLock()
defer cn.locker().RUnlock()
return cn.downloadRate()
}
func (cn *Peer) iterContiguousPieceRequests(f func(piece pieceIndex, count int)) {
var last Option[pieceIndex]
var count int
next := func(item Option[pieceIndex]) {
if item == last {
count++
} else {
if count != 0 {
f(last.Value, count)
}
last = item
count = 1
}
}
cn.requestState.Requests.Iterate(func(requestIndex request_strategy.RequestIndex) bool {
next(Some(cn.t.pieceIndexOfRequestIndex(requestIndex)))
return true
})
next(None[pieceIndex]())
}
func (cn *Peer) writeStatus(w io.Writer, t *Torrent) {
// \t isn't preserved in <pre> blocks?
if cn.closed.IsSet() {
fmt.Fprint(w, "CLOSED: ")
}
fmt.Fprintln(w, strings.Join(cn.peerImplStatusLines(), "\n"))
prio, err := cn.peerPriority()
prioStr := fmt.Sprintf("%08x", prio)
if err != nil {
prioStr += ": " + err.Error()
}
fmt.Fprintf(w, "bep40-prio: %v\n", prioStr)
fmt.Fprintf(w, "last msg: %s, connected: %s, last helpful: %s, itime: %s, etime: %s\n",
eventAgeString(cn.lastMessageReceived),
eventAgeString(cn.completedHandshake),
eventAgeString(cn.lastHelpful()),
cn.cumInterest(),
cn.totalExpectingTime(),
)
fmt.Fprintf(w,
"%s completed, %d pieces touched, good chunks: %v/%v:%v reqq: %d+%v/(%d/%d):%d/%d, flags: %s, dr: %.1f KiB/s\n",
cn.completedString(),
len(cn.peerTouchedPieces),
&cn._stats.ChunksReadUseful,
&cn._stats.ChunksRead,
&cn._stats.ChunksWritten,
cn.requestState.Requests.GetCardinality(),
cn.requestState.Cancelled.GetCardinality(),
cn.nominalMaxRequests(),
cn.PeerMaxRequests,
len(cn.peerRequests),
localClientReqq,
cn.statusFlags(),
cn.downloadRate()/(1<<10),
)
fmt.Fprintf(w, "requested pieces:")
cn.iterContiguousPieceRequests(func(piece pieceIndex, count int) {
fmt.Fprintf(w, " %v(%v)", piece, count)
})
fmt.Fprintf(w, "\n")
}
func (p *Peer) close() {
if !p.closed.Set() {
return
}
if p.updateRequestsTimer != nil {
p.updateRequestsTimer.Stop()
}
p.peerImpl.onClose()
if p.t != nil {
p.t.decPeerPieceAvailability(p)
}
for _, f := range p.callbacks.PeerClosed {
f(p)
}
}
// Peer definitely has a piece, for purposes of requesting. So it's not sufficient that we think
// they do (known=true).
func (cn *Peer) peerHasPiece(piece pieceIndex) bool {
if all, known := cn.peerHasAllPieces(); all && known {
return true
}
return cn.peerPieces().ContainsInt(piece)
}
// 64KiB, but temporarily less to work around an issue with WebRTC. TODO: Update when
// https://github.com/pion/datachannel/issues/59 is fixed.
const (
writeBufferHighWaterLen = 1 << 15
writeBufferLowWaterLen = writeBufferHighWaterLen / 2
)
var (
interestedMsgLen = len(pp.Message{Type: pp.Interested}.MustMarshalBinary())
requestMsgLen = len(pp.Message{Type: pp.Request}.MustMarshalBinary())
// This is the maximum request count that could fit in the write buffer if it's at or below the
// low water mark when we run maybeUpdateActualRequestState.
maxLocalToRemoteRequests = (writeBufferHighWaterLen - writeBufferLowWaterLen - interestedMsgLen) / requestMsgLen
)
// The actual value to use as the maximum outbound requests.
func (cn *Peer) nominalMaxRequests() maxRequests {
return maxInt(1, minInt(cn.PeerMaxRequests, cn.peakRequests*2, maxLocalToRemoteRequests))
}
func (cn *Peer) totalExpectingTime() (ret time.Duration) {
ret = cn.cumulativeExpectedToReceiveChunks
if !cn.lastStartedExpectingToReceiveChunks.IsZero() {
ret += time.Since(cn.lastStartedExpectingToReceiveChunks)
}
return
}
func (cn *Peer) setInterested(interested bool) bool {
if cn.requestState.Interested == interested {
return true
}
cn.requestState.Interested = interested
if interested {
cn.lastBecameInterested = time.Now()
} else if !cn.lastBecameInterested.IsZero() {
cn.priorInterest += time.Since(cn.lastBecameInterested)
}
cn.updateExpectingChunks()
// log.Printf("%p: setting interest: %v", cn, interested)
return cn.writeInterested(interested)
}
// The function takes a message to be sent, and returns true if more messages
// are okay.
type messageWriter func(pp.Message) bool
// This function seems to only used by Peer.request. It's all logic checks, so maybe we can no-op it
// when we want to go fast.
func (cn *Peer) shouldRequest(r RequestIndex) error {
err := cn.t.checkValidReceiveChunk(cn.t.requestIndexToRequest(r))
if err != nil {
return err
}
pi := cn.t.pieceIndexOfRequestIndex(r)
if cn.requestState.Cancelled.Contains(r) {
return errors.New("request is cancelled and waiting acknowledgement")
}
if !cn.peerHasPiece(pi) {
return errors.New("requesting piece peer doesn't have")
}
if !cn.t.peerIsActive(cn) {
panic("requesting but not in active conns")
}
if cn.closed.IsSet() {
panic("requesting when connection is closed")
}
if cn.t.hashingPiece(pi) {
panic("piece is being hashed")
}
if cn.t.pieceQueuedForHash(pi) {
panic("piece is queued for hash")
}
if cn.peerChoking && !cn.peerAllowedFast.Contains(pi) {
// This could occur if we made a request with the fast extension, and then got choked and
// haven't had the request rejected yet.
if !cn.requestState.Requests.Contains(r) {
panic("peer choking and piece not allowed fast")
}
}
return nil
}
func (cn *Peer) mustRequest(r RequestIndex) bool {
more, err := cn.request(r)
if err != nil {
panic(err)
}
return more
}
func (cn *Peer) request(r RequestIndex) (more bool, err error) {
if err := cn.shouldRequest(r); err != nil {
panic(err)
}
if cn.requestState.Requests.Contains(r) {
return true, nil
}
if maxRequests(cn.requestState.Requests.GetCardinality()) >= cn.nominalMaxRequests() {
return true, errors.New("too many outstanding requests")
}
cn.requestState.Requests.Add(r)
if cn.validReceiveChunks == nil {
cn.validReceiveChunks = make(map[RequestIndex]int)
}
cn.validReceiveChunks[r]++
cn.t.requestState[r] = requestState{
peer: cn,
when: time.Now(),
}
cn.updateExpectingChunks()
ppReq := cn.t.requestIndexToRequest(r)
for _, f := range cn.callbacks.SentRequest {
f(PeerRequestEvent{cn, ppReq})
}
return cn.peerImpl._request(ppReq), nil
}
func (me *Peer) cancel(r RequestIndex) {
if !me.deleteRequest(r) {
panic("request not existing should have been guarded")
}
if me._cancel(r) {
if !me.requestState.Cancelled.CheckedAdd(r) {
panic("request already cancelled")
}
}
me.decPeakRequests()
if me.isLowOnRequests() {
me.updateRequests("Peer.cancel")
}
}
// Sets a reason to update requests, and if there wasn't already one, handle it.
func (cn *Peer) updateRequests(reason string) {
if cn.needRequestUpdate != "" {
return
}
if reason != peerUpdateRequestsTimerReason && !cn.isLowOnRequests() {
return
}
cn.needRequestUpdate = reason
cn.handleUpdateRequests()
}
// Emits the indices in the Bitmaps bms in order, never repeating any index.
// skip is mutated during execution, and its initial values will never be
// emitted.
func iterBitmapsDistinct(skip *bitmap.Bitmap, bms ...bitmap.Bitmap) iter.Func {
return func(cb iter.Callback) {
for _, bm := range bms {
if !iter.All(
func(_i interface{}) bool {
i := _i.(int)
if skip.Contains(bitmap.BitIndex(i)) {
return true
}
skip.Add(bitmap.BitIndex(i))
return cb(i)
},
bm.Iter,
) {
return
}
}
}
}
func (cn *Peer) peerPiecesChanged() {
cn.t.maybeDropMutuallyCompletePeer(cn)
}
// After handshake, we know what Torrent and Client stats to include for a
// connection.
func (cn *Peer) postHandshakeStats(f func(*ConnStats)) {
t := cn.t
f(&t.stats)
f(&t.cl.stats)
}
// All ConnStats that include this connection. Some objects are not known
// until the handshake is complete, after which it's expected to reconcile the
// differences.
func (cn *Peer) allStats(f func(*ConnStats)) {
f(&cn._stats)
if cn.reconciledHandshakeStats {
cn.postHandshakeStats(f)
}
}
func (cn *Peer) readBytes(n int64) {
cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesRead }))
}
// Returns whether the connection could be useful to us. We're seeding and
// they want data, we don't have metainfo and they can provide it, etc.
func (c *Peer) useful() bool {
t := c.t
if c.closed.IsSet() {
return false
}
if !t.haveInfo() {
return c.supportsExtension("ut_metadata")
}
if t.seeding() && c.peerInterested {
return true
}
if c.peerHasWantedPieces() {
return true
}
return false
}
func (c *Peer) lastHelpful() (ret time.Time) {
ret = c.lastUsefulChunkReceived
if c.t.seeding() && c.lastChunkSent.After(ret) {
ret = c.lastChunkSent
}
return
}
// Returns whether any part of the chunk would lie outside a piece of the given length.
func chunkOverflowsPiece(cs ChunkSpec, pieceLength pp.Integer) bool {
switch {
default:
return false
case cs.Begin+cs.Length > pieceLength:
// Check for integer overflow
case cs.Begin > pp.IntegerMax-cs.Length:
}
return true
}
func runSafeExtraneous(f func()) {
if true {
go f()
} else {
f()
}
}
// Returns true if it was valid to reject the request.
func (c *Peer) remoteRejectedRequest(r RequestIndex) bool {
if c.deleteRequest(r) {
c.decPeakRequests()
} else if !c.requestState.Cancelled.CheckedRemove(r) {
return false
}
if c.isLowOnRequests() {
c.updateRequests("Peer.remoteRejectedRequest")
}
c.decExpectedChunkReceive(r)
return true
}
func (c *Peer) decExpectedChunkReceive(r RequestIndex) {
count := c.validReceiveChunks[r]
if count == 1 {
delete(c.validReceiveChunks, r)
} else if count > 1 {
c.validReceiveChunks[r] = count - 1
} else {
panic(r)
}
}
func (c *Peer) doChunkReadStats(size int64) {
c.allStats(func(cs *ConnStats) { cs.receivedChunk(size) })
}
// Handle a received chunk from a peer.
func (c *Peer) receiveChunk(msg *pp.Message) error {
chunksReceived.Add("total", 1)
ppReq := newRequestFromMessage(msg)
t := c.t
err := t.checkValidReceiveChunk(ppReq)
if err != nil {
err = log.WithLevel(log.Warning, err)
return err
}
req := c.t.requestIndexFromRequest(ppReq)
if c.bannableAddr.Ok {
t.smartBanCache.RecordBlock(c.bannableAddr.Value, req, msg.Piece)
}
if c.peerChoking {
chunksReceived.Add("while choked", 1)
}
if c.validReceiveChunks[req] <= 0 {
chunksReceived.Add("unexpected", 1)
return errors.New("received unexpected chunk")
}
c.decExpectedChunkReceive(req)
if c.peerChoking && c.peerAllowedFast.Contains(pieceIndex(ppReq.Index)) {
chunksReceived.Add("due to allowed fast", 1)
}
// The request needs to be deleted immediately to prevent cancels occurring asynchronously when
// have actually already received the piece, while we have the Client unlocked to write the data
// out.
intended := false
{
if c.requestState.Requests.Contains(req) {
for _, f := range c.callbacks.ReceivedRequested {
f(PeerMessageEvent{c, msg})
}
}
// Request has been satisfied.
if c.deleteRequest(req) || c.requestState.Cancelled.CheckedRemove(req) {
intended = true
if !c.peerChoking {
c._chunksReceivedWhileExpecting++
}
if c.isLowOnRequests() {
c.updateRequests("Peer.receiveChunk deleted request")
}
} else {
chunksReceived.Add("unintended", 1)
}
}
cl := t.cl
// Do we actually want this chunk?
if t.haveChunk(ppReq) {
// panic(fmt.Sprintf("%+v", ppReq))
chunksReceived.Add("redundant", 1)
c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadWasted }))
return nil
}
piece := &t.pieces[ppReq.Index]
c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadUseful }))
c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulData }))
if intended {
c.piecesReceivedSinceLastRequestUpdate++
c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulIntendedData }))
}
for _, f := range c.t.cl.config.Callbacks.ReceivedUsefulData {
f(ReceivedUsefulDataEvent{c, msg})
}
c.lastUsefulChunkReceived = time.Now()
// Need to record that it hasn't been written yet, before we attempt to do
// anything with it.
piece.incrementPendingWrites()
// Record that we have the chunk, so we aren't trying to download it while
// waiting for it to be written to storage.
piece.unpendChunkIndex(chunkIndexFromChunkSpec(ppReq.ChunkSpec, t.chunkSize))
// Cancel pending requests for this chunk from *other* peers.
if p := t.requestingPeer(req); p != nil {
if p == c {
panic("should not be pending request from conn that just received it")
}
p.cancel(req)
}
err = func() error {
cl.unlock()
defer cl.lock()
concurrentChunkWrites.Add(1)
defer concurrentChunkWrites.Add(-1)
// Write the chunk out. Note that the upper bound on chunk writing concurrency will be the
// number of connections. We write inline with receiving the chunk (with this lock dance),
// because we want to handle errors synchronously and I haven't thought of a nice way to
// defer any concurrency to the storage and have that notify the client of errors. TODO: Do
// that instead.
2023-05-04 17:25:29 +08:00
// 实际执行写入chunk的位置
return t.writeChunk(int(msg.Index), int64(msg.Begin), msg.Piece)
}()
piece.decrementPendingWrites()
if err != nil {
c.logger.WithDefaultLevel(log.Error).Printf("writing received chunk %v: %v", req, err)
t.pendRequest(req)
// Necessary to pass TestReceiveChunkStorageFailureSeederFastExtensionDisabled. I think a
// request update runs while we're writing the chunk that just failed. Then we never do a
// fresh update after pending the failed request.
c.updateRequests("Peer.receiveChunk error writing chunk")
t.onWriteChunkErr(err)
return nil
}
c.onDirtiedPiece(pieceIndex(ppReq.Index))
// We need to ensure the piece is only queued once, so only the last chunk writer gets this job.
if t.pieceAllDirty(pieceIndex(ppReq.Index)) && piece.pendingWrites == 0 {
t.queuePieceCheck(pieceIndex(ppReq.Index))
// We don't pend all chunks here anymore because we don't want code dependent on the dirty
// chunk status (such as the haveChunk call above) to have to check all the various other
// piece states like queued for hash, hashing etc. This does mean that we need to be sure
// that chunk pieces are pended at an appropriate time later however.
}
cl.event.Broadcast()
// We do this because we've written a chunk, and may change PieceState.Partial.
t.publishPieceChange(pieceIndex(ppReq.Index))
return nil
}
func (c *Peer) onDirtiedPiece(piece pieceIndex) {
if c.peerTouchedPieces == nil {
c.peerTouchedPieces = make(map[pieceIndex]struct{})
}
c.peerTouchedPieces[piece] = struct{}{}
ds := &c.t.pieces[piece].dirtiers
if *ds == nil {
*ds = make(map[*Peer]struct{})
}
(*ds)[c] = struct{}{}
}
func (cn *Peer) netGoodPiecesDirtied() int64 {
return cn._stats.PiecesDirtiedGood.Int64() - cn._stats.PiecesDirtiedBad.Int64()
}
func (c *Peer) peerHasWantedPieces() bool {
if all, _ := c.peerHasAllPieces(); all {
return !c.t.haveAllPieces() && !c.t._pendingPieces.IsEmpty()
}
if !c.t.haveInfo() {
return !c.peerPieces().IsEmpty()
}
return c.peerPieces().Intersects(&c.t._pendingPieces)
}
// Returns true if an outstanding request is removed. Cancelled requests should be handled
// separately.
func (c *Peer) deleteRequest(r RequestIndex) bool {
if !c.requestState.Requests.CheckedRemove(r) {
return false
}
for _, f := range c.callbacks.DeletedRequest {
f(PeerRequestEvent{c, c.t.requestIndexToRequest(r)})
}
c.updateExpectingChunks()
if c.t.requestingPeer(r) != c {
panic("only one peer should have a given request at a time")
}
delete(c.t.requestState, r)
// c.t.iterPeers(func(p *Peer) {
// if p.isLowOnRequests() {
// p.updateRequests("Peer.deleteRequest")
// }
// })
return true
}
func (c *Peer) deleteAllRequests(reason string) {
if c.requestState.Requests.IsEmpty() {
return
}
c.requestState.Requests.IterateSnapshot(func(x RequestIndex) bool {
if !c.deleteRequest(x) {
panic("request should exist")
}
return true
})
c.assertNoRequests()
c.t.iterPeers(func(p *Peer) {
if p.isLowOnRequests() {
p.updateRequests(reason)
}
})
return
}
func (c *Peer) assertNoRequests() {
if !c.requestState.Requests.IsEmpty() {
panic(c.requestState.Requests.GetCardinality())
}
}
func (c *Peer) cancelAllRequests() {
c.requestState.Requests.IterateSnapshot(func(x RequestIndex) bool {
c.cancel(x)
return true
})
c.assertNoRequests()
return
}
func (c *Peer) peerPriority() (peerPriority, error) {
return bep40Priority(c.remoteIpPort(), c.localPublicAddr)
}
func (c *Peer) remoteIp() net.IP {
host, _, _ := net.SplitHostPort(c.RemoteAddr.String())
return net.ParseIP(host)
}
func (c *Peer) remoteIpPort() IpPort {
ipa, _ := tryIpPortFromNetAddr(c.RemoteAddr)
return IpPort{ipa.IP, uint16(ipa.Port)}
}
func (c *Peer) trust() connectionTrust {
return connectionTrust{c.trusted, c.netGoodPiecesDirtied()}
}
type connectionTrust struct {
Implicit bool
NetGoodPiecesDirted int64
}
func (l connectionTrust) Less(r connectionTrust) bool {
return multiless.New().Bool(l.Implicit, r.Implicit).Int64(l.NetGoodPiecesDirted, r.NetGoodPiecesDirted).Less()
}
// Returns a new Bitmap that includes bits for all pieces the peer could have based on their claims.
func (cn *Peer) newPeerPieces() *roaring.Bitmap {
// TODO: Can we use copy on write?
ret := cn.peerPieces().Clone()
if all, _ := cn.peerHasAllPieces(); all {
if cn.t.haveInfo() {
ret.AddRange(0, bitmap.BitRange(cn.t.numPieces()))
} else {
ret.AddRange(0, bitmap.ToEnd)
}
}
return ret
}
func (cn *Peer) stats() *ConnStats {
return &cn._stats
}
func (p *Peer) TryAsPeerConn() (*PeerConn, bool) {
pc, ok := p.peerImpl.(*PeerConn)
return pc, ok
}
func (p *Peer) uncancelledRequests() uint64 {
return p.requestState.Requests.GetCardinality()
}
type peerLocalPublicAddr = IpPort
func (p *Peer) isLowOnRequests() bool {
return p.requestState.Requests.IsEmpty() && p.requestState.Cancelled.IsEmpty()
}
func (p *Peer) decPeakRequests() {
// // This can occur when peak requests are altered by the update request timer to be lower than
// // the actual number of outstanding requests. Let's let it go negative and see what happens. I
// // wonder what happens if maxRequests is not signed.
// if p.peakRequests < 1 {
// panic(p.peakRequests)
// }
p.peakRequests--
}