package torrent import ( "errors" "fmt" "io" "net" "strings" "sync/atomic" "time" "github.com/RoaringBitmap/roaring" "github.com/anacrolix/chansync" . "github.com/anacrolix/generics" "github.com/anacrolix/log" "github.com/anacrolix/missinggo/iter" "github.com/anacrolix/missinggo/v2/bitmap" "github.com/anacrolix/multiless" "github.com/anacrolix/torrent/internal/alloclim" "github.com/anacrolix/torrent/mse" pp "github.com/anacrolix/torrent/peer_protocol" request_strategy "github.com/anacrolix/torrent/request-strategy" "github.com/anacrolix/torrent/typed-roaring" ) type ( Peer struct { // First to ensure 64-bit alignment for atomics. See #262. _stats ConnStats t *Torrent peerImpl callbacks *Callbacks outgoing bool Network string RemoteAddr PeerRemoteAddr // The local address as observed by the remote peer. WebRTC seems to get this right without needing hints from the // config. localPublicAddr peerLocalPublicAddr bannableAddr Option[bannableAddr] // True if the connection is operating over MSE obfuscation. headerEncrypted bool cryptoMethod mse.CryptoMethod Discovery PeerSource trusted bool closed chansync.SetOnce // Set true after we've added our ConnStats generated during handshake to // other ConnStat instances as determined when the *Torrent became known. reconciledHandshakeStats bool lastMessageReceived time.Time completedHandshake time.Time lastUsefulChunkReceived time.Time lastChunkSent time.Time // Stuff controlled by the local peer. needRequestUpdate string requestState request_strategy.PeerRequestState updateRequestsTimer *time.Timer lastRequestUpdate time.Time peakRequests maxRequests lastBecameInterested time.Time priorInterest time.Duration lastStartedExpectingToReceiveChunks time.Time cumulativeExpectedToReceiveChunks time.Duration _chunksReceivedWhileExpecting int64 choking bool piecesReceivedSinceLastRequestUpdate maxRequests maxPiecesReceivedBetweenRequestUpdates maxRequests // Chunks that we might reasonably expect to receive from the peer. Due to latency, buffering, // and implementation differences, we may receive chunks that are no longer in the set of // requests actually want. This could use a roaring.BSI if the memory use becomes noticeable. validReceiveChunks map[RequestIndex]int // Indexed by metadata piece, set to true if posted and pending a // response. metadataRequests []bool sentHaves bitmap.Bitmap // Stuff controlled by the remote peer. peerInterested bool peerChoking bool peerRequests map[Request]*peerRequestState PeerPrefersEncryption bool // as indicated by 'e' field in extension handshake PeerListenPort int // The highest possible number of pieces the torrent could have based on // communication with the peer. Generally only useful until we have the // torrent info. peerMinPieces pieceIndex // Pieces we've accepted chunks for from the peer. peerTouchedPieces map[pieceIndex]struct{} peerAllowedFast typedRoaring.Bitmap[pieceIndex] PeerMaxRequests maxRequests // Maximum pending requests the peer allows. PeerExtensionIDs map[pp.ExtensionName]pp.ExtensionNumber PeerClientName atomic.Value logger log.Logger } PeerSource string peerRequestState struct { data []byte allocReservation *alloclim.Reservation } PeerRemoteAddr interface { String() string } peerRequests = orderedBitmap[RequestIndex] ) const ( PeerSourceTracker = "Tr" PeerSourceIncoming = "I" PeerSourceDhtGetPeers = "Hg" // Peers we found by searching a DHT. PeerSourceDhtAnnouncePeer = "Ha" // Peers that were announced to us by a DHT. PeerSourcePex = "X" // The peer was given directly, such as through a magnet link. PeerSourceDirect = "M" ) // Returns the Torrent a Peer belongs to. Shouldn't change for the lifetime of the Peer. May be nil // if we are the receiving end of a connection and the handshake hasn't been received or accepted // yet. func (p *Peer) Torrent() *Torrent { return p.t } func (p *Peer) initRequestState() { p.requestState.Requests = &peerRequests{} } func (cn *Peer) updateExpectingChunks() { if cn.expectingChunks() { if cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.lastStartedExpectingToReceiveChunks = time.Now() } } else { if !cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.cumulativeExpectedToReceiveChunks += time.Since(cn.lastStartedExpectingToReceiveChunks) cn.lastStartedExpectingToReceiveChunks = time.Time{} } } } func (cn *Peer) expectingChunks() bool { if cn.requestState.Requests.IsEmpty() { return false } if !cn.requestState.Interested { return false } if !cn.peerChoking { return true } haveAllowedFastRequests := false cn.peerAllowedFast.Iterate(func(i pieceIndex) bool { haveAllowedFastRequests = roaringBitmapRangeCardinality[RequestIndex]( cn.requestState.Requests, cn.t.pieceRequestIndexOffset(i), cn.t.pieceRequestIndexOffset(i+1), ) == 0 return !haveAllowedFastRequests }) return haveAllowedFastRequests } func (cn *Peer) remoteChokingPiece(piece pieceIndex) bool { return cn.peerChoking && !cn.peerAllowedFast.Contains(piece) } func (cn *Peer) cumInterest() time.Duration { ret := cn.priorInterest if cn.requestState.Interested { ret += time.Since(cn.lastBecameInterested) } return ret } func (cn *Peer) locker() *lockWithDeferreds { return cn.t.cl.locker() } func (cn *Peer) supportsExtension(ext pp.ExtensionName) bool { _, ok := cn.PeerExtensionIDs[ext] return ok } // The best guess at number of pieces in the torrent for this peer. func (cn *Peer) bestPeerNumPieces() pieceIndex { if cn.t.haveInfo() { return cn.t.numPieces() } return cn.peerMinPieces } func (cn *Peer) completedString() string { have := pieceIndex(cn.peerPieces().GetCardinality()) if all, _ := cn.peerHasAllPieces(); all { have = cn.bestPeerNumPieces() } return fmt.Sprintf("%d/%d", have, cn.bestPeerNumPieces()) } func eventAgeString(t time.Time) string { if t.IsZero() { return "never" } return fmt.Sprintf("%.2fs ago", time.Since(t).Seconds()) } // Inspired by https://github.com/transmission/transmission/wiki/Peer-Status-Text. func (cn *Peer) statusFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.requestState.Interested { c('i') } if cn.choking { c('c') } c('-') ret += cn.connectionFlags() c('-') if cn.peerInterested { c('i') } if cn.peerChoking { c('c') } return } func (cn *Peer) downloadRate() float64 { num := cn._stats.BytesReadUsefulData.Int64() if num == 0 { return 0 } return float64(num) / cn.totalExpectingTime().Seconds() } func (cn *Peer) DownloadRate() float64 { cn.locker().RLock() defer cn.locker().RUnlock() return cn.downloadRate() } func (cn *Peer) iterContiguousPieceRequests(f func(piece pieceIndex, count int)) { var last Option[pieceIndex] var count int next := func(item Option[pieceIndex]) { if item == last { count++ } else { if count != 0 { f(last.Value, count) } last = item count = 1 } } cn.requestState.Requests.Iterate(func(requestIndex request_strategy.RequestIndex) bool { next(Some(cn.t.pieceIndexOfRequestIndex(requestIndex))) return true }) next(None[pieceIndex]()) } func (cn *Peer) writeStatus(w io.Writer, t *Torrent) { // \t isn't preserved in
blocks? if cn.closed.IsSet() { fmt.Fprint(w, "CLOSED: ") } fmt.Fprintln(w, strings.Join(cn.peerImplStatusLines(), "\n")) prio, err := cn.peerPriority() prioStr := fmt.Sprintf("%08x", prio) if err != nil { prioStr += ": " + err.Error() } fmt.Fprintf(w, "bep40-prio: %v\n", prioStr) fmt.Fprintf(w, "last msg: %s, connected: %s, last helpful: %s, itime: %s, etime: %s\n", eventAgeString(cn.lastMessageReceived), eventAgeString(cn.completedHandshake), eventAgeString(cn.lastHelpful()), cn.cumInterest(), cn.totalExpectingTime(), ) fmt.Fprintf(w, "%s completed, %d pieces touched, good chunks: %v/%v:%v reqq: %d+%v/(%d/%d):%d/%d, flags: %s, dr: %.1f KiB/s\n", cn.completedString(), len(cn.peerTouchedPieces), &cn._stats.ChunksReadUseful, &cn._stats.ChunksRead, &cn._stats.ChunksWritten, cn.requestState.Requests.GetCardinality(), cn.requestState.Cancelled.GetCardinality(), cn.nominalMaxRequests(), cn.PeerMaxRequests, len(cn.peerRequests), localClientReqq, cn.statusFlags(), cn.downloadRate()/(1<<10), ) fmt.Fprintf(w, "requested pieces:") cn.iterContiguousPieceRequests(func(piece pieceIndex, count int) { fmt.Fprintf(w, " %v(%v)", piece, count) }) fmt.Fprintf(w, "\n") } func (p *Peer) close() { if !p.closed.Set() { return } if p.updateRequestsTimer != nil { p.updateRequestsTimer.Stop() } p.peerImpl.onClose() if p.t != nil { p.t.decPeerPieceAvailability(p) } for _, f := range p.callbacks.PeerClosed { f(p) } } // Peer definitely has a piece, for purposes of requesting. So it's not sufficient that we think // they do (known=true). func (cn *Peer) peerHasPiece(piece pieceIndex) bool { if all, known := cn.peerHasAllPieces(); all && known { return true } return cn.peerPieces().ContainsInt(piece) } // 64KiB, but temporarily less to work around an issue with WebRTC. TODO: Update when // https://github.com/pion/datachannel/issues/59 is fixed. const ( writeBufferHighWaterLen = 1 << 15 writeBufferLowWaterLen = writeBufferHighWaterLen / 2 ) var ( interestedMsgLen = len(pp.Message{Type: pp.Interested}.MustMarshalBinary()) requestMsgLen = len(pp.Message{Type: pp.Request}.MustMarshalBinary()) // This is the maximum request count that could fit in the write buffer if it's at or below the // low water mark when we run maybeUpdateActualRequestState. maxLocalToRemoteRequests = (writeBufferHighWaterLen - writeBufferLowWaterLen - interestedMsgLen) / requestMsgLen ) // The actual value to use as the maximum outbound requests. func (cn *Peer) nominalMaxRequests() maxRequests { return maxInt(1, minInt(cn.PeerMaxRequests, cn.peakRequests*2, maxLocalToRemoteRequests)) } func (cn *Peer) totalExpectingTime() (ret time.Duration) { ret = cn.cumulativeExpectedToReceiveChunks if !cn.lastStartedExpectingToReceiveChunks.IsZero() { ret += time.Since(cn.lastStartedExpectingToReceiveChunks) } return } func (cn *Peer) setInterested(interested bool) bool { if cn.requestState.Interested == interested { return true } cn.requestState.Interested = interested if interested { cn.lastBecameInterested = time.Now() } else if !cn.lastBecameInterested.IsZero() { cn.priorInterest += time.Since(cn.lastBecameInterested) } cn.updateExpectingChunks() // log.Printf("%p: setting interest: %v", cn, interested) return cn.writeInterested(interested) } // The function takes a message to be sent, and returns true if more messages // are okay. type messageWriter func(pp.Message) bool // This function seems to only used by Peer.request. It's all logic checks, so maybe we can no-op it // when we want to go fast. func (cn *Peer) shouldRequest(r RequestIndex) error { err := cn.t.checkValidReceiveChunk(cn.t.requestIndexToRequest(r)) if err != nil { return err } pi := cn.t.pieceIndexOfRequestIndex(r) if cn.requestState.Cancelled.Contains(r) { return errors.New("request is cancelled and waiting acknowledgement") } if !cn.peerHasPiece(pi) { return errors.New("requesting piece peer doesn't have") } if !cn.t.peerIsActive(cn) { panic("requesting but not in active conns") } if cn.closed.IsSet() { panic("requesting when connection is closed") } if cn.t.hashingPiece(pi) { panic("piece is being hashed") } if cn.t.pieceQueuedForHash(pi) { panic("piece is queued for hash") } if cn.peerChoking && !cn.peerAllowedFast.Contains(pi) { // This could occur if we made a request with the fast extension, and then got choked and // haven't had the request rejected yet. if !cn.requestState.Requests.Contains(r) { panic("peer choking and piece not allowed fast") } } return nil } func (cn *Peer) mustRequest(r RequestIndex) bool { more, err := cn.request(r) if err != nil { panic(err) } return more } func (cn *Peer) request(r RequestIndex) (more bool, err error) { if err := cn.shouldRequest(r); err != nil { panic(err) } if cn.requestState.Requests.Contains(r) { return true, nil } if maxRequests(cn.requestState.Requests.GetCardinality()) >= cn.nominalMaxRequests() { return true, errors.New("too many outstanding requests") } cn.requestState.Requests.Add(r) if cn.validReceiveChunks == nil { cn.validReceiveChunks = make(map[RequestIndex]int) } cn.validReceiveChunks[r]++ cn.t.requestState[r] = requestState{ peer: cn, when: time.Now(), } cn.updateExpectingChunks() ppReq := cn.t.requestIndexToRequest(r) for _, f := range cn.callbacks.SentRequest { f(PeerRequestEvent{cn, ppReq}) } return cn.peerImpl._request(ppReq), nil } func (me *Peer) cancel(r RequestIndex) { if !me.deleteRequest(r) { panic("request not existing should have been guarded") } if me._cancel(r) { if !me.requestState.Cancelled.CheckedAdd(r) { panic("request already cancelled") } } me.decPeakRequests() if me.isLowOnRequests() { me.updateRequests("Peer.cancel") } } // Sets a reason to update requests, and if there wasn't already one, handle it. func (cn *Peer) updateRequests(reason string) { if cn.needRequestUpdate != "" { return } if reason != peerUpdateRequestsTimerReason && !cn.isLowOnRequests() { return } cn.needRequestUpdate = reason cn.handleUpdateRequests() } // Emits the indices in the Bitmaps bms in order, never repeating any index. // skip is mutated during execution, and its initial values will never be // emitted. func iterBitmapsDistinct(skip *bitmap.Bitmap, bms ...bitmap.Bitmap) iter.Func { return func(cb iter.Callback) { for _, bm := range bms { if !iter.All( func(_i interface{}) bool { i := _i.(int) if skip.Contains(bitmap.BitIndex(i)) { return true } skip.Add(bitmap.BitIndex(i)) return cb(i) }, bm.Iter, ) { return } } } } func (cn *Peer) peerPiecesChanged() { cn.t.maybeDropMutuallyCompletePeer(cn) } // After handshake, we know what Torrent and Client stats to include for a // connection. func (cn *Peer) postHandshakeStats(f func(*ConnStats)) { t := cn.t f(&t.stats) f(&t.cl.stats) } // All ConnStats that include this connection. Some objects are not known // until the handshake is complete, after which it's expected to reconcile the // differences. func (cn *Peer) allStats(f func(*ConnStats)) { f(&cn._stats) if cn.reconciledHandshakeStats { cn.postHandshakeStats(f) } } func (cn *Peer) readBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesRead })) } // Returns whether the connection could be useful to us. We're seeding and // they want data, we don't have metainfo and they can provide it, etc. func (c *Peer) useful() bool { t := c.t if c.closed.IsSet() { return false } if !t.haveInfo() { return c.supportsExtension("ut_metadata") } if t.seeding() && c.peerInterested { return true } if c.peerHasWantedPieces() { return true } return false } func (c *Peer) lastHelpful() (ret time.Time) { ret = c.lastUsefulChunkReceived if c.t.seeding() && c.lastChunkSent.After(ret) { ret = c.lastChunkSent } return } // Returns whether any part of the chunk would lie outside a piece of the given length. func chunkOverflowsPiece(cs ChunkSpec, pieceLength pp.Integer) bool { switch { default: return false case cs.Begin+cs.Length > pieceLength: // Check for integer overflow case cs.Begin > pp.IntegerMax-cs.Length: } return true } func runSafeExtraneous(f func()) { if true { go f() } else { f() } } // Returns true if it was valid to reject the request. func (c *Peer) remoteRejectedRequest(r RequestIndex) bool { if c.deleteRequest(r) { c.decPeakRequests() } else if !c.requestState.Cancelled.CheckedRemove(r) { return false } if c.isLowOnRequests() { c.updateRequests("Peer.remoteRejectedRequest") } c.decExpectedChunkReceive(r) return true } func (c *Peer) decExpectedChunkReceive(r RequestIndex) { count := c.validReceiveChunks[r] if count == 1 { delete(c.validReceiveChunks, r) } else if count > 1 { c.validReceiveChunks[r] = count - 1 } else { panic(r) } } func (c *Peer) doChunkReadStats(size int64) { c.allStats(func(cs *ConnStats) { cs.receivedChunk(size) }) } // Handle a received chunk from a peer. func (c *Peer) receiveChunk(msg *pp.Message) error { chunksReceived.Add("total", 1) ppReq := newRequestFromMessage(msg) t := c.t err := t.checkValidReceiveChunk(ppReq) if err != nil { err = log.WithLevel(log.Warning, err) return err } req := c.t.requestIndexFromRequest(ppReq) if c.bannableAddr.Ok { t.smartBanCache.RecordBlock(c.bannableAddr.Value, req, msg.Piece) } if c.peerChoking { chunksReceived.Add("while choked", 1) } if c.validReceiveChunks[req] <= 0 { chunksReceived.Add("unexpected", 1) return errors.New("received unexpected chunk") } c.decExpectedChunkReceive(req) if c.peerChoking && c.peerAllowedFast.Contains(pieceIndex(ppReq.Index)) { chunksReceived.Add("due to allowed fast", 1) } // The request needs to be deleted immediately to prevent cancels occurring asynchronously when // have actually already received the piece, while we have the Client unlocked to write the data // out. intended := false { if c.requestState.Requests.Contains(req) { for _, f := range c.callbacks.ReceivedRequested { f(PeerMessageEvent{c, msg}) } } // Request has been satisfied. if c.deleteRequest(req) || c.requestState.Cancelled.CheckedRemove(req) { intended = true if !c.peerChoking { c._chunksReceivedWhileExpecting++ } if c.isLowOnRequests() { c.updateRequests("Peer.receiveChunk deleted request") } } else { chunksReceived.Add("unintended", 1) } } cl := t.cl // Do we actually want this chunk? if t.haveChunk(ppReq) { // panic(fmt.Sprintf("%+v", ppReq)) chunksReceived.Add("redundant", 1) c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadWasted })) return nil } piece := &t.pieces[ppReq.Index] c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadUseful })) c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulData })) if intended { c.piecesReceivedSinceLastRequestUpdate++ c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulIntendedData })) } for _, f := range c.t.cl.config.Callbacks.ReceivedUsefulData { f(ReceivedUsefulDataEvent{c, msg}) } c.lastUsefulChunkReceived = time.Now() // Need to record that it hasn't been written yet, before we attempt to do // anything with it. piece.incrementPendingWrites() // Record that we have the chunk, so we aren't trying to download it while // waiting for it to be written to storage. piece.unpendChunkIndex(chunkIndexFromChunkSpec(ppReq.ChunkSpec, t.chunkSize)) // Cancel pending requests for this chunk from *other* peers. if p := t.requestingPeer(req); p != nil { if p == c { panic("should not be pending request from conn that just received it") } p.cancel(req) } err = func() error { cl.unlock() defer cl.lock() concurrentChunkWrites.Add(1) defer concurrentChunkWrites.Add(-1) // Write the chunk out. Note that the upper bound on chunk writing concurrency will be the // number of connections. We write inline with receiving the chunk (with this lock dance), // because we want to handle errors synchronously and I haven't thought of a nice way to // defer any concurrency to the storage and have that notify the client of errors. TODO: Do // that instead. // 实际执行写入chunk的位置 return t.writeChunk(int(msg.Index), int64(msg.Begin), msg.Piece) }() piece.decrementPendingWrites() if err != nil { c.logger.WithDefaultLevel(log.Error).Printf("writing received chunk %v: %v", req, err) t.pendRequest(req) // Necessary to pass TestReceiveChunkStorageFailureSeederFastExtensionDisabled. I think a // request update runs while we're writing the chunk that just failed. Then we never do a // fresh update after pending the failed request. c.updateRequests("Peer.receiveChunk error writing chunk") t.onWriteChunkErr(err) return nil } c.onDirtiedPiece(pieceIndex(ppReq.Index)) // We need to ensure the piece is only queued once, so only the last chunk writer gets this job. if t.pieceAllDirty(pieceIndex(ppReq.Index)) && piece.pendingWrites == 0 { t.queuePieceCheck(pieceIndex(ppReq.Index)) // We don't pend all chunks here anymore because we don't want code dependent on the dirty // chunk status (such as the haveChunk call above) to have to check all the various other // piece states like queued for hash, hashing etc. This does mean that we need to be sure // that chunk pieces are pended at an appropriate time later however. } cl.event.Broadcast() // We do this because we've written a chunk, and may change PieceState.Partial. t.publishPieceChange(pieceIndex(ppReq.Index)) return nil } func (c *Peer) onDirtiedPiece(piece pieceIndex) { if c.peerTouchedPieces == nil { c.peerTouchedPieces = make(map[pieceIndex]struct{}) } c.peerTouchedPieces[piece] = struct{}{} ds := &c.t.pieces[piece].dirtiers if *ds == nil { *ds = make(map[*Peer]struct{}) } (*ds)[c] = struct{}{} } func (cn *Peer) netGoodPiecesDirtied() int64 { return cn._stats.PiecesDirtiedGood.Int64() - cn._stats.PiecesDirtiedBad.Int64() } func (c *Peer) peerHasWantedPieces() bool { if all, _ := c.peerHasAllPieces(); all { return !c.t.haveAllPieces() && !c.t._pendingPieces.IsEmpty() } if !c.t.haveInfo() { return !c.peerPieces().IsEmpty() } return c.peerPieces().Intersects(&c.t._pendingPieces) } // Returns true if an outstanding request is removed. Cancelled requests should be handled // separately. func (c *Peer) deleteRequest(r RequestIndex) bool { if !c.requestState.Requests.CheckedRemove(r) { return false } for _, f := range c.callbacks.DeletedRequest { f(PeerRequestEvent{c, c.t.requestIndexToRequest(r)}) } c.updateExpectingChunks() if c.t.requestingPeer(r) != c { panic("only one peer should have a given request at a time") } delete(c.t.requestState, r) // c.t.iterPeers(func(p *Peer) { // if p.isLowOnRequests() { // p.updateRequests("Peer.deleteRequest") // } // }) return true } func (c *Peer) deleteAllRequests(reason string) { if c.requestState.Requests.IsEmpty() { return } c.requestState.Requests.IterateSnapshot(func(x RequestIndex) bool { if !c.deleteRequest(x) { panic("request should exist") } return true }) c.assertNoRequests() c.t.iterPeers(func(p *Peer) { if p.isLowOnRequests() { p.updateRequests(reason) } }) return } func (c *Peer) assertNoRequests() { if !c.requestState.Requests.IsEmpty() { panic(c.requestState.Requests.GetCardinality()) } } func (c *Peer) cancelAllRequests() { c.requestState.Requests.IterateSnapshot(func(x RequestIndex) bool { c.cancel(x) return true }) c.assertNoRequests() return } func (c *Peer) peerPriority() (peerPriority, error) { return bep40Priority(c.remoteIpPort(), c.localPublicAddr) } func (c *Peer) remoteIp() net.IP { host, _, _ := net.SplitHostPort(c.RemoteAddr.String()) return net.ParseIP(host) } func (c *Peer) remoteIpPort() IpPort { ipa, _ := tryIpPortFromNetAddr(c.RemoteAddr) return IpPort{ipa.IP, uint16(ipa.Port)} } func (c *Peer) trust() connectionTrust { return connectionTrust{c.trusted, c.netGoodPiecesDirtied()} } type connectionTrust struct { Implicit bool NetGoodPiecesDirted int64 } func (l connectionTrust) Less(r connectionTrust) bool { return multiless.New().Bool(l.Implicit, r.Implicit).Int64(l.NetGoodPiecesDirted, r.NetGoodPiecesDirted).Less() } // Returns a new Bitmap that includes bits for all pieces the peer could have based on their claims. func (cn *Peer) newPeerPieces() *roaring.Bitmap { // TODO: Can we use copy on write? ret := cn.peerPieces().Clone() if all, _ := cn.peerHasAllPieces(); all { if cn.t.haveInfo() { ret.AddRange(0, bitmap.BitRange(cn.t.numPieces())) } else { ret.AddRange(0, bitmap.ToEnd) } } return ret } func (cn *Peer) stats() *ConnStats { return &cn._stats } func (p *Peer) TryAsPeerConn() (*PeerConn, bool) { pc, ok := p.peerImpl.(*PeerConn) return pc, ok } func (p *Peer) uncancelledRequests() uint64 { return p.requestState.Requests.GetCardinality() } type peerLocalPublicAddr = IpPort func (p *Peer) isLowOnRequests() bool { return p.requestState.Requests.IsEmpty() && p.requestState.Cancelled.IsEmpty() } func (p *Peer) decPeakRequests() { // // This can occur when peak requests are altered by the update request timer to be lower than // // the actual number of outstanding requests. Let's let it go negative and see what happens. I // // wonder what happens if maxRequests is not signed. // if p.peakRequests < 1 { // panic(p.peakRequests) // } p.peakRequests-- }