package torrent import ( "bufio" "bytes" "fmt" "io" "math/rand" "net" "strconv" "strings" "sync" "time" "github.com/anacrolix/log" "github.com/anacrolix/missinggo" "github.com/anacrolix/missinggo/iter" "github.com/anacrolix/missinggo/v2/bitmap" "github.com/anacrolix/missinggo/v2/prioritybitmap" "github.com/anacrolix/multiless" "github.com/anacrolix/torrent/metainfo" "github.com/pkg/errors" "github.com/anacrolix/torrent/bencode" "github.com/anacrolix/torrent/mse" pp "github.com/anacrolix/torrent/peer_protocol" ) type PeerSource string const ( PeerSourceTracker = "Tr" PeerSourceIncoming = "I" PeerSourceDhtGetPeers = "Hg" // Peers we found by searching a DHT. PeerSourceDhtAnnouncePeer = "Ha" // Peers that were announced to us by a DHT. PeerSourcePex = "X" ) type peer struct { // First to ensure 64-bit alignment for atomics. See #262. _stats ConnStats t *Torrent peerImpl outgoing bool network string RemoteAddr net.Addr // True if the connection is operating over MSE obfuscation. headerEncrypted bool cryptoMethod mse.CryptoMethod Discovery PeerSource trusted bool closed missinggo.Event // Set true after we've added our ConnStats generated during handshake to // other ConnStat instances as determined when the *Torrent became known. reconciledHandshakeStats bool lastMessageReceived time.Time completedHandshake time.Time lastUsefulChunkReceived time.Time lastChunkSent time.Time // Stuff controlled by the local peer. interested bool lastBecameInterested time.Time priorInterest time.Duration lastStartedExpectingToReceiveChunks time.Time cumulativeExpectedToReceiveChunks time.Duration _chunksReceivedWhileExpecting int64 choking bool requests map[request]struct{} requestsLowWater int // Chunks that we might reasonably expect to receive from the peer. Due to // latency, buffering, and implementation differences, we may receive // chunks that are no longer in the set of requests actually want. validReceiveChunks map[request]int // Indexed by metadata piece, set to true if posted and pending a // response. metadataRequests []bool sentHaves bitmap.Bitmap // Stuff controlled by the remote peer. peerInterested bool peerChoking bool peerRequests map[request]struct{} PeerPrefersEncryption bool // as indicated by 'e' field in extension handshake PeerListenPort int // The pieces the peer has claimed to have. _peerPieces bitmap.Bitmap // The peer has everything. This can occur due to a special message, when // we may not even know the number of pieces in the torrent yet. peerSentHaveAll bool // The highest possible number of pieces the torrent could have based on // communication with the peer. Generally only useful until we have the // torrent info. peerMinPieces pieceIndex // Pieces we've accepted chunks for from the peer. peerTouchedPieces map[pieceIndex]struct{} peerAllowedFast bitmap.Bitmap PeerMaxRequests int // Maximum pending requests the peer allows. PeerExtensionIDs map[pp.ExtensionName]pp.ExtensionNumber PeerClientName string pieceInclination []int _pieceRequestOrder prioritybitmap.PriorityBitmap logger log.Logger } // Maintains the state of a BitTorrent-protocol based connection with a peer. type PeerConn struct { peer // A string that should identify the PeerConn's net.Conn endpoints. The net.Conn could // be wrapping WebRTC, uTP, or TCP etc. Used in writing the conn status for peers. connString string // See BEP 3 etc. PeerID PeerID PeerExtensionBytes pp.PeerExtensionBits // The actual Conn, used for closing, and setting socket options. conn net.Conn // The Reader and Writer for this Conn, with hooks installed for stats, // limiting, deadlines etc. w io.Writer r io.Reader writeBuffer *bytes.Buffer uploadTimer *time.Timer writerCond sync.Cond pex pexConnState callbacks *Callbacks } func (cn *PeerConn) connStatusString() string { return fmt.Sprintf("%+-55q %s %s", cn.PeerID, cn.PeerExtensionBytes, cn.connString) } func (cn *peer) updateExpectingChunks() { if cn.expectingChunks() { if cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.lastStartedExpectingToReceiveChunks = time.Now() } } else { if !cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.cumulativeExpectedToReceiveChunks += time.Since(cn.lastStartedExpectingToReceiveChunks) cn.lastStartedExpectingToReceiveChunks = time.Time{} } } } func (cn *peer) expectingChunks() bool { return cn.interested && !cn.peerChoking } // Returns true if the connection is over IPv6. func (cn *PeerConn) ipv6() bool { ip := addrIpOrNil(cn.RemoteAddr) if ip.To4() != nil { return false } return len(ip) == net.IPv6len } // Returns true the if the dialer/initiator has the lower client peer ID. TODO: Find the // specification for this. func (cn *PeerConn) isPreferredDirection() bool { return bytes.Compare(cn.t.cl.peerID[:], cn.PeerID[:]) < 0 == cn.outgoing } // Returns whether the left connection should be preferred over the right one, // considering only their networking properties. If ok is false, we can't // decide. func (l *PeerConn) hasPreferredNetworkOver(r *PeerConn) (left, ok bool) { var ml multiLess ml.NextBool(l.isPreferredDirection(), r.isPreferredDirection()) ml.NextBool(!l.utp(), !r.utp()) ml.NextBool(l.ipv6(), r.ipv6()) return ml.FinalOk() } func (cn *peer) cumInterest() time.Duration { ret := cn.priorInterest if cn.interested { ret += time.Since(cn.lastBecameInterested) } return ret } func (cn *PeerConn) peerHasAllPieces() (all bool, known bool) { if cn.peerSentHaveAll { return true, true } if !cn.t.haveInfo() { return false, false } return bitmap.Flip(cn._peerPieces, 0, bitmap.BitIndex(cn.t.numPieces())).IsEmpty(), true } func (cn *PeerConn) locker() *lockWithDeferreds { return cn.t.cl.locker() } func (cn *peer) supportsExtension(ext pp.ExtensionName) bool { _, ok := cn.PeerExtensionIDs[ext] return ok } // The best guess at number of pieces in the torrent for this peer. func (cn *peer) bestPeerNumPieces() pieceIndex { if cn.t.haveInfo() { return cn.t.numPieces() } return cn.peerMinPieces } func (cn *peer) completedString() string { have := pieceIndex(cn._peerPieces.Len()) if cn.peerSentHaveAll { have = cn.bestPeerNumPieces() } return fmt.Sprintf("%d/%d", have, cn.bestPeerNumPieces()) } func (cn *PeerConn) onGotInfo(info *metainfo.Info) { cn.setNumPieces(info.NumPieces()) } // Correct the PeerPieces slice length. Return false if the existing slice is invalid, such as by // receiving badly sized BITFIELD, or invalid HAVE messages. func (cn *PeerConn) setNumPieces(num pieceIndex) { cn._peerPieces.RemoveRange(bitmap.BitIndex(num), bitmap.ToEnd) cn.peerPiecesChanged() } func eventAgeString(t time.Time) string { if t.IsZero() { return "never" } return fmt.Sprintf("%.2fs ago", time.Since(t).Seconds()) } func (cn *PeerConn) connectionFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.cryptoMethod == mse.CryptoMethodRC4 { c('E') } else if cn.headerEncrypted { c('e') } ret += string(cn.Discovery) if cn.utp() { c('U') } return } func (cn *PeerConn) utp() bool { return parseNetworkString(cn.network).Udp } // Inspired by https://github.com/transmission/transmission/wiki/Peer-Status-Text. func (cn *peer) statusFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.interested { c('i') } if cn.choking { c('c') } c('-') ret += cn.connectionFlags() c('-') if cn.peerInterested { c('i') } if cn.peerChoking { c('c') } return } // func (cn *connection) String() string { // var buf bytes.Buffer // cn.writeStatus(&buf, nil) // return buf.String() // } func (cn *peer) downloadRate() float64 { return float64(cn._stats.BytesReadUsefulData.Int64()) / cn.cumInterest().Seconds() } func (cn *peer) writeStatus(w io.Writer, t *Torrent) { // \t isn't preserved in
blocks? fmt.Fprintln(w, cn.connStatusString()) fmt.Fprintf(w, " last msg: %s, connected: %s, last helpful: %s, itime: %s, etime: %s\n", eventAgeString(cn.lastMessageReceived), eventAgeString(cn.completedHandshake), eventAgeString(cn.lastHelpful()), cn.cumInterest(), cn.totalExpectingTime(), ) fmt.Fprintf(w, " %s completed, %d pieces touched, good chunks: %v/%v-%v reqq: (%d,%d,%d]-%d, flags: %s, dr: %.1f KiB/s\n", cn.completedString(), len(cn.peerTouchedPieces), &cn._stats.ChunksReadUseful, &cn._stats.ChunksRead, &cn._stats.ChunksWritten, cn.requestsLowWater, cn.numLocalRequests(), cn.nominalMaxRequests(), len(cn.peerRequests), cn.statusFlags(), cn.downloadRate()/(1<<10), ) fmt.Fprintf(w, " next pieces: %v%s\n", iter.ToSlice(iter.Head(10, cn.iterPendingPiecesUntyped)), func() string { if cn == t.fastestPeer { return " (fastest)" } else { return "" } }(), ) } func (cn *peer) close() { if !cn.closed.Set() { return } cn.discardPieceInclination() cn._pieceRequestOrder.Clear() cn.peerImpl._close() } func (cn *PeerConn) _close() { if cn.pex.IsEnabled() { cn.pex.Close() } cn.tickleWriter() if cn.conn != nil { cn.conn.Close() } if cb := cn.callbacks.PeerConnClosed; cb != nil { cb(cn) } } func (cn *peer) peerHasPiece(piece pieceIndex) bool { return cn.peerSentHaveAll || cn._peerPieces.Contains(bitmap.BitIndex(piece)) } // Writes a message into the write buffer. func (cn *PeerConn) post(msg pp.Message) { torrent.Add(fmt.Sprintf("messages posted of type %s", msg.Type.String()), 1) // We don't need to track bytes here because a connection.w Writer wrapper // takes care of that (although there's some delay between us recording // the message, and the connection writer flushing it out.). cn.writeBuffer.Write(msg.MustMarshalBinary()) // Last I checked only Piece messages affect stats, and we don't post // those. cn.wroteMsg(&msg) cn.tickleWriter() } // Returns true if there's room to write more. func (cn *PeerConn) write(msg pp.Message) bool { cn.wroteMsg(&msg) cn.writeBuffer.Write(msg.MustMarshalBinary()) torrent.Add(fmt.Sprintf("messages filled of type %s", msg.Type.String()), 1) // 64KiB, but temporarily less to work around an issue with WebRTC. TODO: Update // when https://github.com/pion/datachannel/issues/59 is fixed. return cn.writeBuffer.Len() < 1<<15 } func (cn *PeerConn) requestMetadataPiece(index int) { eID := cn.PeerExtensionIDs[pp.ExtensionNameMetadata] if eID == 0 { return } if index < len(cn.metadataRequests) && cn.metadataRequests[index] { return } cn.logger.WithDefaultLevel(log.Debug).Printf("requesting metadata piece %d", index) cn.post(pp.Message{ Type: pp.Extended, ExtendedID: eID, ExtendedPayload: func() []byte { b, err := bencode.Marshal(map[string]int{ "msg_type": pp.RequestMetadataExtensionMsgType, "piece": index, }) if err != nil { panic(err) } return b }(), }) for index >= len(cn.metadataRequests) { cn.metadataRequests = append(cn.metadataRequests, false) } cn.metadataRequests[index] = true } func (cn *PeerConn) requestedMetadataPiece(index int) bool { return index < len(cn.metadataRequests) && cn.metadataRequests[index] } // The actual value to use as the maximum outbound requests. func (cn *peer) nominalMaxRequests() (ret int) { return int(clamp( 1, int64(cn.PeerMaxRequests), int64(cn.t.requestStrategy.nominalMaxRequests(cn.requestStrategyConnection())), )) } func (cn *peer) totalExpectingTime() (ret time.Duration) { ret = cn.cumulativeExpectedToReceiveChunks if !cn.lastStartedExpectingToReceiveChunks.IsZero() { ret += time.Since(cn.lastStartedExpectingToReceiveChunks) } return } func (cn *PeerConn) onPeerSentCancel(r request) { if _, ok := cn.peerRequests[r]; !ok { torrent.Add("unexpected cancels received", 1) return } if cn.fastEnabled() { cn.reject(r) } else { delete(cn.peerRequests, r) } } func (cn *PeerConn) choke(msg messageWriter) (more bool) { if cn.choking { return true } cn.choking = true more = msg(pp.Message{ Type: pp.Choke, }) if cn.fastEnabled() { for r := range cn.peerRequests { // TODO: Don't reject pieces in allowed fast set. cn.reject(r) } } else { cn.peerRequests = nil } return } func (cn *PeerConn) unchoke(msg func(pp.Message) bool) bool { if !cn.choking { return true } cn.choking = false return msg(pp.Message{ Type: pp.Unchoke, }) } func (cn *peer) setInterested(interested bool) bool { if cn.interested == interested { return true } cn.interested = interested if interested { cn.lastBecameInterested = time.Now() } else if !cn.lastBecameInterested.IsZero() { cn.priorInterest += time.Since(cn.lastBecameInterested) } cn.updateExpectingChunks() // log.Printf("%p: setting interest: %v", cn, interested) return cn.writeInterested(interested) } func (pc *PeerConn) writeInterested(interested bool) bool { return pc.write(pp.Message{ Type: func() pp.MessageType { if interested { return pp.Interested } else { return pp.NotInterested } }(), }) } // The function takes a message to be sent, and returns true if more messages // are okay. type messageWriter func(pp.Message) bool func (cn *peer) request(r request) bool { if _, ok := cn.requests[r]; ok { panic("chunk already requested") } if !cn.peerHasPiece(pieceIndex(r.Index)) { panic("requesting piece peer doesn't have") } if !cn.t.peerIsActive(cn) { panic("requesting but not in active conns") } if cn.closed.IsSet() { panic("requesting when connection is closed") } if cn.peerChoking { if cn.peerAllowedFast.Get(int(r.Index)) { torrent.Add("allowed fast requests sent", 1) } else { panic("requesting while choking and not allowed fast") } } if cn.t.hashingPiece(pieceIndex(r.Index)) { panic("piece is being hashed") } if cn.t.pieceQueuedForHash(pieceIndex(r.Index)) { panic("piece is queued for hash") } if cn.requests == nil { cn.requests = make(map[request]struct{}) } cn.requests[r] = struct{}{} if cn.validReceiveChunks == nil { cn.validReceiveChunks = make(map[request]int) } cn.validReceiveChunks[r]++ cn.t.pendingRequests[r]++ cn.t.requestStrategy.hooks().sentRequest(r) cn.updateExpectingChunks() return cn.peerImpl.request(r) } func (me *PeerConn) request(r request) bool { return me.write(pp.Message{ Type: pp.Request, Index: r.Index, Begin: r.Begin, Length: r.Length, }) } func (me *PeerConn) cancel(r request) bool { return me.write(makeCancelMessage(r)) } func (cn *peer) doRequestState() bool { if !cn.t.networkingEnabled || cn.t.dataDownloadDisallowed { if !cn.setInterested(false) { return false } if len(cn.requests) != 0 { for r := range cn.requests { cn.deleteRequest(r) // log.Printf("%p: cancelling request: %v", cn, r) if !cn.peerImpl.cancel(r) { return false } } } } else if len(cn.requests) <= cn.requestsLowWater { filledBuffer := false cn.iterPendingPieces(func(pieceIndex pieceIndex) bool { cn.iterPendingRequests(pieceIndex, func(r request) bool { if !cn.setInterested(true) { filledBuffer = true return false } if len(cn.requests) >= cn.nominalMaxRequests() { return false } // Choking is looked at here because our interest is dependent // on whether we'd make requests in its absence. if cn.peerChoking { if !cn.peerAllowedFast.Get(bitmap.BitIndex(r.Index)) { return false } } if _, ok := cn.requests[r]; ok { return true } filledBuffer = !cn.request(r) return !filledBuffer }) return !filledBuffer }) if filledBuffer { // If we didn't completely top up the requests, we shouldn't mark // the low water, since we'll want to top up the requests as soon // as we have more write buffer space. return false } cn.requestsLowWater = len(cn.requests) / 2 } return true } func (cn *PeerConn) fillWriteBuffer() { if !cn.doRequestState() { return } if cn.pex.IsEnabled() { if flow := cn.pex.Share(cn.write); !flow { return } } cn.upload(cn.write) } // Routine that writes to the peer. Some of what to write is buffered by // activity elsewhere in the Client, and some is determined locally when the // connection is writable. func (cn *PeerConn) writer(keepAliveTimeout time.Duration) { var ( lastWrite time.Time = time.Now() keepAliveTimer *time.Timer ) keepAliveTimer = time.AfterFunc(keepAliveTimeout, func() { cn.locker().Lock() defer cn.locker().Unlock() if time.Since(lastWrite) >= keepAliveTimeout { cn.tickleWriter() } keepAliveTimer.Reset(keepAliveTimeout) }) cn.locker().Lock() defer cn.locker().Unlock() defer cn.close() defer keepAliveTimer.Stop() frontBuf := new(bytes.Buffer) for { if cn.closed.IsSet() { return } if cn.writeBuffer.Len() == 0 { cn.fillWriteBuffer() } if cn.writeBuffer.Len() == 0 && time.Since(lastWrite) >= keepAliveTimeout { cn.writeBuffer.Write(pp.Message{Keepalive: true}.MustMarshalBinary()) postedKeepalives.Add(1) } if cn.writeBuffer.Len() == 0 { // TODO: Minimize wakeups.... cn.writerCond.Wait() continue } // Flip the buffers. frontBuf, cn.writeBuffer = cn.writeBuffer, frontBuf cn.locker().Unlock() n, err := cn.w.Write(frontBuf.Bytes()) cn.locker().Lock() if n != 0 { lastWrite = time.Now() keepAliveTimer.Reset(keepAliveTimeout) } if err != nil { cn.logger.WithDefaultLevel(log.Debug).Printf("error writing: %v", err) return } if n != frontBuf.Len() { panic("short write") } frontBuf.Reset() } } func (cn *PeerConn) have(piece pieceIndex) { if cn.sentHaves.Get(bitmap.BitIndex(piece)) { return } cn.post(pp.Message{ Type: pp.Have, Index: pp.Integer(piece), }) cn.sentHaves.Add(bitmap.BitIndex(piece)) } func (cn *PeerConn) postBitfield() { if cn.sentHaves.Len() != 0 { panic("bitfield must be first have-related message sent") } if !cn.t.haveAnyPieces() { return } cn.post(pp.Message{ Type: pp.Bitfield, Bitfield: cn.t.bitfield(), }) cn.sentHaves = cn.t._completedPieces.Copy() } func (cn *PeerConn) updateRequests() { // log.Print("update requests") cn.tickleWriter() } // Emits the indices in the Bitmaps bms in order, never repeating any index. // skip is mutated during execution, and its initial values will never be // emitted. func iterBitmapsDistinct(skip *bitmap.Bitmap, bms ...bitmap.Bitmap) iter.Func { return func(cb iter.Callback) { for _, bm := range bms { if !iter.All( func(i interface{}) bool { skip.Add(i.(int)) return cb(i) }, bitmap.Sub(bm, *skip).Iter, ) { return } } } } func iterUnbiasedPieceRequestOrder(cn requestStrategyConnection, f func(piece pieceIndex) bool) bool { now, readahead := cn.torrent().readerPiecePriorities() skip := bitmap.Flip(cn.peerPieces(), 0, cn.torrent().numPieces()) skip.Union(cn.torrent().ignorePieces()) // Return an iterator over the different priority classes, minus the skip pieces. return iter.All( func(_piece interface{}) bool { return f(pieceIndex(_piece.(bitmap.BitIndex))) }, iterBitmapsDistinct(&skip, now, readahead), // We have to iterate _pendingPieces separately because it isn't a Bitmap. func(cb iter.Callback) { cn.torrent().pendingPieces().IterTyped(func(piece int) bool { if skip.Contains(piece) { return true } more := cb(piece) skip.Add(piece) return more }) }, ) } // The connection should download highest priority pieces first, without any inclination toward // avoiding wastage. Generally we might do this if there's a single connection, or this is the // fastest connection, and we have active readers that signal an ordering preference. It's // conceivable that the best connection should do this, since it's least likely to waste our time if // assigned to the highest priority pieces, and assigning more than one this role would cause // significant wasted bandwidth. func (cn *peer) shouldRequestWithoutBias() bool { return cn.t.requestStrategy.shouldRequestWithoutBias(cn.requestStrategyConnection()) } func (cn *peer) iterPendingPieces(f func(pieceIndex) bool) bool { if !cn.t.haveInfo() { return false } return cn.t.requestStrategy.iterPendingPieces(cn, f) } func (cn *peer) iterPendingPiecesUntyped(f iter.Callback) { cn.iterPendingPieces(func(i pieceIndex) bool { return f(i) }) } func (cn *peer) iterPendingRequests(piece pieceIndex, f func(request) bool) bool { return cn.t.requestStrategy.iterUndirtiedChunks( cn.t.piece(piece).requestStrategyPiece(), func(cs chunkSpec) bool { return f(request{pp.Integer(piece), cs}) }, ) } // check callers updaterequests func (cn *peer) stopRequestingPiece(piece pieceIndex) bool { return cn._pieceRequestOrder.Remove(bitmap.BitIndex(piece)) } // This is distinct from Torrent piece priority, which is the user's // preference. Connection piece priority is specific to a connection and is // used to pseudorandomly avoid connections always requesting the same pieces // and thus wasting effort. func (cn *peer) updatePiecePriority(piece pieceIndex) bool { tpp := cn.t.piecePriority(piece) if !cn.peerHasPiece(piece) { tpp = PiecePriorityNone } if tpp == PiecePriorityNone { return cn.stopRequestingPiece(piece) } prio := cn.getPieceInclination()[piece] prio = cn.t.requestStrategy.piecePriority(cn, piece, tpp, prio) return cn._pieceRequestOrder.Set(bitmap.BitIndex(piece), prio) || cn.shouldRequestWithoutBias() } func (cn *peer) getPieceInclination() []int { if cn.pieceInclination == nil { cn.pieceInclination = cn.t.getConnPieceInclination() } return cn.pieceInclination } func (cn *peer) discardPieceInclination() { if cn.pieceInclination == nil { return } cn.t.putPieceInclination(cn.pieceInclination) cn.pieceInclination = nil } func (cn *PeerConn) peerPiecesChanged() { if cn.t.haveInfo() { prioritiesChanged := false for i := pieceIndex(0); i < cn.t.numPieces(); i++ { if cn.updatePiecePriority(i) { prioritiesChanged = true } } if prioritiesChanged { cn.updateRequests() } } } func (cn *PeerConn) raisePeerMinPieces(newMin pieceIndex) { if newMin > cn.peerMinPieces { cn.peerMinPieces = newMin } } func (cn *PeerConn) peerSentHave(piece pieceIndex) error { if cn.t.haveInfo() && piece >= cn.t.numPieces() || piece < 0 { return errors.New("invalid piece") } if cn.peerHasPiece(piece) { return nil } cn.raisePeerMinPieces(piece + 1) cn._peerPieces.Set(bitmap.BitIndex(piece), true) if cn.updatePiecePriority(piece) { cn.updateRequests() } return nil } func (cn *PeerConn) peerSentBitfield(bf []bool) error { cn.peerSentHaveAll = false if len(bf)%8 != 0 { panic("expected bitfield length divisible by 8") } // We know that the last byte means that at most the last 7 bits are // wasted. cn.raisePeerMinPieces(pieceIndex(len(bf) - 7)) if cn.t.haveInfo() && len(bf) > int(cn.t.numPieces()) { // Ignore known excess pieces. bf = bf[:cn.t.numPieces()] } for i, have := range bf { if have { cn.raisePeerMinPieces(pieceIndex(i) + 1) } cn._peerPieces.Set(i, have) } cn.peerPiecesChanged() return nil } func (cn *PeerConn) onPeerSentHaveAll() error { cn.peerSentHaveAll = true cn._peerPieces.Clear() cn.peerPiecesChanged() return nil } func (cn *PeerConn) peerSentHaveNone() error { cn._peerPieces.Clear() cn.peerSentHaveAll = false cn.peerPiecesChanged() return nil } func (c *PeerConn) requestPendingMetadata() { if c.t.haveInfo() { return } if c.PeerExtensionIDs[pp.ExtensionNameMetadata] == 0 { // Peer doesn't support this. return } // Request metadata pieces that we don't have in a random order. var pending []int for index := 0; index < c.t.metadataPieceCount(); index++ { if !c.t.haveMetadataPiece(index) && !c.requestedMetadataPiece(index) { pending = append(pending, index) } } rand.Shuffle(len(pending), func(i, j int) { pending[i], pending[j] = pending[j], pending[i] }) for _, i := range pending { c.requestMetadataPiece(i) } } func (cn *PeerConn) wroteMsg(msg *pp.Message) { torrent.Add(fmt.Sprintf("messages written of type %s", msg.Type.String()), 1) if msg.Type == pp.Extended { for name, id := range cn.PeerExtensionIDs { if id != msg.ExtendedID { continue } torrent.Add(fmt.Sprintf("Extended messages written for protocol %q", name), 1) } } cn.allStats(func(cs *ConnStats) { cs.wroteMsg(msg) }) } func (cn *PeerConn) readMsg(msg *pp.Message) { cn.allStats(func(cs *ConnStats) { cs.readMsg(msg) }) } // After handshake, we know what Torrent and Client stats to include for a // connection. func (cn *peer) postHandshakeStats(f func(*ConnStats)) { t := cn.t f(&t.stats) f(&t.cl.stats) } // All ConnStats that include this connection. Some objects are not known // until the handshake is complete, after which it's expected to reconcile the // differences. func (cn *peer) allStats(f func(*ConnStats)) { f(&cn._stats) if cn.reconciledHandshakeStats { cn.postHandshakeStats(f) } } func (cn *PeerConn) wroteBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesWritten })) } func (cn *PeerConn) readBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesRead })) } // Returns whether the connection could be useful to us. We're seeding and // they want data, we don't have metainfo and they can provide it, etc. func (c *peer) useful() bool { t := c.t if c.closed.IsSet() { return false } if !t.haveInfo() { return c.supportsExtension("ut_metadata") } if t.seeding() && c.peerInterested { return true } if c.peerHasWantedPieces() { return true } return false } func (c *peer) lastHelpful() (ret time.Time) { ret = c.lastUsefulChunkReceived if c.t.seeding() && c.lastChunkSent.After(ret) { ret = c.lastChunkSent } return } func (c *PeerConn) fastEnabled() bool { return c.PeerExtensionBytes.SupportsFast() && c.t.cl.config.Extensions.SupportsFast() } func (c *PeerConn) reject(r request) { if !c.fastEnabled() { panic("fast not enabled") } c.post(r.ToMsg(pp.Reject)) delete(c.peerRequests, r) } func (c *PeerConn) onReadRequest(r request) error { requestedChunkLengths.Add(strconv.FormatUint(r.Length.Uint64(), 10), 1) if _, ok := c.peerRequests[r]; ok { torrent.Add("duplicate requests received", 1) return nil } if c.choking { torrent.Add("requests received while choking", 1) if c.fastEnabled() { torrent.Add("requests rejected while choking", 1) c.reject(r) } return nil } if len(c.peerRequests) >= maxRequests { torrent.Add("requests received while queue full", 1) if c.fastEnabled() { c.reject(r) } // BEP 6 says we may close here if we choose. return nil } if !c.t.havePiece(pieceIndex(r.Index)) { // This isn't necessarily them screwing up. We can drop pieces // from our storage, and can't communicate this to peers // except by reconnecting. requestsReceivedForMissingPieces.Add(1) return fmt.Errorf("peer requested piece we don't have: %v", r.Index.Int()) } // Check this after we know we have the piece, so that the piece length will be known. if r.Begin+r.Length > c.t.pieceLength(pieceIndex(r.Index)) { torrent.Add("bad requests received", 1) return errors.New("bad request") } if c.peerRequests == nil { c.peerRequests = make(map[request]struct{}, maxRequests) } c.peerRequests[r] = struct{}{} c.tickleWriter() return nil } func runSafeExtraneous(f func()) { if true { go f() } else { f() } } // Processes incoming BitTorrent wire-protocol messages. The client lock is held upon entry and // exit. Returning will end the connection. func (c *PeerConn) mainReadLoop() (err error) { defer func() { if err != nil { torrent.Add("connection.mainReadLoop returned with error", 1) } else { torrent.Add("connection.mainReadLoop returned with no error", 1) } }() t := c.t cl := t.cl decoder := pp.Decoder{ R: bufio.NewReaderSize(c.r, 1<<17), MaxLength: 256 * 1024, Pool: t.chunkPool, } for { var msg pp.Message func() { cl.unlock() defer cl.lock() err = decoder.Decode(&msg) }() if cb := c.callbacks.ReadMessage; cb != nil && err == nil { cb(c, &msg) } if t.closed.IsSet() || c.closed.IsSet() { return nil } if err != nil { return err } c.readMsg(&msg) c.lastMessageReceived = time.Now() if msg.Keepalive { receivedKeepalives.Add(1) continue } messageTypesReceived.Add(msg.Type.String(), 1) if msg.Type.FastExtension() && !c.fastEnabled() { runSafeExtraneous(func() { torrent.Add("fast messages received when extension is disabled", 1) }) return fmt.Errorf("received fast extension message (type=%v) but extension is disabled", msg.Type) } switch msg.Type { case pp.Choke: c.peerChoking = true if !c.fastEnabled() { c.deleteAllRequests() } // We can then reset our interest. c.updateRequests() c.updateExpectingChunks() case pp.Unchoke: c.peerChoking = false c.tickleWriter() c.updateExpectingChunks() case pp.Interested: c.peerInterested = true c.tickleWriter() case pp.NotInterested: c.peerInterested = false // We don't clear their requests since it isn't clear in the spec. // We'll probably choke them for this, which will clear them if // appropriate, and is clearly specified. case pp.Have: err = c.peerSentHave(pieceIndex(msg.Index)) case pp.Bitfield: err = c.peerSentBitfield(msg.Bitfield) case pp.Request: r := newRequestFromMessage(&msg) err = c.onReadRequest(r) case pp.Piece: err = c.receiveChunk(&msg) if len(msg.Piece) == int(t.chunkSize) { t.chunkPool.Put(&msg.Piece) } if err != nil { err = fmt.Errorf("receiving chunk: %s", err) } case pp.Cancel: req := newRequestFromMessage(&msg) c.onPeerSentCancel(req) case pp.Port: ipa, ok := tryIpPortFromNetAddr(c.RemoteAddr) if !ok { break } pingAddr := net.UDPAddr{ IP: ipa.IP, Port: ipa.Port, } if msg.Port != 0 { pingAddr.Port = int(msg.Port) } cl.eachDhtServer(func(s DhtServer) { go s.Ping(&pingAddr) }) case pp.Suggest: torrent.Add("suggests received", 1) log.Fmsg("peer suggested piece %d", msg.Index).AddValues(c, msg.Index).SetLevel(log.Debug).Log(c.t.logger) c.updateRequests() case pp.HaveAll: err = c.onPeerSentHaveAll() case pp.HaveNone: err = c.peerSentHaveNone() case pp.Reject: c.remoteRejectedRequest(newRequestFromMessage(&msg)) case pp.AllowedFast: torrent.Add("allowed fasts received", 1) log.Fmsg("peer allowed fast: %d", msg.Index).AddValues(c).SetLevel(log.Debug).Log(c.t.logger) c.peerAllowedFast.Add(int(msg.Index)) c.updateRequests() case pp.Extended: err = c.onReadExtendedMsg(msg.ExtendedID, msg.ExtendedPayload) default: err = fmt.Errorf("received unknown message type: %#v", msg.Type) } if err != nil { return err } } } func (c *peer) remoteRejectedRequest(r request) { if c.deleteRequest(r) { c.decExpectedChunkReceive(r) } } func (c *peer) decExpectedChunkReceive(r request) { count := c.validReceiveChunks[r] if count == 1 { delete(c.validReceiveChunks, r) } else if count > 1 { c.validReceiveChunks[r] = count - 1 } else { panic(r) } } func (c *PeerConn) onReadExtendedMsg(id pp.ExtensionNumber, payload []byte) (err error) { defer func() { // TODO: Should we still do this? if err != nil { // These clients use their own extension IDs for outgoing message // types, which is incorrect. if bytes.HasPrefix(c.PeerID[:], []byte("-SD0100-")) || strings.HasPrefix(string(c.PeerID[:]), "-XL0012-") { err = nil } } }() t := c.t cl := t.cl switch id { case pp.HandshakeExtendedID: var d pp.ExtendedHandshakeMessage if err := bencode.Unmarshal(payload, &d); err != nil { c.logger.Printf("error parsing extended handshake message %q: %s", payload, err) return errors.Wrap(err, "unmarshalling extended handshake payload") } if cb := c.callbacks.ReadExtendedHandshake; cb != nil { cb(c, &d) } //c.logger.WithDefaultLevel(log.Debug).Printf("received extended handshake message:\n%s", spew.Sdump(d)) if d.Reqq != 0 { c.PeerMaxRequests = d.Reqq } c.PeerClientName = d.V if c.PeerExtensionIDs == nil { c.PeerExtensionIDs = make(map[pp.ExtensionName]pp.ExtensionNumber, len(d.M)) } c.PeerListenPort = d.Port c.PeerPrefersEncryption = d.Encryption for name, id := range d.M { if _, ok := c.PeerExtensionIDs[name]; !ok { torrent.Add(fmt.Sprintf("peers supporting extension %q", name), 1) } c.PeerExtensionIDs[name] = id } if d.MetadataSize != 0 { if err = t.setMetadataSize(d.MetadataSize); err != nil { return errors.Wrapf(err, "setting metadata size to %d", d.MetadataSize) } } c.requestPendingMetadata() if !t.cl.config.DisablePEX { t.pex.Add(c) // we learnt enough now c.pex.Init(c) } return nil case metadataExtendedId: err := cl.gotMetadataExtensionMsg(payload, t, c) if err != nil { return fmt.Errorf("handling metadata extension message: %w", err) } return nil case pexExtendedId: if !c.pex.IsEnabled() { return nil // or hang-up maybe? } return c.pex.Recv(payload) default: return fmt.Errorf("unexpected extended message ID: %v", id) } } // Set both the Reader and Writer for the connection from a single ReadWriter. func (cn *PeerConn) setRW(rw io.ReadWriter) { cn.r = rw cn.w = rw } // Returns the Reader and Writer as a combined ReadWriter. func (cn *PeerConn) rw() io.ReadWriter { return struct { io.Reader io.Writer }{cn.r, cn.w} } // Handle a received chunk from a peer. func (c *peer) receiveChunk(msg *pp.Message) error { t := c.t cl := t.cl torrent.Add("chunks received", 1) req := newRequestFromMessage(msg) if c.peerChoking { torrent.Add("chunks received while choking", 1) } if c.validReceiveChunks[req] <= 0 { torrent.Add("chunks received unexpected", 1) return errors.New("received unexpected chunk") } c.decExpectedChunkReceive(req) if c.peerChoking && c.peerAllowedFast.Get(int(req.Index)) { torrent.Add("chunks received due to allowed fast", 1) } defer func() { // Request has been satisfied. if c.deleteRequest(req) { if c.expectingChunks() { c._chunksReceivedWhileExpecting++ } } else { torrent.Add("chunks received unwanted", 1) } }() // Do we actually want this chunk? if t.haveChunk(req) { torrent.Add("chunks received wasted", 1) c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadWasted })) return nil } piece := &t.pieces[req.Index] c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadUseful })) c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulData })) c.lastUsefulChunkReceived = time.Now() // if t.fastestPeer != c { // log.Printf("setting fastest connection %p", c) // } t.fastestPeer = c // Need to record that it hasn't been written yet, before we attempt to do // anything with it. piece.incrementPendingWrites() // Record that we have the chunk, so we aren't trying to download it while // waiting for it to be written to storage. piece.unpendChunkIndex(chunkIndex(req.chunkSpec, t.chunkSize)) // Cancel pending requests for this chunk. for c := range t.conns { c._postCancel(req) } err := func() error { cl.unlock() defer cl.lock() concurrentChunkWrites.Add(1) defer concurrentChunkWrites.Add(-1) // Write the chunk out. Note that the upper bound on chunk writing concurrency will be the // number of connections. We write inline with receiving the chunk (with this lock dance), // because we want to handle errors synchronously and I haven't thought of a nice way to // defer any concurrency to the storage and have that notify the client of errors. TODO: Do // that instead. return t.writeChunk(int(msg.Index), int64(msg.Begin), msg.Piece) }() piece.decrementPendingWrites() if err != nil { c.logger.WithDefaultLevel(log.Error).Printf("writing received chunk %v: %v", req, err) t.pendRequest(req) //t.updatePieceCompletion(pieceIndex(msg.Index)) t.onWriteChunkErr(err) return nil } c.onDirtiedPiece(pieceIndex(req.Index)) if t.pieceAllDirty(pieceIndex(req.Index)) { t.queuePieceCheck(pieceIndex(req.Index)) // We don't pend all chunks here anymore because we don't want code dependent on the dirty // chunk status (such as the haveChunk call above) to have to check all the various other // piece states like queued for hash, hashing etc. This does mean that we need to be sure // that chunk pieces are pended at an appropriate time later however. } cl.event.Broadcast() // We do this because we've written a chunk, and may change PieceState.Partial. t.publishPieceChange(pieceIndex(req.Index)) return nil } func (c *peer) onDirtiedPiece(piece pieceIndex) { if c.peerTouchedPieces == nil { c.peerTouchedPieces = make(map[pieceIndex]struct{}) } c.peerTouchedPieces[piece] = struct{}{} ds := &c.t.pieces[piece].dirtiers if *ds == nil { *ds = make(map[*peer]struct{}) } (*ds)[c] = struct{}{} } func (c *PeerConn) uploadAllowed() bool { if c.t.cl.config.NoUpload { return false } if c.t.dataUploadDisallowed { return false } if c.t.seeding() { return true } if !c.peerHasWantedPieces() { return false } // Don't upload more than 100 KiB more than we download. if c._stats.BytesWrittenData.Int64() >= c._stats.BytesReadData.Int64()+100<<10 { return false } return true } func (c *PeerConn) setRetryUploadTimer(delay time.Duration) { if c.uploadTimer == nil { c.uploadTimer = time.AfterFunc(delay, c.writerCond.Broadcast) } else { c.uploadTimer.Reset(delay) } } // Also handles choking and unchoking of the remote peer. func (c *PeerConn) upload(msg func(pp.Message) bool) bool { // Breaking or completing this loop means we don't want to upload to the // peer anymore, and we choke them. another: for c.uploadAllowed() { // We want to upload to the peer. if !c.unchoke(msg) { return false } for r := range c.peerRequests { res := c.t.cl.config.UploadRateLimiter.ReserveN(time.Now(), int(r.Length)) if !res.OK() { panic(fmt.Sprintf("upload rate limiter burst size < %d", r.Length)) } delay := res.Delay() if delay > 0 { res.Cancel() c.setRetryUploadTimer(delay) // Hard to say what to return here. return true } more, err := c.sendChunk(r, msg) if err != nil { c.logger.WithDefaultLevel(log.Warning).Printf("sending chunk to peer: %v", err) i := pieceIndex(r.Index) if c.t.pieceComplete(i) { // There used to be more code here that just duplicated the following break. // Piece completions are currently cached, so I'm not sure how helpful this // update is, except to pull any completion changes pushed to the storage // backend in failed reads that got us here. c.t.updatePieceCompletion(i) } // If we failed to send a chunk, choke the peer by breaking out of the loop here to // ensure they flush all their requests. We've probably dropped a piece from // storage, but there's no way to communicate this to the peer. If they ask for it // again, we'll kick them to allow us to send them an updated bitfield on the next // connect. if c.choking { c.logger.WithDefaultLevel(log.Warning).Printf("already choking peer, requests might not be rejected correctly") } break another } delete(c.peerRequests, r) if !more { return false } goto another } return true } return c.choke(msg) } func (cn *PeerConn) drop() { cn.t.dropConnection(cn) } func (cn *peer) netGoodPiecesDirtied() int64 { return cn._stats.PiecesDirtiedGood.Int64() - cn._stats.PiecesDirtiedBad.Int64() } func (c *peer) peerHasWantedPieces() bool { return !c._pieceRequestOrder.IsEmpty() } func (c *peer) numLocalRequests() int { return len(c.requests) } func (c *peer) deleteRequest(r request) bool { if _, ok := c.requests[r]; !ok { return false } delete(c.requests, r) c.updateExpectingChunks() c.t.requestStrategy.hooks().deletedRequest(r) pr := c.t.pendingRequests pr[r]-- n := pr[r] if n == 0 { delete(pr, r) } if n < 0 { panic(n) } // If a request fails, updating the requests for the current peer first may miss the opportunity // to try other peers for that request instead, depending on the request strategy. This might // only affect webseed peers though, since they synchronously issue new requests: PeerConns do // it in the writer routine. const updateCurrentConnRequestsFirst = false if updateCurrentConnRequestsFirst { c.updateRequests() } // Give other conns a chance to pick up the request. c.t.iterPeers(func(_c *peer) { // We previously checked that the peer wasn't interested to to only wake connections that // were unable to issue requests due to starvation by the request strategy. There could be // performance ramifications. if _c != c && c.peerHasPiece(pieceIndex(r.Index)) { _c.updateRequests() } }) if !updateCurrentConnRequestsFirst { c.updateRequests() } return true } func (c *peer) deleteAllRequests() { for r := range c.requests { c.deleteRequest(r) } if len(c.requests) != 0 { panic(len(c.requests)) } // for c := range c.t.conns { // c.tickleWriter() // } } func (c *PeerConn) tickleWriter() { c.writerCond.Broadcast() } func (c *peer) postCancel(r request) bool { if !c.deleteRequest(r) { return false } c.peerImpl._postCancel(r) return true } func (c *PeerConn) _postCancel(r request) { c.post(makeCancelMessage(r)) } func (c *PeerConn) sendChunk(r request, msg func(pp.Message) bool) (more bool, err error) { // Count the chunk being sent, even if it isn't. b := make([]byte, r.Length) p := c.t.info.Piece(int(r.Index)) n, err := c.t.readAt(b, p.Offset()+int64(r.Begin)) if n != len(b) { if err == nil { panic("expected error") } return } else if err == io.EOF { err = nil } more = msg(pp.Message{ Type: pp.Piece, Index: r.Index, Begin: r.Begin, Piece: b, }) c.lastChunkSent = time.Now() return } func (c *PeerConn) setTorrent(t *Torrent) { if c.t != nil { panic("connection already associated with a torrent") } c.t = t c.logger.WithDefaultLevel(log.Debug).Printf("set torrent=%v", t) t.reconcileHandshakeStats(c) } func (c *peer) peerPriority() (peerPriority, error) { return bep40Priority(c.remoteIpPort(), c.t.cl.publicAddr(c.remoteIp())) } func (c *peer) remoteIp() net.IP { return addrIpOrNil(c.RemoteAddr) } func (c *peer) remoteIpPort() IpPort { ipa, _ := tryIpPortFromNetAddr(c.RemoteAddr) return IpPort{ipa.IP, uint16(ipa.Port)} } func (c *PeerConn) pexPeerFlags() pp.PexPeerFlags { f := pp.PexPeerFlags(0) if c.PeerPrefersEncryption { f |= pp.PexPrefersEncryption } if c.outgoing { f |= pp.PexOutgoingConn } if c.RemoteAddr != nil && strings.Contains(c.RemoteAddr.Network(), "udp") { f |= pp.PexSupportsUtp } return f } // This returns the address to use if we want to dial the peer again. It incorporates the peer's // advertised listen port. func (c *PeerConn) dialAddr() net.Addr { if !c.outgoing && c.PeerListenPort != 0 { switch addr := c.RemoteAddr.(type) { case *net.TCPAddr: dialAddr := *addr dialAddr.Port = c.PeerListenPort return &dialAddr case *net.UDPAddr: dialAddr := *addr dialAddr.Port = c.PeerListenPort return &dialAddr } } return c.RemoteAddr } func (c *PeerConn) pexEvent(t pexEventType) pexEvent { f := c.pexPeerFlags() addr := c.dialAddr() return pexEvent{t, addr, f} } func (c *PeerConn) String() string { return fmt.Sprintf("connection %p", c) } func (c *peer) trust() connectionTrust { return connectionTrust{c.trusted, c.netGoodPiecesDirtied()} } type connectionTrust struct { Implicit bool NetGoodPiecesDirted int64 } func (l connectionTrust) Less(r connectionTrust) bool { return multiless.New().Bool(l.Implicit, r.Implicit).Int64(l.NetGoodPiecesDirted, r.NetGoodPiecesDirted).Less() } func (cn *peer) requestStrategyConnection() requestStrategyConnection { return cn } func (cn *peer) chunksReceivedWhileExpecting() int64 { return cn._chunksReceivedWhileExpecting } func (cn *peer) fastest() bool { return cn == cn.t.fastestPeer } func (cn *peer) peerMaxRequests() int { return cn.PeerMaxRequests } // Returns the pieces the peer has claimed to have. func (cn *PeerConn) PeerPieces() bitmap.Bitmap { cn.locker().RLock() defer cn.locker().RUnlock() return cn.peerPieces() } func (cn *peer) peerPieces() bitmap.Bitmap { ret := cn._peerPieces.Copy() if cn.peerSentHaveAll { ret.AddRange(0, cn.t.numPieces()) } return ret } func (cn *peer) pieceRequestOrder() *prioritybitmap.PriorityBitmap { return &cn._pieceRequestOrder } func (cn *peer) stats() *ConnStats { return &cn._stats } func (cn *peer) torrent() requestStrategyTorrent { return cn.t.requestStrategyTorrent() }