diff --git a/quick_start_clean/convert_hf_cpm.py b/quick_start_clean/convert_hf_cpm.py index e90e796..e47d9bb 100644 --- a/quick_start_clean/convert_hf_cpm.py +++ b/quick_start_clean/convert_hf_cpm.py @@ -17,20 +17,34 @@ from collections import OrderedDict import torch import argparse +import os parser = argparse.ArgumentParser(description='Load and save model weights with specified paths.') parser.add_argument('--model_path', type=str, required=True, help='Path to the model directory.') parser.add_argument('--output_path', type=str, required=True, help='Path to save the new weights.') -parser.add_argument('--layer_num', type=int, required=True, help='The layers of model') - +parser.add_argument('--model_type',type=str,default='fm9g',help='The model type need to be one of "fm9g" or "9g-8b"') +parser.add_argument('--task',type=str,default='pt2bin',help='The task need to be one of "pt2bin" or "bin2pt"') +# parser.add_argument('--layer_num', type=int, required=True, help='The layers of model') args = parser.parse_args() src_path = args.model_path -dst_path = args.output_path -layer_num = args.layer_num +dst_path = args.output_path if args.output_path.endswith('/') else args.output_path + ('/') +model_type = args.model_type +task = args.task + +assert model_type in ['fm9g'], 'The "model_type" must be one of "fm9g"!' +assert task in ['pt2bin','bin2pt'], 'The task need to be one of "pt2bin" or "bin2pt"!' + +if model_type == 'fm9g': + layer_num = 40 + +if not os.path.exists(dst_path): + os.makedirs(dst_path) + def convert_hf_to_fm9g(): + # 2B模型转换bin2pt ckpt = torch.load(src_path) new_ckpt = OrderedDict() @@ -48,14 +62,16 @@ def convert_hf_to_fm9g(): new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"] = ckpt[f'model.layers.{i}.mlp.up_proj.weight'] new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_out.weight"] = ckpt[f'model.layers.{i}.mlp.down_proj.weight'] - torch.save(new_ckpt, dst_path) + torch.save(new_ckpt, f"{dst_path}fm9g.pt") def convert_fm9g_to_hf(): + #2B模型转换pt2bin state = torch.load(src_path) + new_state = {} new_state["model.embed_tokens.weight"] = state["input_embedding.weight"] new_state["model.norm.weight"] = state["encoder.output_layernorm.weight"] - for lid in range(40): + for lid in range(layer_num): print(lid) new_state[f"model.layers.{lid}.self_attn.q_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_q.weight"] new_state[f"model.layers.{lid}.self_attn.k_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_k.weight"] @@ -70,9 +86,13 @@ def convert_fm9g_to_hf(): new_state[f"model.layers.{lid}.post_attention_layernorm.weight"] = state[f"encoder.layers.{lid}.ffn.layernorm_before_ffn.weight"] del state state = None - torch.save(new_state, f"{dst_path}pytorch_model.bin") - + torch.save(new_state, f"{dst_path}fm9g.bin") + if __name__ == "__main__": - convert_hf_to_fm9g() - + if model_type == 'fm9g' and task == 'bin2pt': + convert_hf_to_fm9g() + elif model_type == 'fm9g' and task == 'pt2bin': + convert_fm9g_to_hf() + else: + raise ValueError('Please check the model type and task!') \ No newline at end of file