86 lines
2.9 KiB
Python
86 lines
2.9 KiB
Python
import torch
|
||
import struct
|
||
import numpy as np
|
||
|
||
|
||
def write_string(fp, v):
|
||
v = v.encode("utf-8")
|
||
fp.write( struct.pack("I", len(v)) )
|
||
fp.write(v)
|
||
|
||
def write_tuple(fp, v):
|
||
fp.write( struct.pack("B", len(v)) )
|
||
for i in v:
|
||
fp.write( struct.pack("I", i) )
|
||
|
||
def write_dtype(fp, v):
|
||
sv = -1
|
||
if v == np.int8:
|
||
sv = 0
|
||
elif v == np.float16:
|
||
sv = 1
|
||
if sv == -1:
|
||
raise TypeError("Unknown dtype %s" % v)
|
||
fp.write( struct.pack("B", sv) )
|
||
|
||
def write_parameter(fp, name : str, value : torch.Tensor):
|
||
write_string(fp, name)
|
||
write_tuple(fp, value.size())
|
||
value = np.ascontiguousarray(value.cpu().numpy())
|
||
value_bytes = value.tobytes()
|
||
fp.write( struct.pack("I", len(value_bytes)) )
|
||
write_dtype(fp, value.dtype)
|
||
fp.write(value_bytes)
|
||
|
||
def split(x, s):
|
||
sizes = []
|
||
for it in x.size():
|
||
sizes.append(it)
|
||
assert sizes[0] % s == 0
|
||
sizes = [s, sizes[0] // s ] + sizes[1:]
|
||
return x.reshape(*sizes)
|
||
|
||
|
||
def main(src_model_path, dst_model_path, layer_num):
|
||
|
||
model = torch.load(src_model_path, map_location="cpu")
|
||
params = {}
|
||
|
||
params["input_embedding.weight"] = model["input_embedding.weight"].cpu()
|
||
params["lm_head.weight"] = model["lm_head.weight"].cpu()
|
||
params["output_layernorm.weight"] = (model["encoder.output_layernorm.weight"]).cpu()
|
||
for i in range(layer_num):
|
||
params[f"layers.{i}.ln_attn.weight"] = model[f"encoder.layers.{i}.self_att.layernorm_before_attention.weight"].cpu()
|
||
|
||
params[f"layers.{i}.attn.project_q.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_q.weight"]
|
||
params[f"layers.{i}.attn.project_k.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_k.weight"]
|
||
params[f"layers.{i}.attn.project_v.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_v.weight"]
|
||
|
||
params[f"layers.{i}.attn.attn_out.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.attention_out.weight"]
|
||
|
||
params[f"layers.{i}.ln_ff.weight"] = model[f"encoder.layers.{i}.ffn.layernorm_before_ffn.weight"].cpu()
|
||
|
||
params[f"layers.{i}.ff.w_in.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_0.weight"]
|
||
params[f"layers.{i}.ff.w_gated.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"]
|
||
params[f"layers.{i}.ff.w_out.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_out.weight"]
|
||
|
||
#转换后的模型
|
||
fout = open(dst_model_path, "wb")
|
||
fout.write( struct.pack("I", len(params)) )
|
||
for name, value in params.items():
|
||
write_parameter(fout, name, value)
|
||
fout.close()
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# 输入已有的源模型
|
||
src_model_path = "./checkpoints-epoch-1/cpm9g-8b-sft-epoch-1.pt"
|
||
# 格式转换后的模型地址
|
||
dst_model_path = "model_8b.ckpt"
|
||
|
||
# 百亿:32
|
||
# 千亿:80
|
||
layer_num = 32
|
||
|
||
main(src_model_path, dst_model_path, layer_num) |