426 lines
17 KiB
Python
426 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The OpenBMB team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
|
|
def add_model_config_args(parser: argparse.ArgumentParser):
|
|
"""Model arguments"""
|
|
|
|
group = parser.add_argument_group("model", "model configuration")
|
|
group.add_argument("--model-config", type=str, help="model configuration file")
|
|
group.add_argument("--vocab", type=str, default=None, help="model vocabulary file")
|
|
group.add_argument("--eps", type=float, default=1e-5, help="eps in layernorm")
|
|
# group.add_argument("--qk_norm", action="store_true", default=False, help="qk layernorm")
|
|
return parser
|
|
|
|
|
|
def add_training_args(parser: argparse.ArgumentParser):
|
|
"""Training arguments."""
|
|
|
|
group = parser.add_argument_group("train", "training configurations")
|
|
group.add_argument("--platform-config", type=str, default="platform_config.json", help="Path to platform config")
|
|
group.add_argument("--dataset", type=str, default="dataset.json", help="Path to dataset")
|
|
group.add_argument("--val-dataset", type=str, default="dataset.json", help="Path to val dataset")
|
|
group.add_argument(
|
|
"--load",
|
|
type=str,
|
|
default=None,
|
|
help="Path to a directory containing a model checkpoint.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--load-grad",
|
|
action="store_true",
|
|
default=False,
|
|
help="Load the gradient states",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--grad-ckpt-num",
|
|
type=int,
|
|
default=0,
|
|
help="grad file num (only work when --load-grad from files less than world-size )",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--load-start-step",
|
|
action="store_true",
|
|
default=False,
|
|
help="Load the step state from checkpoints",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--save",
|
|
type=str,
|
|
default=None,
|
|
help="Output directory to save checkpoints to.",
|
|
)
|
|
group.add_argument(
|
|
"--save-name",
|
|
type=str,
|
|
default=None,
|
|
help="Output filename to save checkpoints to.",
|
|
)
|
|
group.add_argument(
|
|
"--save-model",
|
|
type=str,
|
|
default=None,
|
|
help="Output directory to save model to.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--tensorboard",
|
|
type=str,
|
|
default=None,
|
|
help="tensorboard directory",
|
|
)
|
|
|
|
group.add_argument("--inspect-iters", type=int, default=1000, help="number of inspecting")
|
|
group.add_argument("--batch-size", type=int, default=32, help="Data Loader batch size")
|
|
group.add_argument("--num-micro-batches", type=int, default=16)
|
|
group.add_argument("--clip-grad", type=float, default=1.0, help="gradient clipping")
|
|
group.add_argument("--grad-accum", type=int, default=1, help="gradient accum steps")
|
|
group.add_argument(
|
|
"--train-iters",
|
|
type=int,
|
|
default=1000000,
|
|
help="total number of iterations to train over all training runs",
|
|
)
|
|
group.add_argument("--max-length", type=int, default=512, help="max length of input")
|
|
group.add_argument("--min-length", type=int, default=None, help="only for speed test")
|
|
|
|
group.add_argument("--seed", type=int, default=1234, help="random seed for reproducibility")
|
|
|
|
# Learning rate.
|
|
group.add_argument("--lr", type=float, default=1.0e-4, help="initial learning rate")
|
|
group.add_argument("--lr_scheduler", type=str, default="cosine", help=" learning rate scheduler")
|
|
|
|
group.add_argument("--weight-decay", type=float, default=1.0e-2, help="weight decay rate")
|
|
group.add_argument("--loss-scale", type=float, default=65536, help="loss scale")
|
|
group.add_argument("--max-loss-scale", type=float, default=float("inf"), help="loss scale")
|
|
group.add_argument("--min-loss-scale", type=float, default=1, help="loss scale")
|
|
group.add_argument("--loss-scale-steps", type=float, default=1024, help="loss scale")
|
|
|
|
group.add_argument(
|
|
"--warmup-iters",
|
|
type=float,
|
|
default=0.01,
|
|
help="percentage of data to warmup on (.01 = 1% of all " "training iters). Default 0.01",
|
|
)
|
|
group.add_argument(
|
|
"--drop-iters",
|
|
type=float,
|
|
default=0.01,
|
|
help="percentage of data to warmup on (.01 = 1% of all " "training iters). Default 0.01",
|
|
)
|
|
|
|
group.add_argument("--lr-decay-iters", type=int, default=None, help="lr decay steps")
|
|
group.add_argument("--start-step", type=int, default=0, help="step to start or continue training")
|
|
group.add_argument("--concat-data", action="store_true", help="whether we concatenate the dialogues")
|
|
group.add_argument("--offload", action="store_true", help="whether we use offload_adam")
|
|
group.add_argument("--new-bmt", action="store_true", help="new bmt without ckpt")
|
|
group.add_argument("--flash", default="none", choices=["none", "1d", "triton", "cuda"])
|
|
group.add_argument("--use-jfs-data", action="store_true", help="whether we use juicefs dataset")
|
|
group.add_argument("--tp-size", default=1, type=int)
|
|
group.add_argument("--pp-size", default=1, type=int)
|
|
group.add_argument("--bf16", action="store_true", help="whether we use bf16")
|
|
group.add_argument("--dataloader_num_threads", default=3, type=int, help="Only useful in indexed dataest.")
|
|
group.add_argument("--dataloader_prefetch", default=200, type=int, help="Only useful in indexed dataest.")
|
|
group.add_argument("--dataloader_num_workers", default=4, type=int, help="Only useful in indexed dataest.")
|
|
group.add_argument("--dataloader_prefetch_factor", default=50, type=int, help="Only useful in indexed dataest.")
|
|
group.add_argument(
|
|
"--dataloader",
|
|
default="indexed",
|
|
type=str,
|
|
help="dataloader type, 'indexed' for indexed dataset, 'normal' for normal dataset",
|
|
)
|
|
group.add_argument("--stop_when_end", default=0, type=int, help="Whether to stop training when we reach end_iter")
|
|
group.add_argument(
|
|
"--data_len_threshold",
|
|
default=512,
|
|
type=int,
|
|
help="If the average length of a sequence is less than this int, mean the sample is biased. ",
|
|
)
|
|
group.add_argument(
|
|
"--only_run_dataloader", default=0, type=int, help="Whether to only run dataloader to check data. "
|
|
)
|
|
group.add_argument(
|
|
"--only_load_model", default=0, type=int, help="Whether to only load a model ckpt, without anything else."
|
|
)
|
|
group.add_argument(
|
|
"--load_dataloader_ckpt", default=1, type=int, help="Whether to only load a model ckpt, without anything else."
|
|
)
|
|
|
|
group.add_argument(
|
|
"--resume_no_optimze",
|
|
default=0,
|
|
type=int,
|
|
help="The number of steps that does not add optimization after resume",
|
|
)
|
|
group.add_argument(
|
|
"--parallel_load_datastate",
|
|
default=256,
|
|
type=int,
|
|
help="The number of parallel workers to load dataset state",
|
|
)
|
|
group.add_argument(
|
|
"--async_save",
|
|
action="store_true",
|
|
help="whether to save artifacts asynchronously",
|
|
)
|
|
group.add_argument(
|
|
"--drop_begin",
|
|
default=-1,
|
|
type=int,
|
|
help="The number of steps that starts to drop lr"
|
|
)
|
|
group.add_argument(
|
|
"--drop_rate",
|
|
default=0.5,
|
|
type=float,
|
|
help="The number rate"
|
|
)
|
|
group.add_argument(
|
|
"--use_checkpoint",
|
|
default=1,
|
|
type=int,
|
|
help="Whether to use checkpointing."
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_pretrain_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("pretrain", "pretrain configurations")
|
|
group.add_argument(
|
|
"--save-iters",
|
|
type=int,
|
|
default=1000,
|
|
help="number of iterations between saves",
|
|
)
|
|
group.add_argument(
|
|
"--log-dir",
|
|
type=str,
|
|
default=None,
|
|
help="log directory",
|
|
)
|
|
group.add_argument(
|
|
"--worker-name",
|
|
type=str,
|
|
default=None,
|
|
help="worker name",
|
|
)
|
|
return parser
|
|
|
|
|
|
def add_tokenizer_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("tokenizer", "tokenizer configurations")
|
|
group.add_argument(
|
|
"--tokenizer_path",
|
|
type=str,
|
|
default="",
|
|
help="tokenizer_path",
|
|
)
|
|
return parser
|
|
|
|
|
|
def add_finetune_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("finetune", "finetune configurations")
|
|
group.add_argument("--epoch", type=int, default=1, help="number of training epochs")
|
|
group.add_argument("--task-name", type=str, default="task", help="name of training task")
|
|
group.add_argument("--save-epochs", type=int, default=1, help="number of training epochs between saves")
|
|
group.add_argument("--save-steps", type=int, default=0, help="number of training steps between saves")
|
|
group.add_argument(
|
|
"--drop-last",
|
|
action="store_true",
|
|
default=False,
|
|
help="drop data from each epoch that cannot be formed into a complete batch at the end",
|
|
)
|
|
group.add_argument("--delta-tuning", action="store_true", default=False)
|
|
group.add_argument("--each-epoch-save", default=False)
|
|
group.add_argument("--train-task-id", type=int, default=-1)
|
|
return parser
|
|
|
|
|
|
def add_rhlf_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("rhlf", "rhlf configurations")
|
|
|
|
group.add_argument(
|
|
"--load-reward",
|
|
type=str,
|
|
default=None,
|
|
help="Path to reward model checkpoint.",
|
|
)
|
|
group.add_argument("--actor-lr", type=float, default=1.0e-5, help="actor learning rate")
|
|
group.add_argument("--critic-lr", type=float, default=1.0e-6, help="critic learning rate")
|
|
group.add_argument("--actor-loss-scale", type=float, default=65536, help="actor loss scale")
|
|
group.add_argument("--critic-loss-scale", type=float, default=65536, help="critic loss scale")
|
|
group.add_argument("--avg-reward-bias", type=float, default=0, help="reward bias")
|
|
group.add_argument("--actor-delay-step", type=int, default=0, help="actor delay step")
|
|
group.add_argument("--entropy-coef", type=float, default=-1.0, help="coef of policy entropy")
|
|
##
|
|
return parser
|
|
|
|
|
|
def add_simple_rhlf_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("simple_rhlf", "simple rhlf configurations")
|
|
group.add_argument("--epoch", type=int, default=1, help="number of training epochs")
|
|
group.add_argument("--sample-batch-size", type=int, default=32, help="Data Loader sample batch size")
|
|
group.add_argument("--load-reward", type=str, default=None, help="Path to reward model checkpoint")
|
|
group.add_argument("--avg-reward-bias", type=float, default=0, help="reward bias")
|
|
group.add_argument("--sample-min-length", type=int, default=20, help="sample-min-length")
|
|
group.add_argument("--sample-max-inp-length", type=int, default=1024, help="sample-max-inp-length")
|
|
group.add_argument("--sample-max-length", type=int, default=64, help="sample-max-length")
|
|
group.add_argument("--sample-repetition-penalty", type=float, default=1.05, help="sample-repetition-penalty")
|
|
group.add_argument("--sample-temperature", type=float, default=1.0, help="sample-temperature")
|
|
group.add_argument("--encode-max-length", type=int, default=1024, help="encode-max-length")
|
|
group.add_argument("--generate-max-length", type=int, default=64, help="generate-max-length")
|
|
group.add_argument("--value-loss-weight", type=float, default=0.1, help="value-loss-weight")
|
|
group.add_argument("--ptx-loss-weight", type=float, default=0.001, help="ptx-loss-weight")
|
|
group.add_argument("--save-epochs", type=int, default=1, help="number of training epochs between saves")
|
|
##
|
|
return parser
|
|
|
|
|
|
def add_feedback_learning_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("rrhf", "rrhf configurations")
|
|
group.add_argument("--length-penalty", type=float, default=1.0, help="length_penalty")
|
|
group.add_argument("--feedback-weight", type=float, default=1.0, help="feedback_weight")
|
|
group.add_argument("--sample-num", type=int, default=6, help="sample_num")
|
|
group.add_argument("--dpo-beta", type=float, default=1.0, help="dpo_beta")
|
|
group.add_argument("--stable-alignment-margin", type=float, default=1.0, help="stable_alignment_margin")
|
|
group.add_argument("--feedback-learning-type", type=str, default="RRHF", help="feedback_learning_type")
|
|
group.add_argument("--save-iters", type=int, default=1000, help="number of iterations between saves")
|
|
##
|
|
return parser
|
|
|
|
|
|
def add_model_change_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("model_change", "model change during pretraining")
|
|
group.add_argument("--strict_state_dict", type=int, default=1, help="strict_state_dict")
|
|
##
|
|
return parser
|
|
|
|
|
|
def add_log_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("log", "log configurations")
|
|
group.add_argument("--tensorboard_all_tasks", type=int, default=0, help="log")
|
|
return parser
|
|
|
|
|
|
def add_error_handle_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("error_handle", "error_handle configurations")
|
|
group.add_argument(
|
|
"--ignore_cuda_oom", type=int, default=1, help="continue training by ingore the batch that causes oom"
|
|
)
|
|
return parser
|
|
|
|
|
|
def add_runtime_eval_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("runtime eval args", "runtime evaluation by submitting a job")
|
|
group.add_argument(
|
|
"--runtime_eval",
|
|
action="store_true",
|
|
help="whether to use runtime_eval. Only if this is set to True, the following variables will be useful",
|
|
)
|
|
group.add_argument("--eval_jeeves_auth", type=str, default="", help="auth, press f12 on jeeves platform to get")
|
|
group.add_argument("--eval_project_id", type=str, default=None, help="project id")
|
|
group.add_argument("--eval_run_cmd", type=str, default="", help="cmd for eval")
|
|
group.add_argument(
|
|
"--eval_git_path",
|
|
type=str,
|
|
default="git@git.in.zhihu.com:luca/llm-bench.git",
|
|
help="git path of evaluation code",
|
|
)
|
|
group.add_argument("--eval_git_branch", type=str, default="master", help="git branch of evaluation code")
|
|
group.add_argument("--eval_node_num", type=int, default=1, help="using 1 node to evaluate")
|
|
group.add_argument("--eval_gpu_num", type=int, default=1, help="using 1 gpu per node to evaluate")
|
|
group.add_argument("--eval_tasks_config", type=str, default="", help="evaluate tasks' config")
|
|
group.add_argument("--eval_model_backend", default="torch", type=str, help="model_backend")
|
|
|
|
group.add_argument(
|
|
"--eval_at_start", action="store_true", help="whether to eval at the first epoch, default to false"
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_reward_args(parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group("reward", "reward configurations")
|
|
group.add_argument("--load-all", type=str, default=None, help="Path to a directory containing a model checkpoint.")
|
|
##
|
|
return parser
|
|
|
|
|
|
def add_long_context_extend_args(parser: argparse.ArgumentParser):
|
|
"""long context extending arguments."""
|
|
group = parser.add_argument_group("long_context_extend", "long context extend configurations")
|
|
group.add_argument("--pose-prob", default=0.0, type=float, help="Sample-level PoSE probability")
|
|
group.add_argument(
|
|
"--pose-scaling-factor",
|
|
default=1.0,
|
|
type=float,
|
|
help="PoSE scaling factor, simulate input length = max_length * pose_scaling_factor",
|
|
)
|
|
group.add_argument(
|
|
"--rope-scaling-type",
|
|
default="",
|
|
type=str,
|
|
choices=["Linear", "NTK-aware", "Dynamic NTK", "NTK-by-parts", "YaRN", ""],
|
|
help="Context scaling type",
|
|
)
|
|
group.add_argument("--rope-scaling-factor", default=1, type=int, help="Context scaling factor")
|
|
group.add_argument(
|
|
"--orig-max-length", default=8192, type=int, help="Original context length before context extending"
|
|
)
|
|
return parser
|
|
|
|
|
|
def get_args(
|
|
pretrain: bool = False,
|
|
finetune: bool = False,
|
|
rhlf: bool = False,
|
|
simple_rlhf: bool = False,
|
|
feedback_learning: bool = False,
|
|
reward: bool = False,
|
|
):
|
|
parser = argparse.ArgumentParser()
|
|
parser = add_model_config_args(parser) # config file need to be exported with model/ckpt
|
|
parser = add_training_args(parser)
|
|
if pretrain:
|
|
parser = add_pretrain_args(parser)
|
|
parser = add_runtime_eval_args(parser)
|
|
parser = add_tokenizer_args(parser)
|
|
parser = add_log_args(parser)
|
|
parser = add_error_handle_args(parser)
|
|
parser = add_model_change_args(parser)
|
|
|
|
if finetune:
|
|
parser = add_finetune_args(parser)
|
|
if rhlf:
|
|
parser = add_rhlf_args(parser)
|
|
if simple_rlhf:
|
|
parser = add_simple_rhlf_args(parser)
|
|
if feedback_learning:
|
|
parser = add_feedback_learning_args(parser)
|
|
if reward:
|
|
parser = add_reward_args(parser)
|
|
parser = add_long_context_extend_args(parser)
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|