CPM-9G-8B/FM_9G/fm9g/layers/layernorm.py

38 lines
1.1 KiB
Python

import bmtrain as bmt
import torch
@torch.jit.script
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
old_dtype = hidden.dtype
variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
return hidden * weight
class LayerNorm(bmt.DistributedModule):
"""RMS LayerNorm"""
def __init__(
self,
dim_norm: int,
dtype: torch.dtype = torch.half,
eps: float = 1e-5,
init_var: float = 1.0,
):
super().__init__()
self.eps = eps
self.dim_norm = dim_norm
self.weight = bmt.DistributedParameter(torch.full((dim_norm,), init_var, dtype=dtype))
def forward(self, x: torch.Tensor):
"""
Args:
x (:obj:`torch.Tensor` of shape ``(batch_size, seq_len, dim_norm)``): Input tensor that need to be normalized.
Return:
:obj:`torch.Tensor` of shape ``(batch_size, seq_len, dim_norm)``: The layernorm output.
""" # noqa: E501
assert x.size(-1) == self.dim_norm
return rms_layernorm(x, self.weight, self.eps)