support ascend (#165)
* fix * fix code * fix format * fix format * fix * fix * addAbs * more Unary * add kernels * fix concat&pooling test code * add softmax/element_wise kernel * fix format * add reshape * support for llama * add maxpooling & flatten * add conv_transpose&&native maxpooling * add conv_transpose * add communication operator * fix * style: fix format * style: fix format * add depthTospace&&resize * add layernorm * format * add gemm * add leakyRelu op * modified format * modified onnx leakyrelu alpha * modified batchnorm * fix gemm & avgpooling * fix: onnx resize op input is none bug * add instancenorm, use layernorm replace instance, error * modiefied format, replace layernorm as instancenorm * fix: onnx resize op input is none bug * add pad2d kernel * modified format * fix op * fix resize * remove sync in op * Update INSTALL_GUIDE_CN.md for ASCEND * Update env.sh * format * fix test_resize * fix resize * fix test_resize_ * fix test_resize_ * add HcclCommDestroy && use default context * install onnxtuntime * install onnx-simplifier * install numpy * fix bug after merge * remove CHECK_RET&LOG_PRINT * fix test_ascend_layernorm * fix test_cuda_resize * fix test_ascend_* * fix format --------- Co-authored-by: Haojie Wang <haojie0429@gmail.com> Co-authored-by: wanghailu <wanghailu@qiyuanlab.com> Co-authored-by: OdinaryWord <sx-hz@163.com> Co-authored-by: xgqdut2016 <kenan_gewei@163.com> Co-authored-by: zhangyunze <z13785159769@163.com> Co-authored-by: Songxin <sx-hz@hotmail.com> Co-authored-by: zhangyue <138768300+zhangyue207@users.noreply.github.com> Co-authored-by: zhangyue <zhangyue@qiyuanlab.com> Co-authored-by: sx941227 <14507528+sx941227@user.noreply.gitee.com> Co-authored-by: zhangyunze <zhangyunze@qiyuanlab.com> Co-authored-by: Chenjie Duan <44265800+kilinchange@users.noreply.github.com>
This commit is contained in:
parent
9c0749d1e6
commit
8b61b0e397
|
@ -44,3 +44,5 @@ build_debug/
|
|||
*.onnx
|
||||
*.pb
|
||||
*.npy
|
||||
|
||||
*.swp
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
option(USE_CUDA "Support CUDA GPU" OFF)
|
||||
option(USE_BANG "Support BANG MLU" OFF)
|
||||
option(USE_KUNLUN "Support KUNLUN XPU" OFF)
|
||||
option(USE_ASCEND "Support HUAWEI ASCEND" OFF)
|
||||
option(USE_INTELCPU "Support INTELCPU" OFF)
|
||||
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" ON)
|
||||
option(USE_PROTOBUF "Serialize and deserialize tensors" OFF)
|
||||
|
@ -151,6 +152,11 @@ if(USE_KUNLUN)
|
|||
list (APPEND SRC ${SRC_KUNLUN})
|
||||
endif()
|
||||
|
||||
if(USE_ASCEND)
|
||||
file(GLOB_RECURSE SRC_ASCEND src/ascend/*.cc src/kernels/ascend/*.cc )
|
||||
list (APPEND SRC ${SRC_ASCEND})
|
||||
endif()
|
||||
|
||||
if(USE_INTELCPU)
|
||||
file(GLOB_RECURSE SRC_INTELCPU src/intelcpu/*.cc src/kernels/intelcpu/*.cc )
|
||||
list (APPEND SRC ${SRC_INTELCPU})
|
||||
|
@ -297,6 +303,7 @@ if(USE_KUNLUN)
|
|||
else()
|
||||
set(TARGET_CPU_ARCH $ENV{TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
|
||||
endif()
|
||||
|
||||
message(STATUS "TARGET_CPU_ARCH: ${TARGET_CPU_ARCH}")
|
||||
|
||||
if (BUILD_DIST)
|
||||
|
@ -309,6 +316,42 @@ if(USE_KUNLUN)
|
|||
target_link_libraries(InfiniTensor ${KUNLUN_RT} ${KUNLUN_DNN} stdc++)
|
||||
endif()
|
||||
|
||||
if(USE_ASCEND)
|
||||
add_compile_definitions(USE_ASCEND=1)
|
||||
if ((NOT DEFINED ASCEND_HOME) AND (NOT DEFINED ENV{ASCEND_HOME}))
|
||||
message(FATAL_ERROR "ASCEND_HOME is not defined from cmake or env")
|
||||
elseif (DEFINED ASCEND_HOME)
|
||||
set(ASCEND_HOME ${ASCEND_HOME} CACHE STRING "ASCEND_HOME directory for Ascend development")
|
||||
else()
|
||||
set(ASCEND_HOME $ENV{ASCEND_HOME} CACHE STRING "ASCEND_HOME directory for Ascend development")
|
||||
endif()
|
||||
message(STATUS "ASCEND_HOME: ${ASCEND_HOME}")
|
||||
|
||||
include_directories("${ASCEND_HOME}/include/")
|
||||
include_directories("${ASCEND_HOME}/include/aclnn")
|
||||
find_library(ASCEND_CL libascendcl.so "${ASCEND_HOME}/lib64")
|
||||
find_library(ASCEND_BASE libnnopbase.so "${ASCEND_HOME}/lib64")
|
||||
find_library(ASCEND_DNN libopapi.so "${ASCEND_HOME}/lib64")
|
||||
find_library(ASCEND_HCCL libhccl.so "${ASCEND_HOME}/lib64")
|
||||
find_library(ASCEND_HAL libascend_hal.so "${ASCEND_HOME}/../../driver/lib64/driver")
|
||||
# find_library(ASCEND_RT libruntime.so "${ASCEND_HOME}/lib64")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lstdc++ -Wall -Werror")
|
||||
if ((NOT DEFINED TARGET_CPU_ARCH) AND (NOT DEFINED ENV{TARGET_CPU_ARCH}))
|
||||
execute_process(COMMAND uname -m OUTPUT_VARIABLE _uname_m OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
set(TARGET_CPU_ARCH "${_uname_m}" CACHE STRING "Target CPU ARCH")
|
||||
elseif(DEFINED TARGET_CPU_ARCH)
|
||||
set(TARGET_CPU_ARCH ${TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
|
||||
else()
|
||||
set(TARGET_CPU_ARCH $ENV{TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
|
||||
endif()
|
||||
message(STATUS "TARGET_CPU_ARCH: ${TARGET_CPU_ARCH}")
|
||||
target_link_libraries(InfiniTensor ${ASCEND_HAL} ${ASCEND_CL} ${ASCEND_BASE} ${ASCEND_DNN} ${ASCEND_HCCL} stdc++)
|
||||
if (BUILD_DIST)
|
||||
message(STATUS "Add BUILD_DIST, use HCCL with ASCEND")
|
||||
add_compile_definitions(INFINI_USE_HCCL=1)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# # Python bindings
|
||||
# pybind11_add_module(infini MODULE ${FFI})
|
||||
# target_link_libraries(infini PRIVATE infini_cpp)
|
||||
|
@ -346,6 +389,9 @@ if(BUILD_TEST)
|
|||
build_test(test/kernels/kunlun/*.cc)
|
||||
build_test(test/kunlun/*.cc)
|
||||
endif()
|
||||
if (USE_ASCEND)
|
||||
build_test(test/kernels/ascend/*.cc)
|
||||
endif()
|
||||
if (USE_INTELCPU)
|
||||
build_test(test/kernels/intelcpu/*.cc)
|
||||
endif()
|
||||
|
|
2
Makefile
2
Makefile
|
@ -4,6 +4,7 @@ TYPE ?= Release
|
|||
CUDA ?= OFF
|
||||
BANG ?= OFF
|
||||
KUNLUN ?= OFF
|
||||
ASCEND ?= OFF
|
||||
INTELCPU ?= off
|
||||
BACKTRACE ?= ON
|
||||
TEST ?= ON
|
||||
|
@ -29,6 +30,7 @@ CMAKE_OPT = -DCMAKE_BUILD_TYPE=$(TYPE)
|
|||
CMAKE_OPT += -DUSE_CUDA=$(CUDA)
|
||||
CMAKE_OPT += -DUSE_BANG=$(BANG)
|
||||
CMAKE_OPT += -DUSE_KUNLUN=$(KUNLUN)
|
||||
CMAKE_OPT += -DUSE_ASCEND=$(ASCEND)
|
||||
CMAKE_OPT += -DUSE_BACKTRACE=$(BACKTRACE)
|
||||
CMAKE_OPT += -DBUILD_TEST=$(TEST)
|
||||
CMAKE_OPT += -DBUILD_DIST=$(DIST)
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
| -------- | ------------ | ----------- | ---------- |
|
||||
| X86-64 | Nvidia GPU | Ubuntu-22.04 | Yes |
|
||||
| X86-64 | Cambricon MLU | Ubuntu-22.04 | Yes |
|
||||
| arm64 | Ascend NPU |OpenEuler-22.03| Yes |
|
||||
|
||||
推荐使用 X86-64 机器以及 Ubuntu-22.04,本文以此环境为例。
|
||||
|
||||
|
@ -68,6 +69,20 @@
|
|||
|
||||
我们强烈建议您规范安装,统一到一个目录下,以免不必要的麻烦。另外请注意,由于 MLU 上层软件建设适配程度有限,如您在其覆盖的机器,操作系统之外运行,需要在安装驱动之后使用上层软件的 Docker。
|
||||
|
||||
- 如您的第三方加速卡为昇腾 NPU,请参考昇腾官方文档进行:
|
||||
> [驱动及CANN安装](https://www.hiascend.com/document/detail/zh/canncommercial/80RC1/quickstart/quickstart/quickstart_18_0006.html)
|
||||
> 安装完成后请进行相应的环境变量配置,将可执行文件目录与库目录添加到操作系统识别的路径中,例如
|
||||
>
|
||||
> ```bash
|
||||
> # 将如下内容写入到你的 bashrc 文件并 source 该文件
|
||||
> export ASCEND_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
> source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
> # 如您不方便将上述环境变量配置到 bashrc 文件中进行长期使用,你也可以在我们提供的 env.sh 文件中进行正确配置并激活,作为临时使用
|
||||
> source env.sh
|
||||
> ```
|
||||
|
||||
我们强烈建议您规范安装,统一到一个目录下,以免不必要的麻烦。
|
||||
|
||||
4. 确认您安装了 make,build-essential, python-is-python3, python-dev-is-python3, python3-pip, libdw-dev,如您的机器没有上述基础依赖,请自行按需安装。
|
||||
|
||||
- 在使用 apt-get 工具情况下,您可以这样执行
|
||||
|
@ -140,6 +155,13 @@
|
|||
make install-python KUNLUN=ON
|
||||
```
|
||||
|
||||
编译 CPU 部分,同时编译昇腾 NPU 部分:
|
||||
|
||||
```bash
|
||||
export ASCEND_HOME=/path/to/your/ascend_home
|
||||
make install-python ASCEND=ON
|
||||
```
|
||||
|
||||
3. 使用方法
|
||||
|
||||
安装成功后,您就可以使用本项目的 Python 接口进行编码并运行。具体使用方式可以参考项目样例代码 example/Resnet/resnet.py 以及用户使用手册
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
| -------- | ------------ | ----------- | ---------- |
|
||||
| X86-64 | Nvidia GPU | Ubuntu-22.04 | Yes |
|
||||
| X86-64 | Cambricon MLU | Ubuntu-22.04 | Yes |
|
||||
| arm64 | Ascend NPU |OpenEuler-22.03| Yes |
|
||||
|
||||
## 神经网络支持
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
- `CUDA`:是否编译 CUDA 后端,默认为 `OFF`,`ON` 打开
|
||||
- `BANG`:是否编译寒武纪后端,默认为 `OFF`,`ON` 打开
|
||||
- `KUNLUN`:是否编译昆仑后端,默认为 `OFF`,`ON` 打开
|
||||
- `ASCEND`:是否编译华为后端,默认为 `OFF`,`ON` 打开
|
||||
- `BACKTRACE`:是否启用栈回溯,默认为 `ON`,`OFF` 关闭,建议调试时打开
|
||||
- `TEST`:是否编译 `googletest`,默认为 `ON`,`OFF` 关闭,只有 `test-cpp` 时必要
|
||||
|
||||
|
|
30
env.sh
30
env.sh
|
@ -36,3 +36,33 @@ export LD_LIBRARY_PATH="${NEUWARE_HOME}/lib64:${LD_LIBRARY_PATH}"
|
|||
# ├── version
|
||||
# └── XTDK
|
||||
export KUNLUN_HOME=/usr/local/xpu
|
||||
|
||||
# 配置华为ASCEND NPU 的 HOME 路径,请注意 /usr/local/Ascend/ascend-toolkit/latest 是华为ASCEND 软件栈提供的软件包路径。
|
||||
# 如若用户有其他的路径安装方式,请自行配置正确的路径。
|
||||
# 这里是 ascend 目录下一个可能的结构图,请参考。
|
||||
# .
|
||||
# ├── aarch64-linux
|
||||
# ├── acllib
|
||||
# ├── arm64-linux
|
||||
# ├── atc
|
||||
# ├── bin
|
||||
# ├── compiler
|
||||
# ├── conf
|
||||
# ├── fwkacllib
|
||||
# ├── hccl
|
||||
# ├── include
|
||||
# ├── lib64
|
||||
# ├── mindstudio-toolkit
|
||||
# ├── opp
|
||||
# ├── opp_kernel
|
||||
# ├── ops
|
||||
# ├── pyACL
|
||||
# ├── python
|
||||
# ├── runtime
|
||||
# ├── test-ops
|
||||
# ├── toolkit
|
||||
# └── tools
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
source /usr/local/Ascend/toolbox/set_env.sh
|
||||
|
|
|
@ -1 +1 @@
|
|||
Subproject commit 51d3105277f3774ed31c02ed4cd11fa92925af77
|
||||
Subproject commit b896cec2dba5b8522b141ac4f89eb43074ee1b98
|
|
@ -0,0 +1,198 @@
|
|||
import argparse
|
||||
import os
|
||||
import time
|
||||
import multiprocessing as mp
|
||||
from pyinfinitensor.onnx import OnnxStub, backend
|
||||
import onnx
|
||||
from onnx.shape_inference import infer_shapes_path
|
||||
import numpy as np
|
||||
from parallel_opt import parallel_model
|
||||
import acl
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
|
||||
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
|
||||
parser.add_argument(
|
||||
"--nproc_per_node", type=int, default=2, help="number of processes per node"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--name", type=str, default="test", help="name of this instance."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model", type=str, default="/data/onnx_models/llama2/llama_bs1_seq1024.onnx",
|
||||
help="path to the ONNX model file."
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
|
||||
parser.add_argument("--length", type=int, default=1, help="sequence length.")
|
||||
parser.add_argument(
|
||||
"--gen_std",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="whether to generate the standard results.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print("arg setting: ", args)
|
||||
return (
|
||||
args.num_nodes,
|
||||
args.nproc_per_node,
|
||||
args.name,
|
||||
args.model,
|
||||
args.batch_size,
|
||||
args.length,
|
||||
args.gen_std,
|
||||
)
|
||||
|
||||
|
||||
def run_model(model, runtime, world_size=1, rank=0, n=10):
|
||||
stub = OnnxStub(model, runtime)
|
||||
load_inputs(stub, world_size, rank)
|
||||
# stub.tune()
|
||||
stub.run()
|
||||
# get outputs
|
||||
time.sleep(0.01)
|
||||
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
|
||||
|
||||
# bench
|
||||
begin = time.time()
|
||||
for _ in range(n):
|
||||
stub.run()
|
||||
end = time.time()
|
||||
avg_time = (end - begin) / n
|
||||
print(f"average time: {avg_time}")
|
||||
return outputs
|
||||
|
||||
|
||||
def run_and_compare(name, model, runtime, world_size=1, rank = 0):
|
||||
results = np.load(f"./data/output.npy")
|
||||
outputs = run_model(model, runtime, world_size, rank)
|
||||
print("answer argmax:", np.argmax(results))
|
||||
print("output argmax:", np.argmax(outputs))
|
||||
#np.testing.assert_allclose(outputs, results, rtol=1e-3, atol=1e-3)
|
||||
getDiff(results, outputs)
|
||||
|
||||
|
||||
def start_worker(
|
||||
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto
|
||||
):
|
||||
dist_name = name + "_dist"
|
||||
model = parallel_model(model, world_size, rank)
|
||||
extern_path = f"./{dist_name}_rank{rank}.pb"
|
||||
if os.path.exists(extern_path):
|
||||
os.remove(extern_path)
|
||||
onnx.save_model(
|
||||
model,
|
||||
f"./{dist_name}_rank{rank}.onnx",
|
||||
save_as_external_data=True,
|
||||
location=extern_path,
|
||||
)
|
||||
infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
|
||||
runtime = backend.ASCENDRuntime(local_rank)
|
||||
# print("init comm")
|
||||
runtime.init_comm(
|
||||
dist_name,
|
||||
world_size,
|
||||
rank,
|
||||
)
|
||||
run_and_compare(name, model, runtime, world_size, rank)
|
||||
|
||||
|
||||
def start_single(name, model):
|
||||
runtime = backend.ASCENDRuntime(0)
|
||||
run_and_compare(name, model, runtime)
|
||||
|
||||
|
||||
def generate_input_output(model):
|
||||
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
|
||||
runtime = backend.ASCENDRuntime(0)
|
||||
stub = OnnxStub(model, runtime)
|
||||
position_id = 0
|
||||
for i, (name, tensor) in enumerate(stub.inputs.items()):
|
||||
input = tensor.copyout_numpy()
|
||||
if np.issubdtype(input.dtype, np.integer):
|
||||
if input.size == 1:
|
||||
# input = np.array([position_id])
|
||||
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
|
||||
else:
|
||||
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
|
||||
elif input.dtype == np.bool_:
|
||||
input = np.random.randint(0,2,size=input.shape) > 0
|
||||
else:
|
||||
if i == 0:
|
||||
input = np.ones(input.shape).astype(input.dtype)
|
||||
position_id = input.shape[-1] - 1
|
||||
else:
|
||||
input = np.random.rand(*input.shape).astype(input.dtype)
|
||||
tensor.copyin_numpy(input)
|
||||
np.save(f"./data/input_{i}", input)
|
||||
stub.run()
|
||||
time.sleep(0.01)
|
||||
output = next(stub.outputs.values().__iter__()).copyout_numpy()
|
||||
if np.isnan(output).any():
|
||||
print("Nan in output")
|
||||
np.save(f"./data/output", output)
|
||||
|
||||
|
||||
def load_inputs(stub, world_size=1, rank=0):
|
||||
for i, (name, tensor) in enumerate(stub.inputs.items()):
|
||||
input = np.load(f"./data/input_{i}.npy")
|
||||
if all(x == y for x,y in zip(input.shape,tensor.shape())):
|
||||
tensor.copyin_numpy(input)
|
||||
else:
|
||||
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
|
||||
|
||||
def getDiff(base, test):
|
||||
absolute_diff = np.abs(np.subtract(base, test))
|
||||
max_absolute_diff = np.max(absolute_diff)
|
||||
|
||||
baseCopy = base.astype(np.float64).ravel()
|
||||
testCopy = test.astype(np.float64).ravel()
|
||||
upValue = np.sum(np.abs(baseCopy - testCopy))
|
||||
downValue = np.sum(np.abs(baseCopy)) + np.float64(1e-9)
|
||||
max_relative_diff = upValue / downValue
|
||||
print(f"Max absolute difference: {max_absolute_diff}\n"
|
||||
f"Max relative difference: {max_relative_diff}")
|
||||
return max_absolute_diff, max_relative_diff
|
||||
|
||||
|
||||
def main():
|
||||
acl.init()
|
||||
nnodes, nproc_per_node, name, model_path, bs, length, gen_std = parse_args()
|
||||
|
||||
model = onnx.load(model_path)
|
||||
|
||||
# generate standart output
|
||||
if gen_std:
|
||||
print("Generate inputs and outputs.")
|
||||
p = mp.Process(target=generate_input_output, args=[model])
|
||||
p.start()
|
||||
p.join()
|
||||
return
|
||||
|
||||
# run single process.
|
||||
# use standalone process to isolate cuda.
|
||||
print("run model by single MLU.")
|
||||
p = mp.Process(target=start_single, args=(name, model))
|
||||
p.start()
|
||||
p.join()
|
||||
|
||||
# run distributed parallel.
|
||||
world_size = nnodes * nproc_per_node
|
||||
print(f"run model by {world_size} MLUs in parallel.")
|
||||
workers = [
|
||||
mp.Process(
|
||||
target=start_worker,
|
||||
args=(name, world_size, rank, rank % nproc_per_node, model),
|
||||
)
|
||||
for rank in range(world_size)
|
||||
]
|
||||
|
||||
for w in workers:
|
||||
w.start()
|
||||
|
||||
for w in workers:
|
||||
w.join()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,37 @@
|
|||
#pragma once
|
||||
#include "acl/acl.h"
|
||||
#include "acl/acl_op.h"
|
||||
#include "core/common.h"
|
||||
|
||||
#define checkASCENDError(call) \
|
||||
{ \
|
||||
auto err = call; \
|
||||
if (ACL_SUCCESS != err) { \
|
||||
fprintf(stderr, "ASCEND error in %s:%i : .\n", __FILE__, \
|
||||
__LINE__); \
|
||||
exit(EXIT_FAILURE); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define checkHCCLError(call) \
|
||||
{ \
|
||||
auto err = call; \
|
||||
if (HCCL_SUCCESS != err) { \
|
||||
fprintf(stderr, "HCCL error in %s:%i : .\n", __FILE__, __LINE__); \
|
||||
exit(EXIT_FAILURE); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define GetRecentErrMsg() \
|
||||
{ \
|
||||
auto tmp_err_msg = aclGetRecentErrMsg(); \
|
||||
if (tmp_err_msg != NULL) { \
|
||||
printf(" ERROR Message : %s \n ", tmp_err_msg); \
|
||||
} \
|
||||
}
|
||||
|
||||
namespace infini {
|
||||
|
||||
using ASCENDPtr = void *;
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,23 @@
|
|||
#pragma once
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/kernel.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class ASCENDKernelWithoutConfig : public Kernel {
|
||||
public:
|
||||
virtual void compute(const Operator &op, const PerfRecord &record,
|
||||
const RuntimeObj *context) const {
|
||||
compute(op, context);
|
||||
}
|
||||
virtual void compute(const Operator &op,
|
||||
const RuntimeObj *context) const = 0;
|
||||
// Premise: op is idempotent since it is called multiple times.
|
||||
virtual PerfRecord tune(const Operator &op,
|
||||
const RuntimeObj *_context) const {
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
return make_ref<PerfRecordObj>(timeit([&]() { compute(op, _context); },
|
||||
[&]() { context->sync(); }));
|
||||
}
|
||||
};
|
||||
} // namespace infini
|
|
@ -0,0 +1,82 @@
|
|||
#pragma once
|
||||
#include "ascend/ascend_common.h"
|
||||
#include "core/runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class ASCENDRuntimeObj : public RuntimeObj {
|
||||
private:
|
||||
aclrtContext context;
|
||||
aclrtStream stream;
|
||||
std::unique_ptr<CommunicatorObj> comm;
|
||||
ASCENDPtr workspace = nullptr;
|
||||
uint64_t workspaceSize;
|
||||
|
||||
public:
|
||||
ASCENDRuntimeObj(int deviceId = 0) : RuntimeObj(Device::ASCEND, deviceId) {
|
||||
// auto ret = aclInit(nullptr);
|
||||
// CHECK_RET(ret == ACL_SUCCESS,
|
||||
// LOG_PRINT("aclInit failed. ERROR: %d\n", ret));
|
||||
auto ret = aclrtSetDevice(deviceId);
|
||||
checkASCENDError(ret);
|
||||
ret = aclrtCreateStream(&stream);
|
||||
checkASCENDError(ret);
|
||||
|
||||
// 10GB for Longformer
|
||||
// size_t longformerNum = 3lu * (1 << 30);
|
||||
workspaceSize = 3ll * (1 << 30); // 3 GB
|
||||
|
||||
workspace = alloc(workspaceSize);
|
||||
}
|
||||
virtual ~ASCENDRuntimeObj() {
|
||||
dealloc(workspace);
|
||||
aclrtDestroyStream(stream);
|
||||
aclrtResetDevice(deviceId);
|
||||
// aclFinalize();
|
||||
}
|
||||
string toString() const override;
|
||||
|
||||
void run(const Graph &graph, bool tune = false,
|
||||
bool profiling = false) const;
|
||||
|
||||
void sync() const;
|
||||
ASCENDPtr alloc(size_t size) override {
|
||||
void *ptr;
|
||||
checkASCENDError(
|
||||
aclrtMalloc((void **)&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
return ptr;
|
||||
}
|
||||
void dealloc(void *ptr) override { checkASCENDError(aclrtFree(ptr)); }
|
||||
aclrtStream ASCENDHandle() const { return stream; }
|
||||
ASCENDPtr getWorkspace(uint64_t size) const {
|
||||
IT_ASSERT(size <= workspaceSize);
|
||||
return workspace;
|
||||
}
|
||||
|
||||
void copyBlobFromCPU(void *dst, const void *src,
|
||||
size_t bytes) const override {
|
||||
aclrtMemcpy(dst, bytes, const_cast<void *>(src), bytes,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
}
|
||||
|
||||
void copyBlobToCPU(void *dst, const void *src,
|
||||
size_t bytes) const override {
|
||||
aclrtMemcpy(dst, bytes, const_cast<void *>(src), bytes,
|
||||
ACL_MEMCPY_DEVICE_TO_HOST);
|
||||
}
|
||||
|
||||
void copyBlobInsideRuntime(void *dst, const void *src,
|
||||
size_t bytes) const override {
|
||||
aclrtMemcpy(dst, bytes, const_cast<void *>(src), bytes,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE);
|
||||
}
|
||||
|
||||
void initComm(const string &name, int worldSize, int rank) final;
|
||||
|
||||
CommunicatorObj &getCommunicator() const override { return *comm; }
|
||||
|
||||
private:
|
||||
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;
|
||||
};
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,72 @@
|
|||
#pragma once
|
||||
#include "ascend/ascend_common.h"
|
||||
#include "core/communicator.h"
|
||||
#include "hccl/hccl.h"
|
||||
#include "hccl/hccl_types.h"
|
||||
#include <chrono>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
namespace infini {
|
||||
|
||||
class HcclCommunicatorObj final : public CommunicatorObj {
|
||||
private:
|
||||
HcclComm comm;
|
||||
|
||||
public:
|
||||
HcclCommunicatorObj(const string &name, int worldSize, int rank)
|
||||
: CommunicatorObj(worldSize, rank) {
|
||||
const std::string filePath("./" + name + "_hccl_id.bin");
|
||||
int devId = rank;
|
||||
int devCount = worldSize;
|
||||
// get rootInfo in rootRank
|
||||
HcclRootInfo rootInfo;
|
||||
int32_t rootRank = 0;
|
||||
|
||||
if (devId == rootRank) {
|
||||
checkHCCLError(HcclGetRootInfo(&rootInfo));
|
||||
std::ofstream ofs(filePath, std::ios::binary);
|
||||
ofs.write((char *)&rootInfo, sizeof(HcclRootInfo));
|
||||
} else {
|
||||
auto begin = std::chrono::steady_clock::now();
|
||||
while (!std::filesystem::exists(filePath)) {
|
||||
auto now = std::chrono::steady_clock::now();
|
||||
_IT_ASSERT_2(now < begin + std::chrono::seconds(10),
|
||||
"time limit (10s) exceeded.");
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
}
|
||||
std::ifstream ifs(filePath, std::ios::binary);
|
||||
ifs.read((char *)&rootInfo, sizeof(HcclRootInfo));
|
||||
}
|
||||
|
||||
auto ret = HcclCommInitRootInfo(uint32_t(devCount), &rootInfo,
|
||||
uint32_t(devId), &comm);
|
||||
checkHCCLError(ret);
|
||||
|
||||
if (rank == 0) {
|
||||
std::filesystem::remove(filePath);
|
||||
}
|
||||
}
|
||||
|
||||
// Get the actual ncclComm_t
|
||||
HcclComm getHcclComm() { return comm; }
|
||||
|
||||
~HcclCommunicatorObj() final {
|
||||
auto ret = HcclCommDestroy(comm);
|
||||
checkHCCLError(ret);
|
||||
}
|
||||
|
||||
virtual string toString() const final {
|
||||
std::ostringstream oss;
|
||||
oss << "HCCL communicator";
|
||||
return oss.str();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace infini
|
|
@ -93,4 +93,6 @@ double timeit(
|
|||
const std::function<void(void)> &sync = []() {}, int warmupRounds = 10,
|
||||
int timingRounds = 10);
|
||||
|
||||
std::vector<int64_t> castTo64(std::vector<int> const &v32);
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -38,6 +38,8 @@ class GraphHandlerObj {
|
|||
float momentum, float eps, bool training);
|
||||
Tensor layerNormalization(Tensor input, Tensor scale, Tensor output,
|
||||
Tensor bias, float eps, int axis, int stash_type);
|
||||
Tensor instanceNormalization(Tensor input, Tensor output, Tensor scale,
|
||||
Tensor bias, float eps);
|
||||
Tensor rmsNorm(Tensor input, Tensor weight, Tensor output);
|
||||
|
||||
Tensor maxPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
|
||||
|
@ -77,7 +79,7 @@ class GraphHandlerObj {
|
|||
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
|
||||
Tensor resize(Tensor input, Tensor output,
|
||||
const std::optional<vector<int>> &axes, Tensor sizes,
|
||||
Tensor scales, Tensor roi, vector<uint32_t> sizes_,
|
||||
Tensor scales, Tensor roi, vector<int64_t> sizes_,
|
||||
vector<float> scales_, vector<float> roi_, string mode,
|
||||
string ratioPolicy, string nearestMode,
|
||||
string coordTransMode);
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#pragma once
|
||||
#pragma once
|
||||
#ifndef OP_TYPE_H
|
||||
#define OP_TYPE_H
|
||||
|
||||
|
@ -261,6 +261,7 @@ struct OpType {
|
|||
enum class ActType {
|
||||
None,
|
||||
Relu,
|
||||
LeakyRelu,
|
||||
Sigmoid,
|
||||
Tanh,
|
||||
};
|
||||
|
|
|
@ -32,7 +32,7 @@ using OpLists = list<Operator>;
|
|||
|
||||
using VType = uint32_t;
|
||||
|
||||
enum class Device { CPU = 1, CUDA, BANG, INTELCPU, KUNLUN };
|
||||
enum class Device { CPU = 1, CUDA, BANG, INTELCPU, KUNLUN, ASCEND };
|
||||
/***************** Forward declaration end *****************/
|
||||
|
||||
class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
|
||||
|
@ -75,6 +75,7 @@ class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
|
|||
bool isCuda() const { return device == Device::CUDA; }
|
||||
bool isBang() const { return device == Device::BANG; }
|
||||
bool isKUNLUN() const { return device == Device::KUNLUN; }
|
||||
bool isAscend() const { return device == Device::ASCEND; }
|
||||
void copyBlob(const TensorObj *dst, const TensorObj *src) const;
|
||||
// TODO: unify these copy APIs
|
||||
virtual void copyBlobFromCPU(void *dst, const void *src,
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
#pragma once
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
class InstanceNormObj : public OperatorObj {
|
||||
public:
|
||||
InstanceNormObj(GraphObj *graph, Tensor input, Tensor output, Tensor scale,
|
||||
Tensor bias, float eps = 1e-5);
|
||||
OP_CLONE(InstanceNormObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
|
||||
std::string toString() const override;
|
||||
|
||||
int numInputs() const override { return inputs.size(); }
|
||||
int numOutputs() const override { return outputs.size(); }
|
||||
float getEps() const { return eps; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
|
||||
vector<DataType> inferDataType(const TensorVec &inputs) const override;
|
||||
float eps;
|
||||
};
|
||||
} // namespace infini
|
|
@ -85,6 +85,7 @@ class ResizeObj : public OperatorObj {
|
|||
vector<int> axes;
|
||||
vector<float> scales;
|
||||
vector<float> roi;
|
||||
bool isGivenSizes = false;
|
||||
|
||||
ECoordinateTransMode coMode; // compute src coordinate from dst coordinate
|
||||
ECoeffMode mode; // coeff mode,for computing dst value from coordinate src
|
||||
|
@ -139,9 +140,8 @@ class ResizeObj : public OperatorObj {
|
|||
} else
|
||||
return 0;
|
||||
}
|
||||
bool isResizeBySizes() const {
|
||||
return ratioPolicy != EKeepAspectRatioPolicy::none;
|
||||
}
|
||||
void setGivenSizes(bool val) { isGivenSizes = val; }
|
||||
bool isResizeBySizes() const { return isGivenSizes; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
|
|
|
@ -191,7 +191,7 @@ class OnnxStub:
|
|||
node,
|
||||
{
|
||||
"dilations": [1, 1],
|
||||
"pads": [0, 0],
|
||||
"pads": [0, 0, 0, 0],
|
||||
"strides": [1, 1],
|
||||
"output_padding": [0, 0],
|
||||
},
|
||||
|
@ -200,8 +200,52 @@ class OnnxStub:
|
|||
attributes[name]
|
||||
for name in ["dilations", "pads", "strides", "output_padding"]
|
||||
)
|
||||
if p[0] != p[2] or p[1] != p[3]:
|
||||
adapt = "{}-adapt".format(node.output[0])
|
||||
tensors[adapt] = self.handler.pad(
|
||||
tensors[node.input[0]], None, p, [-2, -1]
|
||||
)
|
||||
p = [0, 0, 0, 0]
|
||||
else:
|
||||
adapt = node.input[0]
|
||||
|
||||
if len(node.input) > 2:
|
||||
bias = "{}-bias".format(node.output[0])
|
||||
reshape = "{}-reshape".format(node.output[0])
|
||||
tensors[bias] = self.handler.convTransposed2d(
|
||||
tensors[adapt],
|
||||
tensors[node.input[1]],
|
||||
None,
|
||||
p[0],
|
||||
p[1],
|
||||
s[0],
|
||||
s[1],
|
||||
d[0],
|
||||
d[1],
|
||||
op[0],
|
||||
op[1],
|
||||
)
|
||||
tensors[reshape] = self.handler.reshape(
|
||||
tensors[node.input[2]],
|
||||
None,
|
||||
[
|
||||
1,
|
||||
reduce(
|
||||
lambda acc, x: acc * x,
|
||||
tensors[node.input[2]].shape(),
|
||||
),
|
||||
1,
|
||||
1,
|
||||
],
|
||||
)
|
||||
tensors[node.output[0]] = self.handler.add(
|
||||
tensors[bias],
|
||||
tensors[reshape],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
else:
|
||||
tensors[node.output[0]] = self.handler.convTransposed2d(
|
||||
tensors[node.input[0]],
|
||||
tensors[adapt],
|
||||
tensors[node.input[1]],
|
||||
tensors.get(node.output[0]),
|
||||
p[0],
|
||||
|
@ -286,6 +330,21 @@ class OnnxStub:
|
|||
axis,
|
||||
stash_type,
|
||||
)
|
||||
elif node.op_type == "InstanceNormalization":
|
||||
(input, scale, bias) = (tensors[node.input[i]] for i in [0, 1, 2])
|
||||
|
||||
output = tensors.get(node.output[0])
|
||||
|
||||
tensors[node.output[0]] = self.handler.instanceNormalization(
|
||||
input,
|
||||
output,
|
||||
scale,
|
||||
bias,
|
||||
next(
|
||||
(attr.f for attr in node.attribute if attr.name == "epsilon"),
|
||||
1e-5,
|
||||
),
|
||||
)
|
||||
elif node.op_type == "RMSNorm":
|
||||
tensors[node.output[0]] = self.handler.RMSNorm(
|
||||
tensors[node.input[0]],
|
||||
|
@ -557,16 +616,6 @@ class OnnxStub:
|
|||
tensors[node.input[1]],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
elif node.op_type == "LeakyRelu":
|
||||
tensors[node.output[0]] = self.handler.leakyRelu(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
next(
|
||||
(attr.f for attr in node.attribute if attr.name == "alpha"),
|
||||
0.01,
|
||||
),
|
||||
)
|
||||
|
||||
elif node.op_type == "Clip":
|
||||
tensors[node.output[0]] = self.handler.clip(
|
||||
tensors[node.input[0]],
|
||||
|
@ -625,7 +674,7 @@ class OnnxStub:
|
|||
"cubic_coeff_a": -0.75,
|
||||
"exclude_outside": 0,
|
||||
"extrapolation_value": 0.0,
|
||||
"keep_aspect_ratio_policy": "none",
|
||||
"keep_aspect_ratio_policy": "stretch",
|
||||
"mode": "nearest",
|
||||
"nearest_mode": "none",
|
||||
},
|
||||
|
|
|
@ -11,7 +11,7 @@ proj_path = Path(sys.path[0]).parent
|
|||
def format_file(file):
|
||||
file = Path(proj_path.joinpath(file))
|
||||
if file.suffix in c_style_file:
|
||||
run(f"clang-format-14 -style=file -i {file}", cwd=proj_path, shell=True)
|
||||
run(f"clang-format -style=file -i {file}", cwd=proj_path, shell=True)
|
||||
run(f"git add {file}", cwd=proj_path, shell=True)
|
||||
elif file.suffix == py_file:
|
||||
run(f"black {file}", cwd=proj_path, shell=True)
|
||||
|
|
|
@ -0,0 +1,73 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/perf_engine.h"
|
||||
#ifdef INFINI_USE_HCCL
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#endif
|
||||
|
||||
namespace infini {
|
||||
|
||||
void ASCENDRuntimeObj::runWithoutSync(const Graph &graph, bool tune = false,
|
||||
bool profiling = false) const {
|
||||
const auto &kernelRegistry = KernelRegistry::getInstance();
|
||||
auto &perfEngine = PerfEngine::getInstance();
|
||||
double totalTime = 0;
|
||||
std::map<OpType, double> opTime;
|
||||
std::map<OpType, int> opCnt;
|
||||
for (auto &op : graph->getOperators()) {
|
||||
// HACK: set correct data type
|
||||
auto kernelAttrs = KernelAttrs{device, op->getOpType().underlying()};
|
||||
Kernel *kernel = kernelRegistry.getKernel(kernelAttrs);
|
||||
auto perfKey = PerfEngine::Key{kernelAttrs, op->getOpPerfKey()};
|
||||
auto perfData = perfEngine.getPerfData(perfKey);
|
||||
if (!perfData && !tune) {
|
||||
kernel->compute(op, this);
|
||||
continue;
|
||||
}
|
||||
|
||||
PerfRecord record;
|
||||
if (!perfData) {
|
||||
record = kernel->tune(op, this);
|
||||
perfEngine.setPerfData(perfKey, record);
|
||||
} else
|
||||
record = perfData;
|
||||
|
||||
double t = record->time;
|
||||
totalTime += t;
|
||||
|
||||
if (profiling) {
|
||||
double t = timeit([&]() { kernel->compute(op, record, this); },
|
||||
[&]() { sync(); }, 1, 1);
|
||||
op->print();
|
||||
printf(" op_time on kunlun xpu %lf\n", t);
|
||||
totalTime += t;
|
||||
opTime[op->getOpType()] += t;
|
||||
opCnt[op->getOpType()]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ASCENDRuntimeObj::run(const Graph &graph, bool tune,
|
||||
bool profiling) const {
|
||||
if (profiling)
|
||||
IT_TODO_HALT();
|
||||
runWithoutSync(graph, tune, profiling);
|
||||
sync();
|
||||
}
|
||||
|
||||
void ASCENDRuntimeObj::sync() const { aclrtSynchronizeStream(stream); }
|
||||
|
||||
string ASCENDRuntimeObj::toString() const { return "ASCEND Runtime"; }
|
||||
|
||||
void ASCENDRuntimeObj::initComm(const string &name, int worldSize, int rank) {
|
||||
IT_ASSERT(worldSize > 0);
|
||||
IT_ASSERT(rank >= 0);
|
||||
IT_ASSERT(rank < worldSize);
|
||||
IT_ASSERT(!comm) << "communicator is already initialized.";
|
||||
#ifdef INFINI_USE_HCCL
|
||||
comm = std::make_unique<HcclCommunicatorObj>(name, worldSize, rank);
|
||||
#else
|
||||
IT_TODO_HALT_MSG("Not compiled with CNCL.");
|
||||
#endif
|
||||
}
|
||||
} // namespace infini
|
|
@ -21,4 +21,17 @@ double timeit(const std::function<void()> &func,
|
|||
timingRounds;
|
||||
}
|
||||
|
||||
// transform vector<int> to vector<int64_t>
|
||||
std::vector<int64_t> castTo64(std::vector<int> const &v32) {
|
||||
if (v32.size() == 0) {
|
||||
std::vector<int64_t> v64(1, 1);
|
||||
return v64;
|
||||
}
|
||||
std::vector<int64_t> v64(v32.size(), 1);
|
||||
for (size_t i = 0; i < v32.size(); ++i) {
|
||||
v64[i] = int64_t(v32[i]);
|
||||
}
|
||||
return v64;
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#include "core/graph_handler.h"
|
||||
#include "core/graph_handler.h"
|
||||
#include "operators/all_gather.h"
|
||||
#include "operators/all_reduce.h"
|
||||
#include "operators/attention_kvcache.h"
|
||||
|
@ -9,6 +9,7 @@
|
|||
#include "operators/element_wise.h"
|
||||
#include "operators/expand.h"
|
||||
#include "operators/gather.h"
|
||||
#include "operators/instance_norm.h"
|
||||
#include "operators/layer_norm.h"
|
||||
#include "operators/lrn.h"
|
||||
#include "operators/matmul.h"
|
||||
|
@ -135,6 +136,21 @@ Tensor GraphHandlerObj::layerNormalization(Tensor input, Tensor scale,
|
|||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::instanceNormalization(Tensor input, Tensor output,
|
||||
Tensor scale, Tensor bias,
|
||||
float eps) {
|
||||
if (output) {
|
||||
g->addOpWithOutputs<InstanceNormObj>(
|
||||
std::move(input), output, std::move(scale), std::move(bias), eps);
|
||||
return output;
|
||||
} else {
|
||||
return g
|
||||
->addOp<InstanceNormObj>(std::move(input), output, std::move(scale),
|
||||
std::move(bias), eps)
|
||||
->getOutput();
|
||||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::rmsNorm(Tensor input, Tensor weight, Tensor output) {
|
||||
if (output) {
|
||||
g->addOpWithOutputs<RMSNormObj>(std::move(input), std::move(weight),
|
||||
|
@ -295,13 +311,13 @@ Tensor GraphHandlerObj::reshape(Tensor data, Tensor reshaped, Shape shape) {
|
|||
Tensor GraphHandlerObj::resize(Tensor input, Tensor output,
|
||||
const std::optional<vector<int>> &axes,
|
||||
Tensor sizes, Tensor scales, Tensor roi,
|
||||
vector<uint32_t> sizes_, vector<float> scales_,
|
||||
vector<int64_t> sizes_, vector<float> scales_,
|
||||
vector<float> roi_, string mode,
|
||||
string ratioPolicy, string nearestMode,
|
||||
string coordTransMode) {
|
||||
if (sizes_.size() > 0) {
|
||||
sizes->dataMalloc();
|
||||
sizes->copyin<uint32_t>(sizes_);
|
||||
sizes->copyin<int64_t>(sizes_);
|
||||
}
|
||||
if (scales_.size() > 0) {
|
||||
scales->dataMalloc();
|
||||
|
|
|
@ -30,6 +30,9 @@
|
|||
#ifdef USE_KUNLUN
|
||||
#include "kunlun/kunlun_runtime.h"
|
||||
#endif
|
||||
#ifdef USE_ASCEND
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#endif
|
||||
#ifdef USE_INTELCPU
|
||||
#include "intelcpu/mkl_runtime.h"
|
||||
#include "intelcpu/operator_timer.h"
|
||||
|
@ -65,6 +68,7 @@ void export_values(py::module &m) {
|
|||
py::enum_<ActType>(m, "ActType")
|
||||
.value("Linear", ActType::None) // `None` is Python keyword
|
||||
.VALUE(ActType, Relu)
|
||||
.VALUE(ActType, LeakyRelu)
|
||||
.VALUE(ActType, Sigmoid)
|
||||
.VALUE(ActType, Tanh)
|
||||
.export_values();
|
||||
|
@ -102,9 +106,9 @@ void export_values(py::module &m) {
|
|||
.VALUE(OpType, BatchNormalization)
|
||||
.VALUE(OpType, Softmax)
|
||||
.VALUE(OpType, Relu)
|
||||
.VALUE(OpType, LeakyRelu)
|
||||
.VALUE(OpType, Gelu)
|
||||
.VALUE(OpType, PRelu)
|
||||
.VALUE(OpType, LeakyRelu)
|
||||
.VALUE(OpType, Sigmoid)
|
||||
.VALUE(OpType, Tanh)
|
||||
.VALUE(OpType, HardSigmoid)
|
||||
|
@ -177,6 +181,12 @@ static Ref<KUNLUNRuntimeObj> kunlun_runtime() {
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef USE_ASCEND
|
||||
static Ref<ASCENDRuntimeObj> ascend_runtime() {
|
||||
return make_ref<ASCENDRuntimeObj>();
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef USE_INTELCPU
|
||||
static Ref<RuntimeObj> intelcpu_runtime() { return make_ref<MklRuntimeObj>(); }
|
||||
#endif
|
||||
|
@ -355,6 +365,10 @@ void export_functions(py::module &m) {
|
|||
#ifdef USE_KUNLUN
|
||||
.FUNCTION(kunlun_runtime)
|
||||
#endif
|
||||
|
||||
#ifdef USE_ASCEND
|
||||
.FUNCTION(ascend_runtime)
|
||||
#endif
|
||||
.FUNCTION(conv_attrs_of)
|
||||
.FUNCTION(conv_trans_attrs_of)
|
||||
.FUNCTION(matmul_attrs_of)
|
||||
|
@ -442,6 +456,14 @@ void init_graph_builder(py::module &m) {
|
|||
.def(py::init<int>(), py::arg("device") = 0)
|
||||
.def("init_comm", &KUNLUNRuntimeObj::initComm);
|
||||
#endif
|
||||
|
||||
#ifdef USE_ASCEND
|
||||
py::class_<ASCENDRuntimeObj, std::shared_ptr<ASCENDRuntimeObj>, RuntimeObj>(
|
||||
m, "ASCENDRuntime")
|
||||
.def(py::init<int>(), py::arg("device") = 0)
|
||||
.def("init_comm", &ASCENDRuntimeObj::initComm);
|
||||
;
|
||||
#endif
|
||||
py::class_<TensorObj, std::shared_ptr<TensorObj>>(m, "Tensor",
|
||||
py::buffer_protocol())
|
||||
.def("fuid", &TensorObj::getFuid, policy::automatic)
|
||||
|
@ -516,6 +538,8 @@ void init_graph_builder(py::module &m) {
|
|||
.def("matmul", &Handler::matmul, policy::move)
|
||||
.def("batchNormalization", &Handler::batchNormalization, policy::move)
|
||||
.def("layerNormalization", &Handler::layerNormalization, policy::move)
|
||||
.def("instanceNormalization", &Handler::instanceNormalization,
|
||||
policy::move)
|
||||
.def("RMSNorm", &Handler::rmsNorm, policy::move)
|
||||
.def("maxPool", &Handler::maxPool, policy::move)
|
||||
.def("avgPool", &Handler::avgPool, policy::move)
|
||||
|
@ -528,6 +552,7 @@ void init_graph_builder(py::module &m) {
|
|||
.def("min", &Handler::min, policy::move)
|
||||
.def("max", &Handler::max, policy::move)
|
||||
.def("relu", &Handler::relu, policy::move)
|
||||
.def("leakyRelu", &Handler::leakyRelu, policy::move)
|
||||
.def("silu", &Handler::silu, policy::move)
|
||||
.def("gelu", &Handler::gelu, policy::move)
|
||||
.def("sigmoid", &Handler::sigmoid, policy::move)
|
||||
|
@ -542,7 +567,6 @@ void init_graph_builder(py::module &m) {
|
|||
.def("identity", &Handler::identity, policy::move)
|
||||
.def("flatten", &Handler::flatten, policy::move)
|
||||
.def("pRelu", &Handler::pRelu, policy::move)
|
||||
.def("leakyRelu", &Handler::leakyRelu, policy::move)
|
||||
.def("clip", &Handler::clip, policy::move)
|
||||
.def("transpose", &Handler::transpose, policy::move)
|
||||
.def("depthToSpace", &Handler::depthToSpace, policy::move)
|
||||
|
|
|
@ -0,0 +1,50 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "operators/all_gather.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "hccl/hccl.h"
|
||||
#include "hccl/hccl_types.h"
|
||||
|
||||
namespace infini {
|
||||
class AllGatherHCCL : public ASCENDKernelWithoutConfig {
|
||||
public:
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<AllGatherObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
int world_size = op->getWorldSize();
|
||||
// Check if world size info in operator matches runtime
|
||||
IT_ASSERT(world_size == context->getCommunicator().getWorldSize());
|
||||
|
||||
void *input = op->getInputs(0)->getRawDataPtr<void *>();
|
||||
ASCENDPtr output_temp =
|
||||
context->getWorkspace(op->getInputs(0)->getBytes() * world_size);
|
||||
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
size_t bytes = op->getInputs(0)->getBytes();
|
||||
size_t count = bytes / op->getDType().getSize();
|
||||
|
||||
HcclComm comm =
|
||||
dynamic_cast<HcclCommunicatorObj &>(context->getCommunicator())
|
||||
.getHcclComm();
|
||||
|
||||
checkHCCLError(HcclAllGather(input, output_temp, uint64_t(count),
|
||||
HCCL_DATA_TYPE_FP32, comm,
|
||||
context->ASCENDHandle()));
|
||||
checkASCENDError(aclrtSynchronizeStream(context->ASCENDHandle()));
|
||||
|
||||
for (int i = 0; i < world_size; ++i) {
|
||||
Tensor output = op->getOutput(i);
|
||||
context->copyBlobInsideRuntime(
|
||||
output->getRawDataPtr<float *>(),
|
||||
static_cast<float *>(output_temp) + i * count, bytes);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::AllGather, AllGatherHCCL,
|
||||
"AllGather_HCCL_ASCEND");
|
||||
} // namespace infini
|
||||
|
||||
#endif
|
|
@ -0,0 +1,57 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "operators/all_reduce.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "hccl/hccl.h"
|
||||
#include "hccl/hccl_types.h"
|
||||
|
||||
namespace infini {
|
||||
class AllReduceHCCL : public ASCENDKernelWithoutConfig {
|
||||
public:
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<AllReduceBaseObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
void *sendBuff = op->getInputs(0)->getRawDataPtr<void *>();
|
||||
void *recvBuff = op->getOutput()->getRawDataPtr<void *>();
|
||||
|
||||
size_t count = op->getInputs(0)->size();
|
||||
|
||||
HcclComm comm =
|
||||
dynamic_cast<HcclCommunicatorObj &>(context->getCommunicator())
|
||||
.getHcclComm();
|
||||
|
||||
checkHCCLError(HcclAllReduce(sendBuff, recvBuff, count,
|
||||
HCCL_DATA_TYPE_FP32, getRedOp(), comm,
|
||||
context->ASCENDHandle()));
|
||||
checkASCENDError(aclrtSynchronizeStream(context->ASCENDHandle()));
|
||||
}
|
||||
|
||||
virtual HcclReduceOp getRedOp() const = 0;
|
||||
};
|
||||
|
||||
class AllReduceSumHCCL : public AllReduceHCCL {
|
||||
HcclReduceOp getRedOp() const override { return HCCL_REDUCE_SUM; }
|
||||
};
|
||||
class AllReduceProdHCCL : public AllReduceHCCL {
|
||||
HcclReduceOp getRedOp() const override { return HCCL_REDUCE_PROD; }
|
||||
};
|
||||
class AllReduceMinHCCL : public AllReduceHCCL {
|
||||
HcclReduceOp getRedOp() const override { return HCCL_REDUCE_MIN; }
|
||||
};
|
||||
class AllReduceMaxHCCL : public AllReduceHCCL {
|
||||
HcclReduceOp getRedOp() const override { return HCCL_REDUCE_MAX; }
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::AllReduceSum, AllReduceSumHCCL,
|
||||
"AllReduce_Sum_HCCL_ASCEND");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::AllReduceProd, AllReduceProdHCCL,
|
||||
"AllReduce_Prod_HCCL_ASCEND");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::AllReduceMin, AllReduceMinHCCL,
|
||||
"AllReduce_Min_HCCL_ASCEND");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::AllReduceMax, AllReduceMaxHCCL,
|
||||
"AllReduce_Max_HCCL_ASCEND");
|
||||
|
||||
} // namespace infini
|
||||
#endif
|
|
@ -0,0 +1,99 @@
|
|||
#include "operators/batch_norm.h"
|
||||
#include "aclnnop/level2/aclnn_batch_norm.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class BatchNormAclnn : public ASCENDKernelWithoutConfig {
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<BatchNormObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const inData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const outData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
void *const meanData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const varData = (op->getInputs(2)->getRawDataPtr<void *>());
|
||||
void *const scaleData = (op->getInputs(3)->getRawDataPtr<void *>());
|
||||
void *const biasData = (op->getInputs(4)->getRawDataPtr<void *>());
|
||||
|
||||
auto inD = op->getInputs(0)->getDims();
|
||||
auto inS = op->getInputs(0)->getStride();
|
||||
auto paraD = op->getInputs(1)->getDims();
|
||||
auto paraS = op->getInputs(1)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inD);
|
||||
std::vector<int64_t> inputStride = castTo64(inS);
|
||||
std::vector<int64_t> paraDim = castTo64(paraD);
|
||||
std::vector<int64_t> paraStride = castTo64(paraS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto inputTensor =
|
||||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
inputDim.data(), inputDim.size(), inData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), outData);
|
||||
auto meanTensor = aclCreateTensor(
|
||||
paraDim.data(), paraDim.size(), ACL_FLOAT, paraStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, paraDim.data(), paraDim.size(), meanData);
|
||||
auto varTensor = aclCreateTensor(
|
||||
paraDim.data(), paraDim.size(), ACL_FLOAT, paraStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, paraDim.data(), paraDim.size(), varData);
|
||||
auto scaleTensor =
|
||||
aclCreateTensor(paraDim.data(), paraDim.size(), ACL_FLOAT,
|
||||
paraStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
paraDim.data(), paraDim.size(), scaleData);
|
||||
auto biasTensor = aclCreateTensor(
|
||||
paraDim.data(), paraDim.size(), ACL_FLOAT, paraStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, paraDim.data(), paraDim.size(), biasData);
|
||||
auto savemeanTensor =
|
||||
aclCreateTensor(paraDim.data(), paraDim.size(), ACL_FLOAT,
|
||||
paraStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
paraDim.data(), paraDim.size(), scaleData);
|
||||
auto saveinvstdTensor = aclCreateTensor(
|
||||
paraDim.data(), paraDim.size(), ACL_FLOAT, paraStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, paraDim.data(), paraDim.size(), biasData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnBatchNormGetWorkspaceSize(
|
||||
inputTensor, scaleTensor, biasTensor, meanTensor, varTensor, false,
|
||||
op->getMomentum(), op->getEps(), outputTensor, savemeanTensor,
|
||||
saveinvstdTensor, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnBatchNorm(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputTensor);
|
||||
aclDestroyTensor(outputTensor);
|
||||
aclDestroyTensor(meanTensor);
|
||||
aclDestroyTensor(varTensor);
|
||||
aclDestroyTensor(scaleTensor);
|
||||
aclDestroyTensor(biasTensor);
|
||||
aclDestroyTensor(savemeanTensor);
|
||||
aclDestroyTensor(saveinvstdTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::BatchNormalization, BatchNormAclnn,
|
||||
"batchnorm_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,74 @@
|
|||
#include "operators/concat.h"
|
||||
#include "aclnnop/level2/aclnn_cat.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class ConcatAclnn : public ASCENDKernelWithoutConfig {
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ConcatObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
int dim = op->getDim();
|
||||
int num = op->numInputs();
|
||||
|
||||
std::vector<aclTensor *> inputsData{};
|
||||
|
||||
for (int i = 0; i < num; ++i) {
|
||||
auto inD = op->getInputs(i)->getDims();
|
||||
auto inS = op->getInputs(i)->getStride();
|
||||
std::vector<int64_t> inputDim = castTo64(inD);
|
||||
std::vector<int64_t> inputStride = castTo64(inS);
|
||||
|
||||
void *const inData = (op->getInputs(i)->getRawDataPtr<void *>());
|
||||
auto tmpTensor =
|
||||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
inputDim.data(), inputDim.size(), inData);
|
||||
|
||||
inputsData.push_back(tmpTensor);
|
||||
}
|
||||
aclTensorList *tensorList =
|
||||
aclCreateTensorList(inputsData.data(), inputsData.size());
|
||||
|
||||
void *const outData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
outputDim.data(), outputDim.size(), outData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnCatGetWorkspaceSize(
|
||||
tensorList, int64_t(dim), outputTensor, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnCat(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensorList(tensorList);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Concat, ConcatAclnn,
|
||||
"concat_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,92 @@
|
|||
#include "operators/conv.h"
|
||||
#include "aclnnop/level2/aclnn_convolution.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class ConvAclnn : public ASCENDKernelWithoutConfig {
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ConvObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
const auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
const auto [n, c, h, w, f, r, s] = op->getNCHWFRS();
|
||||
const int cpg = op->getChannelPerGroup();
|
||||
const int g = c / cpg;
|
||||
|
||||
std::vector<int64_t> pads = {ph, pw};
|
||||
std::vector<int64_t> stride = {sh, sw};
|
||||
std::vector<int64_t> dilation = {dh, dw};
|
||||
std::vector<int64_t> outputPadding = {sh - 1, sw - 1};
|
||||
|
||||
aclIntArray *convpads = aclCreateIntArray(pads.data(), pads.size());
|
||||
aclIntArray *convstride =
|
||||
aclCreateIntArray(stride.data(), stride.size());
|
||||
aclIntArray *convdilation =
|
||||
aclCreateIntArray(dilation.data(), dilation.size());
|
||||
aclIntArray *convOutputpadding =
|
||||
aclCreateIntArray(outputPadding.data(), outputPadding.size());
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto inputD = op->getInputs(0)->getDims();
|
||||
auto inputS = op->getInputs(0)->getStride();
|
||||
auto weightD = op->getInputs(1)->getDims();
|
||||
auto weightS = op->getInputs(1)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inputD);
|
||||
std::vector<int64_t> inputStride = castTo64(inputS);
|
||||
std::vector<int64_t> weightDim = castTo64(weightD);
|
||||
std::vector<int64_t> weightStride = castTo64(weightS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto inputTensor =
|
||||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
inputDim.data(), inputDim.size(), aData);
|
||||
auto weightTensor =
|
||||
aclCreateTensor(weightDim.data(), weightDim.size(), ACL_FLOAT,
|
||||
weightStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
weightDim.data(), weightDim.size(), bData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnConvolutionGetWorkspaceSize(
|
||||
inputTensor, weightTensor, nullptr, convstride, convpads,
|
||||
convdilation, false, convOutputpadding, int64_t(g), outputTensor,
|
||||
int8_t(1), &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnConvolution(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputTensor);
|
||||
aclDestroyTensor(weightTensor);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Conv, ConvAclnn, "conv_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,94 @@
|
|||
#include "aclnnop/level2/aclnn_convolution.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class ConvTransAclnn : public ASCENDKernelWithoutConfig {
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ConvTransposed2dObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
const auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
const auto [oph, opw] = op->getOutputPadding();
|
||||
const auto [n, c, h, w, f, r, s] = op->getNCHWFRS();
|
||||
const int cpg = op->getChannelPerGroup();
|
||||
const int g = c / cpg;
|
||||
|
||||
std::vector<int64_t> pads = {ph, pw};
|
||||
std::vector<int64_t> stride = {sh, sw};
|
||||
std::vector<int64_t> dilation = {dh, dw};
|
||||
std::vector<int64_t> outputPadding = {oph, opw};
|
||||
|
||||
aclIntArray *convpads = aclCreateIntArray(pads.data(), pads.size());
|
||||
aclIntArray *convstride =
|
||||
aclCreateIntArray(stride.data(), stride.size());
|
||||
aclIntArray *convdilation =
|
||||
aclCreateIntArray(dilation.data(), dilation.size());
|
||||
aclIntArray *convOutputpadding =
|
||||
aclCreateIntArray(outputPadding.data(), outputPadding.size());
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto inputD = op->getInputs(0)->getDims();
|
||||
auto inputS = op->getInputs(0)->getStride();
|
||||
auto weightD = op->getInputs(1)->getDims();
|
||||
auto weightS = op->getInputs(1)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inputD);
|
||||
std::vector<int64_t> inputStride = castTo64(inputS);
|
||||
std::vector<int64_t> weightDim = castTo64(weightD);
|
||||
std::vector<int64_t> weightStride = castTo64(weightS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto inputTensor =
|
||||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
inputDim.data(), inputDim.size(), aData);
|
||||
auto weightTensor =
|
||||
aclCreateTensor(weightDim.data(), weightDim.size(), ACL_FLOAT,
|
||||
weightStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
weightDim.data(), weightDim.size(), bData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnConvolutionGetWorkspaceSize(
|
||||
inputTensor, weightTensor, nullptr, convstride, convpads,
|
||||
convdilation, true, convOutputpadding, int64_t(g), outputTensor,
|
||||
int8_t(1), &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnConvolution(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputTensor);
|
||||
aclDestroyTensor(weightTensor);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::ConvTranspose, ConvTransAclnn,
|
||||
"ConvTrans_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,219 @@
|
|||
#include "operators/element_wise.h"
|
||||
#include "aclnnop/aclnn_maximum.h"
|
||||
#include "aclnnop/level2/aclnn_add.h"
|
||||
#include "aclnnop/level2/aclnn_div.h"
|
||||
#include "aclnnop/level2/aclnn_mul.h"
|
||||
#include "aclnnop/level2/aclnn_pow_tensor_tensor.h"
|
||||
#include "aclnnop/level2/aclnn_sub.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
#define DEFINE_ELEMENT_WISE_Aclnn(prefix) \
|
||||
class prefix##Aclnn : public ASCENDKernelWithoutConfig { \
|
||||
void compute(const Operator &_op, \
|
||||
const RuntimeObj *_context) const override { \
|
||||
auto op = as<ElementWiseObj>(_op); \
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context); \
|
||||
IT_ASSERT(op->getDType() == DataType::Float32); \
|
||||
\
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>()); \
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>()); \
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>()); \
|
||||
\
|
||||
auto a = op->getInputs(0)->getDims(); \
|
||||
auto aS = op->getInputs(0)->getStride(); \
|
||||
auto b = op->getInputs(1)->getDims(); \
|
||||
auto bS = op->getInputs(1)->getStride(); \
|
||||
auto c = op->getOutput()->getDims(); \
|
||||
auto cS = op->getOutput()->getStride(); \
|
||||
\
|
||||
std::vector<int64_t> aDim = castTo64(a); \
|
||||
std::vector<int64_t> aStride = castTo64(aS); \
|
||||
std::vector<int64_t> bDim = castTo64(b); \
|
||||
std::vector<int64_t> bStride = castTo64(bS); \
|
||||
std::vector<int64_t> cDim = castTo64(c); \
|
||||
std::vector<int64_t> cStride = castTo64(cS); \
|
||||
\
|
||||
auto inputA = aclCreateTensor( \
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0, \
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData); \
|
||||
auto inputB = aclCreateTensor( \
|
||||
bDim.data(), bDim.size(), ACL_FLOAT, bStride.data(), 0, \
|
||||
aclFormat::ACL_FORMAT_ND, bDim.data(), bDim.size(), bData); \
|
||||
auto output = aclCreateTensor( \
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0, \
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData); \
|
||||
\
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor *executor; \
|
||||
\
|
||||
auto ret = aclnn##prefix##GetWorkspaceSize( \
|
||||
inputA, inputB, output, &workspaceSize, &executor); \
|
||||
checkASCENDError(ret); \
|
||||
void *workspaceAddr = nullptr; \
|
||||
if (workspaceSize > 0) { \
|
||||
workspaceAddr = context->getWorkspace(workspaceSize); \
|
||||
} \
|
||||
\
|
||||
ret = aclnn##prefix(workspaceAddr, workspaceSize, executor, \
|
||||
context->ASCENDHandle()); \
|
||||
checkASCENDError(ret); \
|
||||
\
|
||||
aclDestroyTensor(inputA); \
|
||||
aclDestroyTensor(inputB); \
|
||||
aclDestroyTensor(output); \
|
||||
\
|
||||
return; \
|
||||
} \
|
||||
};
|
||||
|
||||
class AddAclnn : public ASCENDKernelWithoutConfig {
|
||||
virtual tuple<float, float, float> getAlphBeta() const {
|
||||
return {1.f, 1.f, 0.f};
|
||||
}
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto b = op->getInputs(1)->getDims();
|
||||
auto bS = op->getInputs(1)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> bDim = castTo64(b);
|
||||
std::vector<int64_t> bStride = castTo64(bS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto inputB = aclCreateTensor(
|
||||
bDim.data(), bDim.size(), ACL_FLOAT, bStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, bDim.data(), bDim.size(), bData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
auto [aAlpha, bAlpha, beta] = getAlphBeta();
|
||||
auto alpha = aclCreateScalar(&bAlpha, ACL_FLOAT);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnAddGetWorkspaceSize(inputA, inputB, alpha, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnAdd(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyTensor(inputB);
|
||||
aclDestroyScalar(alpha);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
class SubAclnn : public ASCENDKernelWithoutConfig {
|
||||
virtual tuple<float, float, float> getAlphBeta() const {
|
||||
return {1.f, 1.f, 0.f};
|
||||
}
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto b = op->getInputs(1)->getDims();
|
||||
auto bS = op->getInputs(1)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> bDim = castTo64(b);
|
||||
std::vector<int64_t> bStride = castTo64(bS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto inputB = aclCreateTensor(
|
||||
bDim.data(), bDim.size(), ACL_FLOAT, bStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, bDim.data(), bDim.size(), bData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
auto [aAlpha, bAlpha, beta] = getAlphBeta();
|
||||
auto alpha = aclCreateScalar(&bAlpha, ACL_FLOAT);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnSubGetWorkspaceSize(inputA, inputB, alpha, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnSub(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyTensor(inputB);
|
||||
aclDestroyScalar(alpha);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
DEFINE_ELEMENT_WISE_Aclnn(PowTensorTensor);
|
||||
DEFINE_ELEMENT_WISE_Aclnn(Div);
|
||||
DEFINE_ELEMENT_WISE_Aclnn(Mul);
|
||||
DEFINE_ELEMENT_WISE_Aclnn(Maximum);
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Pow, PowTensorTensorAclnn,
|
||||
"pow_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Div, DivAclnn, "div_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Mul, MulAclnn, "mul_ASCEND_float");
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Add, AddAclnn, "add_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Sub, SubAclnn, "sub_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Max, MaximumAclnn, "max_ASCEND_float");
|
||||
// REGISTER_KERNEL(Device::ASCEND, OpType::Abs, AbsAclnn, "abs_ASCEND_float");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,78 @@
|
|||
#include "operators/gather.h"
|
||||
#include "aclnnop/level2/aclnn_gather_v2.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class GatherAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<GatherObj>(_op);
|
||||
IT_ASSERT(op->getInputs(1)->getDType() == DataType::Int32 ||
|
||||
op->getInputs(1)->getDType() == DataType::Int64);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
int64_t axis = int64_t(op->getAxis());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto b = op->getInputs(1)->getDims();
|
||||
auto bS = op->getInputs(1)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
if (b.size() == 0) {
|
||||
c.insert(c.begin() + axis, 1);
|
||||
cS.insert(cS.begin() + axis, axis > 0 ? cS[axis - 1] : cS[0]);
|
||||
}
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> bDim = castTo64(b);
|
||||
std::vector<int64_t> bStride = castTo64(bS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
|
||||
auto inputB = aclCreateTensor(
|
||||
bDim.data(), bDim.size(), ACL_INT64, bStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, bDim.data(), bDim.size(), bData);
|
||||
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnGatherV2GetWorkspaceSize(inputA, axis, inputB, output,
|
||||
&workspaceSize, &executor);
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
checkASCENDError(ret);
|
||||
|
||||
ret = aclnnGatherV2(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyTensor(inputB);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Gather, GatherAclnn,
|
||||
"gather_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,104 @@
|
|||
#include "operators/instance_norm.h"
|
||||
#include "aclnnop/level2/aclnn_layer_norm.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "operators/gather.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class InstanceNormAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<InstanceNormObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const weightData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto inputD = op->getInputs(0)->getDims();
|
||||
auto inputS = op->getInputs(0)->getStride();
|
||||
auto weightD = op->getInputs(1)->getDims();
|
||||
auto weightS = op->getInputs(1)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
double eps = static_cast<double>(op->getEps());
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inputD);
|
||||
std::vector<int64_t> inputStride = castTo64(inputS);
|
||||
std::vector<int64_t> weightDim = castTo64(weightD);
|
||||
std::vector<int64_t> weightStride = castTo64(weightS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto axis = 3;
|
||||
|
||||
auto rank = static_cast<int>(inputDim.size());
|
||||
std::vector<int64_t> normalizedShape(rank - axis, 0);
|
||||
for (auto i = rank; i > axis; --i) {
|
||||
normalizedShape[i - 1 - axis] = inputDim[i - 1];
|
||||
}
|
||||
|
||||
auto inputTensor =
|
||||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
inputDim.data(), inputDim.size(), inputData);
|
||||
auto weightTensor =
|
||||
aclCreateTensor(weightDim.data(), weightDim.size(), ACL_FLOAT,
|
||||
weightStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
weightDim.data(), weightDim.size(), weightData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), outputData);
|
||||
|
||||
auto *normArray =
|
||||
aclCreateIntArray(normalizedShape.data(), normalizedShape.size());
|
||||
|
||||
aclTensor *biasTensor = NULL;
|
||||
if (op->numInputs() == 3) {
|
||||
void *const biasData = (op->getInputs(2)->getRawDataPtr<void *>());
|
||||
|
||||
auto biasD = op->getInputs(2)->getDims();
|
||||
auto biasS = op->getInputs(2)->getStride();
|
||||
std::vector<int64_t> biasDim = castTo64(biasD);
|
||||
std::vector<int64_t> biasStride = castTo64(biasS);
|
||||
|
||||
biasTensor = aclCreateTensor(
|
||||
biasDim.data(), biasDim.size(), ACL_FLOAT, biasStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_NCHW, biasDim.data(), biasDim.size(),
|
||||
biasData);
|
||||
}
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnLayerNormGetWorkspaceSize(
|
||||
inputTensor, normArray, weightTensor, biasTensor, eps, outputTensor,
|
||||
NULL, NULL, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnLayerNorm(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputTensor);
|
||||
aclDestroyTensor(weightTensor);
|
||||
aclDestroyIntArray(normArray);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::InstanceNormalization,
|
||||
InstanceNormAclnn, "InstanceNorm_ASCEND");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,103 @@
|
|||
#include "operators/layer_norm.h"
|
||||
#include "aclnnop/level2/aclnn_layer_norm.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "operators/gather.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class LayerNormAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<LayerNormObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const weightData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto inputD = op->getInputs(0)->getDims();
|
||||
auto inputS = op->getInputs(0)->getStride();
|
||||
auto weightD = op->getInputs(1)->getDims();
|
||||
auto weightS = op->getInputs(1)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
double eps = static_cast<double>(op->getEps());
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inputD);
|
||||
std::vector<int64_t> inputStride = castTo64(inputS);
|
||||
std::vector<int64_t> weightDim = castTo64(weightD);
|
||||
std::vector<int64_t> weightStride = castTo64(weightS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto axis = op->getAxis();
|
||||
auto rank = static_cast<int>(inputDim.size());
|
||||
std::vector<int64_t> normalizedShape(rank - axis, 0);
|
||||
for (auto i = rank; i > axis; --i) {
|
||||
normalizedShape[i - 1 - axis] = inputDim[i - 1];
|
||||
}
|
||||
|
||||
auto inputTensor =
|
||||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
inputDim.data(), inputDim.size(), inputData);
|
||||
auto weightTensor =
|
||||
aclCreateTensor(weightDim.data(), weightDim.size(), ACL_FLOAT,
|
||||
weightStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
weightDim.data(), weightDim.size(), weightData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), outputData);
|
||||
|
||||
auto *normArray =
|
||||
aclCreateIntArray(normalizedShape.data(), normalizedShape.size());
|
||||
|
||||
aclTensor *biasTensor = NULL;
|
||||
if (op->numInputs() == 3) {
|
||||
void *const biasData = (op->getInputs(2)->getRawDataPtr<void *>());
|
||||
|
||||
auto biasD = op->getInputs(2)->getDims();
|
||||
auto biasS = op->getInputs(2)->getStride();
|
||||
std::vector<int64_t> biasDim = castTo64(biasD);
|
||||
std::vector<int64_t> biasStride = castTo64(biasS);
|
||||
|
||||
biasTensor = aclCreateTensor(
|
||||
biasDim.data(), biasDim.size(), ACL_FLOAT, biasStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_NCHW, biasDim.data(), biasDim.size(),
|
||||
biasData);
|
||||
}
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnLayerNormGetWorkspaceSize(
|
||||
inputTensor, normArray, weightTensor, biasTensor, eps, outputTensor,
|
||||
NULL, NULL, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnLayerNorm(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputTensor);
|
||||
aclDestroyTensor(weightTensor);
|
||||
aclDestroyIntArray(normArray);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::LayerNormalization, LayerNormAclnn,
|
||||
"LayerNorm_ASCEND");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,118 @@
|
|||
#include "operators/matmul.h"
|
||||
#include "aclnnop/level2/aclnn_gemm.h"
|
||||
#include "aclnnop/level2/aclnn_matmul.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class MatmulAclnn : public ASCENDKernelWithoutConfig {
|
||||
// unsupport trans for "gemm" whithou biasInput
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<MatmulObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
auto input_num = op->numInputs();
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
void *biasData = NULL;
|
||||
if (input_num > 2) {
|
||||
biasData = (op->getInputs(2)->getRawDataPtr<void *>());
|
||||
}
|
||||
|
||||
auto selfD = op->getInputs(0)->getDims();
|
||||
auto selfS = op->getInputs(0)->getStride();
|
||||
auto matD = op->getInputs(1)->getDims();
|
||||
auto matS = op->getInputs(1)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
std::vector<int> biasD;
|
||||
std::vector<int> biasS;
|
||||
if (input_num > 2) {
|
||||
biasD = op->getInputs(2)->getDims();
|
||||
biasS = op->getInputs(2)->getStride();
|
||||
}
|
||||
|
||||
std::vector<int64_t> selfDim = castTo64(selfD);
|
||||
std::vector<int64_t> selfStride = castTo64(selfS);
|
||||
std::vector<int64_t> matDim = castTo64(matD);
|
||||
std::vector<int64_t> matStride = castTo64(matS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
std::vector<int64_t> biasDim;
|
||||
std::vector<int64_t> biasStride;
|
||||
if (input_num > 2) {
|
||||
biasDim = castTo64(biasD);
|
||||
biasStride = castTo64(biasS);
|
||||
}
|
||||
|
||||
auto selfTensor = aclCreateTensor(
|
||||
selfDim.data(), selfDim.size(), ACL_FLOAT, selfStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, selfDim.data(), selfDim.size(), aData);
|
||||
auto matTensor = aclCreateTensor(
|
||||
matDim.data(), matDim.size(), ACL_FLOAT, matStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, matDim.data(), matDim.size(), bData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
outputDim.data(), outputDim.size(), cData);
|
||||
aclTensor *biasTensor = NULL;
|
||||
if (input_num > 2) {
|
||||
biasTensor =
|
||||
aclCreateTensor(biasDim.data(), biasDim.size(), ACL_FLOAT,
|
||||
biasStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
biasDim.data(), biasDim.size(), biasData);
|
||||
}
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
if (input_num > 2) {
|
||||
float alpha = 1.0;
|
||||
float beta = 1.0;
|
||||
int32_t transA = op->getTransA();
|
||||
int32_t transB = op->getTransB();
|
||||
|
||||
auto ret = aclnnGemmGetWorkspaceSize(
|
||||
selfTensor, matTensor, biasTensor, alpha, beta, int64_t(transA),
|
||||
int64_t(transB), outputTensor, 1, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnGemm(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
} else {
|
||||
auto ret =
|
||||
aclnnMatmulGetWorkspaceSize(selfTensor, matTensor, outputTensor,
|
||||
1, &workspaceSize, &executor);
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
checkASCENDError(ret);
|
||||
|
||||
ret = aclnnMatmul(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
}
|
||||
|
||||
// aclDestroyTensor(selfTensor);
|
||||
// aclDestroyTensor(matTensor);
|
||||
// aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::MatMul, MatmulAclnn,
|
||||
"matmul_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,83 @@
|
|||
#include "aclnnop/aclnn_constant_pad_nd.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "operators/pad.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class PadAclnn : public ASCENDKernelWithoutConfig {
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<PadObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto inputD = op->getInputs(0)->getDims();
|
||||
auto inputS = op->getInputs(0)->getStride();
|
||||
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inputD);
|
||||
std::vector<int64_t> inputStride = castTo64(inputS);
|
||||
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
auto inputTensor = aclCreateTensor(
|
||||
inputDim.data(), inputDim.size(), ACL_FLOAT, inputStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, inputDim.data(), inputDim.size(), aData);
|
||||
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
outputDim.data(), outputDim.size(), cData);
|
||||
|
||||
std::vector<int> intPads = op->getPads();
|
||||
|
||||
std::size_t length = intPads.size();
|
||||
std::vector<int64_t> pads(length);
|
||||
std::size_t halfLen = length / 2;
|
||||
for (std::size_t i = 0; i < halfLen; ++i) {
|
||||
pads[2 * i] = intPads[halfLen - i - 1];
|
||||
pads[2 * i + 1] = intPads[2 * halfLen - i - 1];
|
||||
}
|
||||
|
||||
std::cout << "pads = " << vecToString(pads) << std::endl;
|
||||
|
||||
aclIntArray *padding = aclCreateIntArray(pads.data(), length);
|
||||
float valueValue = 0.0f;
|
||||
auto value = aclCreateScalar(&valueValue, ACL_FLOAT);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnConstantPadNdGetWorkspaceSize(
|
||||
inputTensor, padding, value, outputTensor, &workspaceSize,
|
||||
&executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnConstantPadNd(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputTensor);
|
||||
aclDestroyIntArray(padding);
|
||||
aclDestroyScalar(value);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Pad, PadAclnn, "pad_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,154 @@
|
|||
#include "operators/pooling.h"
|
||||
#include "aclnnop/level2/aclnn_avgpool2d.h"
|
||||
#include "aclnnop/level2/aclnn_max_pool.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class AvgPooling : public ASCENDKernelWithoutConfig {
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<PoolingObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto [n, c, h, w, kh, kw] = op->getNCHWRS();
|
||||
auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
|
||||
std::vector<int64_t> ksize = {kh, kw};
|
||||
std::vector<int64_t> stride = {sh, sw};
|
||||
std::vector<int64_t> pad = {ph, pw};
|
||||
|
||||
int64_t divisorOverride = 0;
|
||||
|
||||
auto selfD = op->getInputs(0)->getDims();
|
||||
auto selfS = op->getInputs(0)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> selfDim = castTo64(selfD);
|
||||
std::vector<int64_t> selfStride = castTo64(selfS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
aclIntArray *kernelSize = aclCreateIntArray(ksize.data(), ksize.size());
|
||||
aclIntArray *strides = aclCreateIntArray(stride.data(), stride.size());
|
||||
aclIntArray *paddings = aclCreateIntArray(pad.data(), pad.size());
|
||||
|
||||
auto selfTensor = aclCreateTensor(
|
||||
selfDim.data(), selfDim.size(), ACL_FLOAT, selfStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_NCHW, selfDim.data(), selfDim.size(), aData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnAvgPool2dGetWorkspaceSize(
|
||||
selfTensor, kernelSize, strides, paddings, false, true,
|
||||
divisorOverride, int8_t(0), outputTensor, &workspaceSize,
|
||||
&executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnAvgPool2d(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(selfTensor);
|
||||
aclDestroyIntArray(kernelSize);
|
||||
aclDestroyIntArray(strides);
|
||||
aclDestroyIntArray(paddings);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
class MaxPooling : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<PoolingObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto [n, c, h, w, kh, kw] = op->getNCHWRS();
|
||||
auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
int64_t ceilMode = int64_t(op->getCeilMode());
|
||||
|
||||
std::vector<int64_t> ksize = {kh, kw};
|
||||
std::vector<int64_t> stride = {sh, sw};
|
||||
std::vector<int64_t> pad = {ph, pw};
|
||||
std::vector<int64_t> dilation = {dh, dw};
|
||||
|
||||
auto selfD = op->getInputs(0)->getDims();
|
||||
auto selfS = op->getInputs(0)->getStride();
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> selfDim = castTo64(selfD);
|
||||
std::vector<int64_t> selfStride = castTo64(selfS);
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
aclIntArray *kernelSize = aclCreateIntArray(ksize.data(), ksize.size());
|
||||
aclIntArray *strides = aclCreateIntArray(stride.data(), stride.size());
|
||||
aclIntArray *paddings = aclCreateIntArray(pad.data(), pad.size());
|
||||
aclIntArray *dilations =
|
||||
aclCreateIntArray(dilation.data(), dilation.size());
|
||||
|
||||
auto selfTensor = aclCreateTensor(
|
||||
selfDim.data(), selfDim.size(), ACL_FLOAT, selfStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_NCHW, selfDim.data(), selfDim.size(), aData);
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
outputDim.data(), outputDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
auto ret = aclnnMaxPoolGetWorkspaceSize(
|
||||
selfTensor, kernelSize, strides, 0, paddings, dilations, ceilMode,
|
||||
outputTensor, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnMaxPool(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(selfTensor);
|
||||
aclDestroyIntArray(kernelSize);
|
||||
aclDestroyIntArray(strides);
|
||||
aclDestroyIntArray(paddings);
|
||||
aclDestroyIntArray(dilations);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::MaxPool, MaxPooling,
|
||||
"maxpooling_ASCEND_float");
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::AveragePool, AvgPooling,
|
||||
"avgpooling_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,50 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "operators/recv.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "hccl/hccl.h"
|
||||
#include "hccl/hccl_types.h"
|
||||
|
||||
namespace infini {
|
||||
class RecvHCCL : public ASCENDKernelWithoutConfig {
|
||||
public:
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<RecvObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *output = op->getOutput(0)->getRawDataPtr<void *>();
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
const auto shape = op->getShape();
|
||||
int nDims = shape.size();
|
||||
int outputCount = 1;
|
||||
for (int i = 0; i < nDims; i++) {
|
||||
outputCount *= shape[i];
|
||||
}
|
||||
|
||||
HcclComm comm =
|
||||
dynamic_cast<HcclCommunicatorObj &>(context->getCommunicator())
|
||||
.getHcclComm();
|
||||
|
||||
uint32_t rank;
|
||||
|
||||
checkHCCLError(HcclGetRankId(comm, &rank));
|
||||
|
||||
int source = op->getSourceRank();
|
||||
int destination = op->getDestinationRank();
|
||||
|
||||
if (int(rank) == destination) {
|
||||
checkHCCLError(HcclRecv(output, uint64_t(outputCount),
|
||||
HCCL_DATA_TYPE_FP32, uint32_t(source), comm,
|
||||
context->ASCENDHandle()));
|
||||
}
|
||||
checkASCENDError(aclrtSynchronizeStream(context->ASCENDHandle()));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Recv, RecvHCCL, "Recv_HCCL_ASCEND");
|
||||
} // namespace infini
|
||||
|
||||
#endif
|
|
@ -0,0 +1,131 @@
|
|||
#include "operators/reduce.h"
|
||||
#include "aclnnop/aclnn_mean.h"
|
||||
#include "aclnnop/aclnn_reduce_sum.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class MeanAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ReduceBaseObj>(_op);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto axes_set = op->getAxes();
|
||||
std::vector<int> axes;
|
||||
axes.assign(axes_set.begin(), axes_set.end());
|
||||
|
||||
bool KeepDim = op->getKeepDims();
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
std::vector<int64_t> axes_64 = castTo64(axes);
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
aclIntArray *dim = aclCreateIntArray(axes_64.data(), axes_64.size());
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnMeanV2GetWorkspaceSize(
|
||||
inputA, dim, KeepDim, true, output, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnMeanV2(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyIntArray(dim);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
class ReduceSumAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ReduceBaseObj>(_op);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto axes_set = op->getAxes();
|
||||
std::vector<int> axes;
|
||||
axes.assign(axes_set.begin(), axes_set.end());
|
||||
|
||||
bool KeepDim = op->getKeepDims();
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
std::vector<int64_t> axes_64 = castTo64(axes);
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
aclIntArray *dim = aclCreateIntArray(axes_64.data(), axes_64.size());
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnReduceSumGetWorkspaceSize(
|
||||
inputA, dim, KeepDim, ACL_FLOAT, output, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnReduceSum(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyIntArray(dim);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::ReduceMean, MeanAclnn,
|
||||
"reduceMean_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::ReduceSum, ReduceSumAclnn,
|
||||
"reduceSum_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,62 @@
|
|||
#include "operators/reshape.h"
|
||||
#include "aclnnop/level2/aclnn_copy.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class CopyAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto aD = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(aD);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
|
||||
auto srcTensor = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto outputTensor = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnInplaceCopyGetWorkspaceSize(outputTensor, srcTensor,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnInplaceCopy(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(srcTensor);
|
||||
aclDestroyTensor(outputTensor);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Reshape, CopyAclnn,
|
||||
"reshape_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Unsqueeze, CopyAclnn,
|
||||
"unsqueeze_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Squeeze, CopyAclnn,
|
||||
"squeeze_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Flatten, CopyAclnn,
|
||||
"Flatten_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Identity, CopyAclnn,
|
||||
"Identity_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,82 @@
|
|||
#include "operators/resize.h"
|
||||
#include "aclnnop/level2/aclnn_resize.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class ResizeAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ResizeObj>(_op);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
int nDims = op->getInputs(0)->getRank();
|
||||
if (nDims > 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
vector<float> scalesData = op->getScales();
|
||||
|
||||
const char *mode;
|
||||
switch (op->getMode()) {
|
||||
case ResizeObj::ECoeffMode::nearest:
|
||||
mode = "nearest";
|
||||
break;
|
||||
case ResizeObj::ECoeffMode::linear:
|
||||
mode = "bilinear";
|
||||
break;
|
||||
default:
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
auto self = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_NCHW, aDim.data(), aDim.size(), aData);
|
||||
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_NCHW, cDim.data(), cDim.size(), cData);
|
||||
|
||||
aclFloatArray *scales = nullptr;
|
||||
scales = aclCreateFloatArray(scalesData.data(), scalesData.size());
|
||||
assert(scales != nullptr);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnResizeGetWorkspaceSize(self, scales, mode, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnResize(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(self);
|
||||
aclDestroyFloatArray(scales);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Resize, ResizeAclnn, "Resize_ASCEND");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,45 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "operators/send.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "hccl/hccl.h"
|
||||
#include "hccl/hccl_types.h"
|
||||
|
||||
namespace infini {
|
||||
class SendHCCL : public ASCENDKernelWithoutConfig {
|
||||
public:
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<SendObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
void *input = op->getInputs(0)->getRawDataPtr<void *>();
|
||||
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
int inputCount =
|
||||
op->getInputs(0)->getBytes() / op->getDType().getSize();
|
||||
|
||||
HcclComm comm =
|
||||
dynamic_cast<HcclCommunicatorObj &>(context->getCommunicator())
|
||||
.getHcclComm();
|
||||
|
||||
uint32_t rank;
|
||||
|
||||
checkHCCLError(HcclGetRankId(comm, &rank));
|
||||
|
||||
int source = op->getSourceRank();
|
||||
int destination = op->getDestinationRank();
|
||||
|
||||
if (int(rank) == source) {
|
||||
checkHCCLError(HcclSend(input, uint64_t(inputCount),
|
||||
HCCL_DATA_TYPE_FP32, uint32_t(destination),
|
||||
comm, context->ASCENDHandle()));
|
||||
}
|
||||
checkASCENDError(aclrtSynchronizeStream(context->ASCENDHandle()));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Send, SendHCCL, "Send_HCCL_ASCEND");
|
||||
} // namespace infini
|
||||
|
||||
#endif
|
|
@ -0,0 +1,84 @@
|
|||
#include "operators/slice.h"
|
||||
#include "aclnnop/aclnn_slice_v2.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class SliceAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<SliceObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto starts_32 = op->getStarts();
|
||||
auto ends_32 = op->getEnds();
|
||||
auto steps_32 = op->getSteps();
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
std::vector<int64_t> starts_64 = castTo64(starts_32);
|
||||
std::vector<int64_t> ends_64 = castTo64(ends_32);
|
||||
std::vector<int64_t> steps_64 = castTo64(steps_32);
|
||||
|
||||
vector<int64_t> axes_64 = vector<int64_t>(starts_32.size(), 0);
|
||||
for (int i = 0; i < int(starts_32.size()); i++) {
|
||||
axes_64[i] = i;
|
||||
}
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
aclIntArray *starts =
|
||||
aclCreateIntArray(starts_64.data(), starts_64.size());
|
||||
aclIntArray *ends = aclCreateIntArray(ends_64.data(), ends_64.size());
|
||||
aclIntArray *steps =
|
||||
aclCreateIntArray(steps_64.data(), steps_64.size());
|
||||
aclIntArray *axes = aclCreateIntArray(axes_64.data(), axes_64.size());
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret =
|
||||
aclnnSliceV2GetWorkspaceSize(inputA, starts, ends, axes, steps,
|
||||
output, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnSliceV2(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyIntArray(starts);
|
||||
aclDestroyIntArray(ends);
|
||||
aclDestroyIntArray(axes);
|
||||
aclDestroyIntArray(steps);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Slice, SliceAclnn,
|
||||
"slice_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,61 @@
|
|||
#include "operators/softmax.h"
|
||||
#include "aclnnop/level2/aclnn_softmax.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class SoftmaxAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<SoftmaxObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
int64_t axis = int64_t(op->getAxis());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
auto input = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnSoftmaxGetWorkspaceSize(input, axis, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnSoftmax(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(input);
|
||||
aclDestroyTensor(output);
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Softmax, SoftmaxAclnn,
|
||||
"softmax_ASCEND_float");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,75 @@
|
|||
#include "operators/split.h"
|
||||
#include "aclnnop/aclnn_split_tensor.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class SplitAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<SplitObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
|
||||
int64_t dim = op->getDim();
|
||||
int num = op->numOutputs();
|
||||
int dimSize = a.at(op->getDim());
|
||||
uint64_t splitSections = dimSize / num;
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
|
||||
std::vector<aclTensor *> outputsData{};
|
||||
for (int i = 0; i < num; ++i) {
|
||||
auto c = op->getOutput(i)->getDims();
|
||||
auto cS = op->getOutput(i)->getStride();
|
||||
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
void *const cData = (op->getOutput(i)->getRawDataPtr<void *>());
|
||||
|
||||
aclTensor *tmpTensor = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
outputsData.push_back(tmpTensor);
|
||||
}
|
||||
aclTensorList *tensorList =
|
||||
aclCreateTensorList(outputsData.data(), outputsData.size());
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnSplitTensorGetWorkspaceSize(
|
||||
inputA, splitSections, dim, tensorList, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnSplitTensor(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyTensorList(tensorList);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Split, SplitAclnn,
|
||||
"split_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,136 @@
|
|||
#include "operators/transpose.h"
|
||||
#include "aclnnop/level2/aclnn_permute.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class PermuteAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<TransposeObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
auto c = op->getOutput()->getDims();
|
||||
auto cS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(a);
|
||||
std::vector<int64_t> aStride = castTo64(aS);
|
||||
std::vector<int64_t> cDim = castTo64(c);
|
||||
std::vector<int64_t> cStride = castTo64(cS);
|
||||
|
||||
auto _permute = op->getPermute();
|
||||
std::vector<int64_t> permute = castTo64(_permute);
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
aclIntArray *dims = aclCreateIntArray(permute.data(), permute.size());
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnPermuteGetWorkspaceSize(inputA, dims, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnPermute(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyIntArray(dims);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
class DepthToSpaceAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<DepthToSpaceObj>(_op);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto getStride = [](std::vector<int> Dim) {
|
||||
Shape stride(Dim.size());
|
||||
ShapeElem p = 1;
|
||||
for (auto i = Dim.size(); i > 0; --i) {
|
||||
stride[i - 1] = p;
|
||||
p = p * Dim[i - 1];
|
||||
}
|
||||
return stride;
|
||||
};
|
||||
auto reshapeDim = op->getReshapeDim();
|
||||
auto reshapeStride = getStride(reshapeDim);
|
||||
auto transposeDim = op->getTransposeDim();
|
||||
auto transposeStride = getStride(transposeDim);
|
||||
|
||||
std::vector<int64_t> aDim = castTo64(reshapeDim);
|
||||
std::vector<int64_t> aStride = castTo64(reshapeStride);
|
||||
std::vector<int64_t> cDim = castTo64(transposeDim);
|
||||
std::vector<int64_t> cStride = castTo64(transposeStride);
|
||||
|
||||
auto mode = op->getMode();
|
||||
|
||||
std::vector<int64_t> permute;
|
||||
if (mode == 0) {
|
||||
permute = {0, 3, 4, 1, 5, 2};
|
||||
} else {
|
||||
permute = {0, 1, 4, 2, 5, 3};
|
||||
}
|
||||
|
||||
auto inputA = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
aclIntArray *dims = aclCreateIntArray(permute.data(), permute.size());
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret = aclnnPermuteGetWorkspaceSize(inputA, dims, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnPermute(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(inputA);
|
||||
aclDestroyIntArray(dims);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Transpose, PermuteAclnn,
|
||||
"transpose_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::DepthToSpace, DepthToSpaceAclnn,
|
||||
"DepthToSpace_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,258 @@
|
|||
#include "operators/unary.h"
|
||||
#include "aclnnop/aclnn_erf.h"
|
||||
#include "aclnnop/level2/aclnn_abs.h"
|
||||
#include "aclnnop/level2/aclnn_acos.h"
|
||||
#include "aclnnop/level2/aclnn_atan.h"
|
||||
#include "aclnnop/level2/aclnn_ceil.h"
|
||||
#include "aclnnop/level2/aclnn_cos.h"
|
||||
#include "aclnnop/level2/aclnn_exp.h"
|
||||
#include "aclnnop/level2/aclnn_floor.h"
|
||||
#include "aclnnop/level2/aclnn_gelu.h"
|
||||
#include "aclnnop/level2/aclnn_hardswish.h"
|
||||
#include "aclnnop/level2/aclnn_leaky_relu.h"
|
||||
#include "aclnnop/level2/aclnn_neg.h"
|
||||
#include "aclnnop/level2/aclnn_reciprocal.h"
|
||||
#include "aclnnop/level2/aclnn_relu.h"
|
||||
#include "aclnnop/level2/aclnn_round.h"
|
||||
#include "aclnnop/level2/aclnn_sigmoid.h"
|
||||
#include "aclnnop/level2/aclnn_sin.h"
|
||||
#include "aclnnop/level2/aclnn_sqrt.h"
|
||||
#include "aclnnop/level2/aclnn_tanh.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class ReluAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
std::vector<int64_t> aDim(a.size(), 1);
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
aDim[i] = int64_t(a[i]);
|
||||
}
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
std::vector<int64_t> aStride(aS.size(), 1);
|
||||
for (size_t i = 0; i < aS.size(); ++i) {
|
||||
aStride[i] = int64_t(aS[i]);
|
||||
}
|
||||
auto c = op->getInputs(0)->getDims();
|
||||
std::vector<int64_t> cDim(c.size(), 1);
|
||||
for (size_t i = 0; i < c.size(); ++i) {
|
||||
cDim[i] = int64_t(c[i]);
|
||||
}
|
||||
auto cS = op->getInputs(0)->getStride();
|
||||
std::vector<int64_t> cStride(cS.size(), 1);
|
||||
for (size_t i = 0; i < cS.size(); ++i) {
|
||||
cStride[i] = int64_t(cS[i]);
|
||||
}
|
||||
|
||||
auto input = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
auto ret =
|
||||
aclnnReluGetWorkspaceSize(input, output, &workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnRelu(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(input);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
class LeakyReluAclnn : public ASCENDKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<LeakyReluObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
IT_ASSERT(op->getDType() == DataType::Float32);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto a = op->getInputs(0)->getDims();
|
||||
std::vector<int64_t> aDim(a.size(), 1);
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
aDim[i] = int64_t(a[i]);
|
||||
}
|
||||
auto aS = op->getInputs(0)->getStride();
|
||||
std::vector<int64_t> aStride(aS.size(), 1);
|
||||
for (size_t i = 0; i < aS.size(); ++i) {
|
||||
aStride[i] = int64_t(aS[i]);
|
||||
}
|
||||
auto c = op->getInputs(0)->getDims();
|
||||
std::vector<int64_t> cDim(c.size(), 1);
|
||||
for (size_t i = 0; i < c.size(); ++i) {
|
||||
cDim[i] = int64_t(c[i]);
|
||||
}
|
||||
auto cS = op->getInputs(0)->getStride();
|
||||
std::vector<int64_t> cStride(cS.size(), 1);
|
||||
for (size_t i = 0; i < cS.size(); ++i) {
|
||||
cStride[i] = int64_t(cS[i]);
|
||||
}
|
||||
|
||||
auto input = aclCreateTensor(
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData);
|
||||
auto output = aclCreateTensor(
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0,
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
float negativeSlopeValue = op->getAlpha();
|
||||
aclScalar *negativeSlope = nullptr;
|
||||
negativeSlope =
|
||||
aclCreateScalar(&negativeSlopeValue, aclDataType::ACL_FLOAT);
|
||||
|
||||
auto ret = aclnnLeakyReluGetWorkspaceSize(input, negativeSlope, output,
|
||||
&workspaceSize, &executor);
|
||||
checkASCENDError(ret);
|
||||
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
}
|
||||
|
||||
ret = aclnnLeakyRelu(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
checkASCENDError(ret);
|
||||
|
||||
aclDestroyTensor(input);
|
||||
aclDestroyScalar(negativeSlope);
|
||||
aclDestroyTensor(output);
|
||||
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
#define DEFINE_UNARY_Aclnn(prefix) \
|
||||
class prefix##Aclnn : public ASCENDKernelWithoutConfig { \
|
||||
void compute(const Operator &_op, \
|
||||
const RuntimeObj *_context) const override { \
|
||||
auto op = as<UnaryObj>(_op); \
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context); \
|
||||
IT_ASSERT(op->getDType() == DataType::Float32); \
|
||||
\
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>()); \
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>()); \
|
||||
\
|
||||
auto a = op->getInputs(0)->getDims(); \
|
||||
std::vector<int64_t> aDim(a.size(), 1); \
|
||||
for (size_t i = 0; i < a.size(); ++i) { \
|
||||
aDim[i] = int64_t(a[i]); \
|
||||
} \
|
||||
auto aS = op->getInputs(0)->getStride(); \
|
||||
std::vector<int64_t> aStride(aS.size(), 1); \
|
||||
for (size_t i = 0; i < aS.size(); ++i) { \
|
||||
aStride[i] = int64_t(aS[i]); \
|
||||
} \
|
||||
auto c = op->getInputs(0)->getDims(); \
|
||||
std::vector<int64_t> cDim(c.size(), 1); \
|
||||
for (size_t i = 0; i < c.size(); ++i) { \
|
||||
cDim[i] = int64_t(c[i]); \
|
||||
} \
|
||||
auto cS = op->getInputs(0)->getStride(); \
|
||||
std::vector<int64_t> cStride(cS.size(), 1); \
|
||||
for (size_t i = 0; i < cS.size(); ++i) { \
|
||||
cStride[i] = int64_t(cS[i]); \
|
||||
} \
|
||||
\
|
||||
auto input = aclCreateTensor( \
|
||||
aDim.data(), aDim.size(), ACL_FLOAT, aStride.data(), 0, \
|
||||
aclFormat::ACL_FORMAT_ND, aDim.data(), aDim.size(), aData); \
|
||||
auto output = aclCreateTensor( \
|
||||
cDim.data(), cDim.size(), ACL_FLOAT, cStride.data(), 0, \
|
||||
aclFormat::ACL_FORMAT_ND, cDim.data(), cDim.size(), cData); \
|
||||
\
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor *executor; \
|
||||
\
|
||||
auto ret = aclnn##prefix##GetWorkspaceSize( \
|
||||
input, output, &workspaceSize, &executor); \
|
||||
checkASCENDError(ret); \
|
||||
void *workspaceAddr = nullptr; \
|
||||
if (workspaceSize > 0) { \
|
||||
workspaceAddr = context->getWorkspace(workspaceSize); \
|
||||
} \
|
||||
\
|
||||
ret = aclnn##prefix(workspaceAddr, workspaceSize, executor, \
|
||||
context->ASCENDHandle()); \
|
||||
checkASCENDError(ret); \
|
||||
\
|
||||
aclDestroyTensor(input); \
|
||||
aclDestroyTensor(output); \
|
||||
\
|
||||
return; \
|
||||
} \
|
||||
};
|
||||
|
||||
DEFINE_UNARY_Aclnn(Abs);
|
||||
DEFINE_UNARY_Aclnn(Sigmoid);
|
||||
DEFINE_UNARY_Aclnn(Hardswish);
|
||||
DEFINE_UNARY_Aclnn(Gelu);
|
||||
|
||||
DEFINE_UNARY_Aclnn(Tanh);
|
||||
DEFINE_UNARY_Aclnn(Sin);
|
||||
DEFINE_UNARY_Aclnn(Cos);
|
||||
DEFINE_UNARY_Aclnn(Acos);
|
||||
DEFINE_UNARY_Aclnn(Atan);
|
||||
|
||||
DEFINE_UNARY_Aclnn(Ceil);
|
||||
DEFINE_UNARY_Aclnn(Floor);
|
||||
DEFINE_UNARY_Aclnn(Exp);
|
||||
DEFINE_UNARY_Aclnn(Neg);
|
||||
DEFINE_UNARY_Aclnn(Reciprocal);
|
||||
DEFINE_UNARY_Aclnn(Sqrt);
|
||||
DEFINE_UNARY_Aclnn(Round);
|
||||
|
||||
DEFINE_UNARY_Aclnn(Erf);
|
||||
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Relu, ReluAclnn, "relu_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::LeakyRelu, LeakyReluAclnn,
|
||||
"leakyrelu_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Abs, AbsAclnn, "abs_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Sigmoid, SigmoidAclnn,
|
||||
"sigmoid_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::HardSwish, HardswishAclnn,
|
||||
"hardswish_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Tanh, TanhAclnn, "tanh_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Gelu, GeluAclnn, "gelu_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Sin, SinAclnn, "sin_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Cos, CosAclnn, "cos_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Acos, AcosAclnn, "acos_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Atan, AtanAclnn, "atan_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Neg, NegAclnn, "neg_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Ceil, CeilAclnn, "ceil_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Floor, FloorAclnn,
|
||||
"floor_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Exp, ExpAclnn, "exp_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Reciprocal, ReciprocalAclnn,
|
||||
"reciprocal_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Sqrt, SqrtAclnn, "sqrt_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Round, RoundAclnn,
|
||||
"round_ASCEND_float");
|
||||
REGISTER_KERNEL(Device::ASCEND, OpType::Erf, ErfAclnn, "erf_ASCEND_float");
|
||||
} // namespace infini
|
|
@ -0,0 +1,48 @@
|
|||
#include "operators/instance_norm.h"
|
||||
#include "utils/operator_utils.h"
|
||||
|
||||
namespace infini {
|
||||
InstanceNormObj::InstanceNormObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
Tensor scale, Tensor bias, float eps)
|
||||
: OperatorObj(OpType::InstanceNormalization, TensorVec{input, scale, bias},
|
||||
{output}),
|
||||
eps(eps) {
|
||||
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> InstanceNormObj::inferShape(const TensorVec &inputs) {
|
||||
return {{inputs[0]->getDims()}};
|
||||
}
|
||||
|
||||
vector<DataType> InstanceNormObj::inferDataType(const TensorVec &inputs) const {
|
||||
|
||||
return {inputs[0]->getDType()};
|
||||
}
|
||||
|
||||
std::string InstanceNormObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << "InstanceNormalization[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "eps=" << eps << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "scale=" << inputs[1]->getGuid() << ",";
|
||||
os << "bias=" << inputs[2]->getGuid() << ",";
|
||||
os << "output=";
|
||||
for (auto output : outputs)
|
||||
os << output->getGuid() << ",";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> InstanceNormObj::getWorkloadVector() const {
|
||||
vector<int> ret = inputs[0]->getDims();
|
||||
ret.emplace(ret.begin(), type.underlying());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> InstanceNormObj::getOpAttrVector() const {
|
||||
return {type.underlying()};
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -33,10 +33,11 @@ void ResizeObj::init(const Tensor &input, const Tensor &sizes,
|
|||
// inputs of operator must not be nullptr, due to the check in
|
||||
// OperatorObj::OperatorObj
|
||||
if (nullptr != sizes) {
|
||||
IT_ASSERT(isResizeBySizes());
|
||||
setGivenSizes(true);
|
||||
inputs.push_back(sizes);
|
||||
InitBySizes(input, sizes, axes);
|
||||
} else if (nullptr != scales) {
|
||||
setGivenSizes(false);
|
||||
inputs.push_back(scales);
|
||||
InitByScales(input, scales, axes);
|
||||
}
|
||||
|
@ -101,8 +102,9 @@ void ResizeObj::InitBySizes(Tensor input, Tensor sizes,
|
|||
// copy sizes data to host.
|
||||
IT_ASSERT(sizes->getDataBlob() != nullptr);
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
std::shared_ptr<int> dataObj((int *)runtime->alloc(sizes->getBytes()),
|
||||
[&](int *p) { runtime->dealloc(p); });
|
||||
std::shared_ptr<int64_t> dataObj(
|
||||
(int64_t *)runtime->alloc(sizes->getBytes()),
|
||||
[&](int64_t *p) { runtime->dealloc(p); });
|
||||
auto data = dataObj.get();
|
||||
sizes->getRuntime()->copyBlobToCPU(
|
||||
(void *)data, sizes->getRawDataPtr<void *>(), sizes->getBytes());
|
||||
|
@ -193,7 +195,7 @@ vector<DataType> ResizeObj::inferDataType(const TensorVec &inputs) const {
|
|||
}
|
||||
if (isResizeBySizes()) {
|
||||
auto sizes = inputs[1];
|
||||
IT_ASSERT(sizes && sizes->getDType() == DataType::UInt32);
|
||||
IT_ASSERT(sizes && sizes->getDType() == DataType::Int64);
|
||||
} else {
|
||||
auto scales = inputs[1];
|
||||
IT_ASSERT(scales && scales->getDType() == DataType::Float32);
|
||||
|
|
|
@ -300,7 +300,8 @@ std::string LeakyReluObj::toString() const {
|
|||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
os << "output=" << outputs[0]->getGuid() << ",";
|
||||
os << "alpha=" << alphaValue << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
|
|
|
@ -104,6 +104,8 @@ std::string device_to_str(Device device) {
|
|||
return "INTELCPU";
|
||||
case Device::KUNLUN:
|
||||
return "KUNLUN";
|
||||
case Device::ASCEND:
|
||||
return "ASCEND";
|
||||
default:
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/all_gather.h"
|
||||
#include "test.h"
|
||||
#include <thread>
|
||||
|
||||
static int WORLD_SIZE = 2;
|
||||
|
||||
namespace infini {
|
||||
|
||||
void allGather(const string taskName, int deviceID, vector<float> data,
|
||||
vector<vector<float>> ans) {
|
||||
// Create Runtimes and initiate communication
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
Runtime ascnedRuntime = make_ref<ASCENDRuntimeObj>(deviceID);
|
||||
ascnedRuntime->initComm(taskName, WORLD_SIZE, deviceID);
|
||||
// Create Graph and insert allReduce operation
|
||||
Graph g = make_ref<GraphObj>(ascnedRuntime);
|
||||
auto input =
|
||||
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
|
||||
auto op = g->addOp<AllGatherObj>(input, std::nullopt, WORLD_SIZE);
|
||||
// Copy data from CPU to MLU
|
||||
g->dataMalloc();
|
||||
input->copyin(data);
|
||||
// Run operation
|
||||
ascnedRuntime->run(g);
|
||||
// Copy output from MLU to CPU
|
||||
for (int i = 0; i < WORLD_SIZE; ++i) {
|
||||
auto result = op->getOutputs()[i]->clone(cpuRuntime);
|
||||
EXPECT_TRUE(result->equalData(ans[i]));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ASCEND_AllGather, run) {
|
||||
aclInit(nullptr);
|
||||
|
||||
vector<float> data[4] = {{2., 3.}, {5., 6.}, {7., 8.}, {9., 10.}};
|
||||
vector<vector<float>> ans = {{2., 3.}, {5., 6.}, {7., 8.}, {9., 10.}};
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
threads.emplace_back(allGather, "test_all_gather", gpu, data[gpu], ans);
|
||||
}
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
#endif
|
|
@ -0,0 +1,120 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/all_reduce.h"
|
||||
#include "test.h"
|
||||
#include <thread>
|
||||
|
||||
static int WORLD_SIZE = 2;
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <typename OperatorObj>
|
||||
void allReduce(const string taskName, int deviceID, vector<float> data,
|
||||
vector<float> ans) {
|
||||
// Create Runtimes and initiate communication
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
Runtime ascendRuntime = make_ref<ASCENDRuntimeObj>(deviceID);
|
||||
ascendRuntime->initComm(taskName, WORLD_SIZE, deviceID);
|
||||
// Create Graph and insert allReduce operation
|
||||
Graph g = make_ref<GraphObj>(ascendRuntime);
|
||||
auto input =
|
||||
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
|
||||
auto op = g->addOp<OperatorObj>(input, nullptr);
|
||||
// Copy data from CPU to GPU
|
||||
g->dataMalloc();
|
||||
input->copyin(data);
|
||||
// Run operation
|
||||
ascendRuntime->run(g);
|
||||
// Copy output from GPU to CPU
|
||||
auto result = op->getOutput()->clone(cpuRuntime);
|
||||
|
||||
EXPECT_TRUE(result->equalData(ans));
|
||||
}
|
||||
|
||||
// TEST(ASCEND_AllReduce, sum) {
|
||||
// aclInit(nullptr);
|
||||
// vector<float> data[2] = {{2., 3.}, {5., 6.}};
|
||||
// vector<float> ans = {7., 9.};
|
||||
//
|
||||
// std::vector<std::thread> threads;
|
||||
// for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
// threads.emplace_back(allReduce<AllReduceSumObj>,
|
||||
// "test_allreduce_sum",
|
||||
// gpu, data[gpu], ans);
|
||||
// }
|
||||
// for (auto &thread : threads) {
|
||||
// thread.join();
|
||||
// }
|
||||
// aclFinalize();
|
||||
// }
|
||||
|
||||
// TEST(ASCEND_AllReduce, prod) {
|
||||
// aclInit(nullptr);
|
||||
// vector<float> data[2] = {{2., 3.}, {5., 6.}};
|
||||
// vector<float> ans = {10., 18.};
|
||||
//
|
||||
// std::vector<std::thread> threads;
|
||||
// for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
// threads.emplace_back(allReduce<AllReduceProdObj>,
|
||||
// "test_allreduce_prod",
|
||||
// gpu, data[gpu], ans);
|
||||
// }
|
||||
// for (auto &thread : threads) {
|
||||
// thread.join();
|
||||
// }
|
||||
// aclFinalize();
|
||||
// }
|
||||
|
||||
// TEST(ASCEND_AllReduce, min) {
|
||||
// aclInit(nullptr);
|
||||
// vector<float> data[2] = {{2., 3.}, {5., 6.}};
|
||||
// vector<float> ans = {2., 3.};
|
||||
//
|
||||
// std::vector<std::thread> threads;
|
||||
// for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
// threads.emplace_back(allReduce<AllReduceMinObj>,
|
||||
// "test_allreduce_min",
|
||||
// gpu, data[gpu], ans);
|
||||
// }
|
||||
// for (auto &thread : threads) {
|
||||
// thread.join();
|
||||
// }
|
||||
// aclFinalize();
|
||||
// }
|
||||
|
||||
TEST(ASCEND_AllReduce, max) {
|
||||
aclInit(nullptr);
|
||||
vector<float> data[2] = {{2., 3.}, {5., 6.}};
|
||||
vector<float> ans = {5., 6.};
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
threads.emplace_back(allReduce<AllReduceMaxObj>, "test_allreduce_max",
|
||||
gpu, data[gpu], ans);
|
||||
}
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
// TEST(ASCEND_AllReduce, avg) {
|
||||
// vector<float> data[2] = {{2., 3.}, {5., 6.}};
|
||||
// vector<float> ans = {3.5, 4.5};
|
||||
//
|
||||
// std::vector<std::thread> threads;
|
||||
// for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
// threads.emplace_back(allReduce<AllReduceAvgObj>,
|
||||
// "test_allreduce_avg",
|
||||
// gpu, data[gpu], ans);
|
||||
// }
|
||||
// for (auto &thread : threads) {
|
||||
// thread.join();
|
||||
// }
|
||||
// }
|
||||
|
||||
} // namespace infini
|
||||
#endif
|
|
@ -0,0 +1,58 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/batch_norm.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
TEST(ascend_BatchNorm, run) {
|
||||
aclInit(nullptr);
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build cpu graph
|
||||
Graph gCpu = make_ref<GraphObj>(cpuRuntime);
|
||||
auto iCpu = gCpu->addTensor(Shape{1, 3, 2, 2}, DataType::Float32);
|
||||
auto meanCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
|
||||
auto varCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
|
||||
auto scaleCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
|
||||
auto biasCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
|
||||
|
||||
// Build input data on CPU
|
||||
gCpu->dataMalloc();
|
||||
iCpu->setData(IncrementalGenerator());
|
||||
meanCpu->copyin(vector<float>{1, 6, 9});
|
||||
varCpu->copyin(vector<float>{4, 1, 9});
|
||||
scaleCpu->setData(OneGenerator());
|
||||
biasCpu->setData(ZeroGenerator());
|
||||
|
||||
// Build CUDA graph
|
||||
Graph g = make_ref<GraphObj>(npuRuntime);
|
||||
auto i = g->cloneTensor(iCpu);
|
||||
auto mean = g->cloneTensor(meanCpu);
|
||||
auto var = g->cloneTensor(varCpu);
|
||||
auto scale = g->cloneTensor(scaleCpu);
|
||||
auto bias = g->cloneTensor(biasCpu);
|
||||
auto op =
|
||||
g->addOp<BatchNormObj>(i, nullptr, mean, var, scale, bias, 0.9, 0);
|
||||
|
||||
// allocate CUDA memory
|
||||
g->dataMalloc();
|
||||
|
||||
// Execute on CUDA
|
||||
npuRuntime->run(g);
|
||||
|
||||
// clone CUDA output to CPU
|
||||
auto o = op->getOutput();
|
||||
auto ocpu = o->clone(cpuRuntime);
|
||||
|
||||
// check results on CPU
|
||||
EXPECT_TRUE(ocpu->equalData(vector<float>{
|
||||
-0.5, 0, 0.5, 1, -2, -1, 0, 1, -0.333333, 0, 0.333333, 0.666667}));
|
||||
|
||||
aclFinalize();
|
||||
}
|
||||
} // namespace infini
|
|
@ -0,0 +1,65 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/concat.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testConcat(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu1->dataMalloc();
|
||||
inputCpu1->setData(generator);
|
||||
Tensor inputCpu2 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu2->dataMalloc();
|
||||
inputCpu2->setData(generator);
|
||||
Tensor inputCpu3 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu3->dataMalloc();
|
||||
inputCpu3->setData(generator);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu1 = npuGraph->cloneTensor(inputCpu1);
|
||||
auto inputNpu2 = npuGraph->cloneTensor(inputCpu2);
|
||||
auto inputNpu3 = npuGraph->cloneTensor(inputCpu3);
|
||||
auto npuOp = npuGraph->addOp<T>(TensorVec{inputNpu1, inputNpu2, inputNpu3},
|
||||
nullptr, 2);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu1->setData(generator);
|
||||
inputNpu2->setData(generator);
|
||||
inputNpu3->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
inputCpu1->print();
|
||||
inputCpu1->printData();
|
||||
inputCpu2->print();
|
||||
inputCpu2->printData();
|
||||
inputCpu3->print();
|
||||
inputCpu3->printData();
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(ascend_Concat, run) {
|
||||
aclInit(nullptr);
|
||||
testConcat<ConcatObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,60 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testConv(const std::function<void(void *, size_t, DataType)> &generatorA,
|
||||
const std::function<void(void *, size_t, DataType)> &generatorB,
|
||||
const Shape &shapeA, const Shape &shapeB) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shapeA, DataType::Float32, cpuRuntime);
|
||||
Tensor inputCpu2 =
|
||||
make_ref<TensorObj>(shapeB, DataType::Float32, cpuRuntime);
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu1 = npuGraph->cloneTensor(inputCpu1);
|
||||
auto inputNpu2 = npuGraph->cloneTensor(inputCpu2);
|
||||
auto npuOp =
|
||||
npuGraph->addOp<T>(inputNpu1, inputNpu2, nullptr, 1, 1, 1, 1, 1, 1);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu1->setData(generatorA);
|
||||
inputNpu2->setData(generatorB);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
// CPU
|
||||
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
|
||||
cpuGraph->addTensor(inputCpu1);
|
||||
cpuGraph->addTensor(inputCpu2);
|
||||
auto cpuOp =
|
||||
cpuGraph->addOp<T>(inputCpu1, inputCpu2, nullptr, 1, 1, 1, 1, 1, 1);
|
||||
cpuGraph->dataMalloc();
|
||||
inputCpu1->setData(generatorA);
|
||||
inputCpu2->setData(generatorB);
|
||||
cpuRuntime->run(cpuGraph);
|
||||
auto outputCpu = cpuOp->getOutput();
|
||||
// Check
|
||||
// outputCpu->printData();
|
||||
// outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(outputCpu->equalData(outputNpu2Cpu, 1e-3));
|
||||
}
|
||||
|
||||
TEST(ascend_Conv, run) {
|
||||
aclInit(nullptr);
|
||||
testConv<ConvObj>(IncrementalGenerator(), IncrementalGenerator(),
|
||||
Shape{1, 3, 128, 128}, Shape{2, 3, 3, 3});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,58 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
void testConvTransposedAclnn(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
std::vector<float> ansVec) {
|
||||
const auto &[N, C, H, W, F, R, S] = tuple{1, 1, 2, 2, 1, 4, 4};
|
||||
const int stride = 1, padding = 0, dilation = 1;
|
||||
// Construct Runtime and graph for CPU and CUDA
|
||||
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
|
||||
Graph gCpu = make_ref<GraphObj>(cpu);
|
||||
Runtime npu = make_ref<ASCENDRuntimeObj>();
|
||||
Graph gNpu = make_ref<GraphObj>(npu);
|
||||
// Set input data on CPU in a CPU Graph
|
||||
Tensor i0Cpu = gCpu->addTensor({N, F, H, H}, DataType::Float32);
|
||||
Tensor w0Cpu = gCpu->addTensor({F, C, R, S}, DataType::Float32);
|
||||
// Malloc data for all tensors in a graph. Do we need implicit allocation?
|
||||
gCpu->dataMalloc();
|
||||
i0Cpu->setData(generator);
|
||||
w0Cpu->setData(generator);
|
||||
|
||||
// Copy input tensors from CPU to CUDA
|
||||
Tensor i0Npu = gNpu->cloneTensor(i0Cpu);
|
||||
Tensor w0Npu = gNpu->cloneTensor(w0Cpu);
|
||||
// Build CUDA graph
|
||||
auto conv = gNpu->addOp<ConvTransposed2dObj>(i0Npu, w0Npu, nullptr, padding,
|
||||
padding, stride, stride,
|
||||
dilation, dilation);
|
||||
gNpu->dataMalloc();
|
||||
i0Npu->setData(generator);
|
||||
w0Npu->setData(generator);
|
||||
// Execute on CUDA
|
||||
npu->run(gNpu);
|
||||
// copy output from CUDA to CPU
|
||||
auto o0Cpu = gCpu->cloneTensor(conv->getOutput());
|
||||
// check results on CPU
|
||||
o0Cpu->printData();
|
||||
EXPECT_TRUE(o0Cpu->equalData(ansVec));
|
||||
}
|
||||
|
||||
TEST(ascend_ConvTransposed, run) {
|
||||
aclInit(nullptr);
|
||||
testConvTransposedAclnn(
|
||||
IncrementalGenerator(),
|
||||
std::vector<float>{0., 0., 1., 2., 3., 0., 6., 12., 18.,
|
||||
16., 8., 30., 36., 42., 32., 16., 54., 60.,
|
||||
66., 48., 24., 62., 67., 72., 45.});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,69 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/element_wise.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testElementWise(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape0, const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shape0, DataType::Float32, cpuRuntime);
|
||||
Tensor inputCpu2 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu1->dataMalloc();
|
||||
inputCpu2->dataMalloc();
|
||||
inputCpu1->setData(generator);
|
||||
inputCpu2->setData(generator);
|
||||
|
||||
inputCpu1->print();
|
||||
inputCpu1->printData();
|
||||
inputCpu2->print();
|
||||
inputCpu2->printData();
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu1 = npuGraph->cloneTensor(inputCpu1);
|
||||
auto inputNpu2 = npuGraph->cloneTensor(inputCpu2);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu1, inputNpu2, nullptr);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu1->setData(generator);
|
||||
inputNpu2->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(ascend_ElementWise, run) {
|
||||
aclInit(nullptr);
|
||||
testElementWise<PowObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{1, 2, 2, 3});
|
||||
testElementWise<AddObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{1, 2, 2, 3});
|
||||
testElementWise<SubObj>(IncrementalGenerator(), Shape{1, 1, 48, 48},
|
||||
Shape{1, 1, 1, 1});
|
||||
testElementWise<MaximumObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{1, 2, 2, 3});
|
||||
testElementWise<DivObj>(IncrementalGenerator(), Shape{1},
|
||||
Shape{1, 2, 2, 3});
|
||||
testElementWise<MulObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{1, 2, 2, 3});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,42 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testErf(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto ascendRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// Npu
|
||||
Graph npuGraph = make_ref<GraphObj>(ascendRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu, nullptr);
|
||||
npuGraph->dataMalloc();
|
||||
ascendRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
inputCpu->printData();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(ascend_Erf, run) {
|
||||
aclInit(nullptr);
|
||||
testErf<ErfObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,71 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/gather.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
TEST(ascend_Gather, run) {
|
||||
aclInit(nullptr);
|
||||
{
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu =
|
||||
make_ref<TensorObj>(Shape{3, 3}, DataType::Float32, cpuRuntime);
|
||||
Tensor indexCpu =
|
||||
make_ref<TensorObj>(Shape{1}, DataType::Int64, cpuRuntime);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto indexNpu = npuGraph->cloneTensor(indexCpu);
|
||||
auto npuOp = npuGraph->addOp<GatherObj>(inputNpu, indexNpu, nullptr, 1);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(IncrementalGenerator());
|
||||
indexNpu->copyin(vector<int64_t>{0});
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
// Check
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(vector<float>{0, 3, 6}));
|
||||
}
|
||||
{
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu =
|
||||
make_ref<TensorObj>(Shape{3, 2}, DataType::Float32, cpuRuntime);
|
||||
Tensor indexCpu =
|
||||
make_ref<TensorObj>(Shape{2, 2}, DataType::Int64, cpuRuntime);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto indexNpu = npuGraph->cloneTensor(indexCpu);
|
||||
auto npuOp = npuGraph->addOp<GatherObj>(inputNpu, indexNpu, nullptr, 0);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->copyin(std::vector<float>{1.0, 1.2, 2.3, 3.4, 4.5, 5.7});
|
||||
indexNpu->copyin(vector<int64_t>{0, 1, 1, 2});
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(
|
||||
vector<float>{1.0, 1.2, 2.3, 3.4, 2.3, 3.4, 4.5, 5.7}));
|
||||
}
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,74 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/instance_norm.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
void test_instancenormFp32(const Shape &inputShape,
|
||||
const vector<float> &inputData,
|
||||
const Shape &scaleShape,
|
||||
const vector<float> &scaleData, float eps,
|
||||
const vector<float> &ExpectData,
|
||||
const Shape &biasShape,
|
||||
const vector<float> &biasData) {
|
||||
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto bias = gCpu->addTensor(biasShape, DataType::Float32);
|
||||
auto input = gCpu->addTensor(inputShape, DataType::Float32);
|
||||
auto scale = gCpu->addTensor(scaleShape, DataType::Float32);
|
||||
auto ExpectOutput = gCpu->addTensor(inputShape, DataType::Float32);
|
||||
gCpu->dataMalloc();
|
||||
bias->copyin(biasData); //
|
||||
// bias->printData();
|
||||
input->copyin(inputData);
|
||||
scale->copyin(scaleData); //
|
||||
ExpectOutput->copyin(ExpectData);
|
||||
auto ascendRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
Graph gAscend = make_ref<GraphObj>(ascendRuntime);
|
||||
auto biasNpu = gAscend->cloneTensor(bias);
|
||||
auto inputNpu = gAscend->cloneTensor(input);
|
||||
auto scaleNpu = gAscend->cloneTensor(scale);
|
||||
// gCpu->cloneTensor(biasNpu)->printData();
|
||||
auto op =
|
||||
gAscend->addOp<InstanceNormObj>(inputNpu, nullptr, scaleNpu, biasNpu,
|
||||
eps); // InstancenormObj
|
||||
gAscend->dataMalloc();
|
||||
biasNpu->copyin(biasData);
|
||||
// gCpu->cloneTensor(biasNpu)->printData();
|
||||
inputNpu->copyin(inputData);
|
||||
scaleNpu->copyin(scaleData);
|
||||
ascendRuntime->run(gAscend);
|
||||
|
||||
auto oCpu = gCpu->cloneTensor(op->getOutput()); // move Data from npu to cpu
|
||||
oCpu->printData(); //->printData
|
||||
EXPECT_TRUE(oCpu->equalData(ExpectOutput, 1e-4));
|
||||
}
|
||||
|
||||
TEST(CUDA_InstancenormFp32, run) {
|
||||
aclInit(nullptr);
|
||||
test_instancenormFp32(
|
||||
Shape{2, 3, 2, 3},
|
||||
vector<float>{0., 1., 2., 3., 4., 5., 6., 7., 8.,
|
||||
9., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26.,
|
||||
27., 28., 29., 30., 31., 32., 33., 34., 35.},
|
||||
Shape{3}, vector<float>{0.3, 0.2, 0.5}, 1e-5,
|
||||
vector<float>{
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678},
|
||||
Shape{3}, vector<float>{0, 0, 0});
|
||||
|
||||
aclFinalize();
|
||||
} // python output
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,143 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/layer_norm.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
void test_layernormFp32(
|
||||
const Shape &inputShape, const vector<float> &inputData,
|
||||
const Shape &scaleShape, const vector<float> &scaleData, float eps,
|
||||
int axis, int stash_type, const vector<float> &ExpectData,
|
||||
const std::optional<Shape> &bShape = std::nullopt,
|
||||
const std::optional<std::vector<float>> &biasData = std::nullopt) {
|
||||
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
if (bShape.has_value() && biasData.has_value()) {
|
||||
Shape biasShape = *bShape;
|
||||
|
||||
auto bias = gCpu->addTensor(biasShape, DataType::Float32);
|
||||
auto input = gCpu->addTensor(inputShape, DataType::Float32);
|
||||
auto scale = gCpu->addTensor(scaleShape, DataType::Float32);
|
||||
auto ExpectOutput = gCpu->addTensor(inputShape, DataType::Float32);
|
||||
|
||||
gCpu->dataMalloc();
|
||||
bias->copyin(*biasData);
|
||||
// bias->printData();
|
||||
input->copyin(inputData);
|
||||
scale->copyin(scaleData);
|
||||
ExpectOutput->copyin(ExpectData);
|
||||
|
||||
auto ascendRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
Graph gAscend = make_ref<GraphObj>(ascendRuntime);
|
||||
auto biasNpu = gAscend->cloneTensor(bias);
|
||||
auto inputNpu = gAscend->cloneTensor(input);
|
||||
auto scaleNpu = gAscend->cloneTensor(scale);
|
||||
|
||||
auto op =
|
||||
gAscend->addOp<LayerNormObj>(inputNpu, scaleNpu, nullptr, biasNpu,
|
||||
eps, axis, stash_type); // LayernormObj
|
||||
gAscend->dataMalloc();
|
||||
biasNpu->copyin(*biasData);
|
||||
// gCpu->cloneTensor(biasNpu)->printData();
|
||||
inputNpu->copyin(inputData);
|
||||
scaleNpu->copyin(scaleData);
|
||||
ascendRuntime->run(gAscend);
|
||||
|
||||
auto oCpu =
|
||||
gCpu->cloneTensor(op->getOutput()); // move Data from npu to cpu
|
||||
oCpu->printData(); //->printData
|
||||
|
||||
EXPECT_TRUE(oCpu->equalData(ExpectOutput, 1e-4));
|
||||
} else {
|
||||
|
||||
auto input = gCpu->addTensor(inputShape, DataType::Float32);
|
||||
auto scale = gCpu->addTensor(scaleShape, DataType::Float32);
|
||||
auto ExpectOutput = gCpu->addTensor(inputShape, DataType::Float32);
|
||||
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(inputData);
|
||||
scale->copyin(scaleData); //
|
||||
ExpectOutput->copyin(ExpectData);
|
||||
|
||||
auto ascendRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
Graph gAscend = make_ref<GraphObj>(ascendRuntime);
|
||||
|
||||
auto inputNpu = gAscend->cloneTensor(input);
|
||||
auto scaleNpu = gAscend->cloneTensor(scale);
|
||||
auto op =
|
||||
gAscend->addOp<LayerNormObj>(inputNpu, scaleNpu, nullptr, nullptr,
|
||||
eps, axis, stash_type); // LayernormObj
|
||||
gAscend->dataMalloc();
|
||||
|
||||
inputNpu->copyin(inputData);
|
||||
scaleNpu->copyin(scaleData);
|
||||
ascendRuntime->run(gAscend);
|
||||
|
||||
auto oCpu =
|
||||
gCpu->cloneTensor(op->getOutput()); // move Data from npu to cpu
|
||||
oCpu->printData(); //->printData
|
||||
|
||||
EXPECT_TRUE(oCpu->equalData(ExpectOutput, 1e-4));
|
||||
// EXPECT_TRUE(oCpu->equalData(ExpectData));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(CUDA_LayernormFp32, run) {
|
||||
aclInit(nullptr);
|
||||
test_layernormFp32(
|
||||
Shape{2, 3, 2, 3},
|
||||
vector<float>{0., 1., 2., 3., 4., 5., 6., 7., 8.,
|
||||
9., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26.,
|
||||
27., 28., 29., 30., 31., 32., 33., 34., 35.},
|
||||
Shape{3}, vector<float>{0.3, 0.2, 0.5}, 1e-5, 3, 1,
|
||||
vector<float>{
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207, 0.0000000, 0.6123678},
|
||||
Shape{3}, vector<float>{0, 0, 0});
|
||||
test_layernormFp32(
|
||||
Shape{2, 3, 2, 3},
|
||||
vector<float>{0., 1., 2., 3., 4., 5., 6., 7., 8.,
|
||||
9., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26.,
|
||||
27., 28., 29., 30., 31., 32., 33., 34., 35.},
|
||||
Shape{3}, vector<float>{0.3, 0.2, 0.5}, 1e-5, 3, 1,
|
||||
vector<float>{
|
||||
-0.0674207, 0.2000000, 1.1123679, -0.0674207, 0.2000000, 1.1123679,
|
||||
-0.0674207, 0.2000000, 1.1123679, -0.0674207, 0.2000000, 1.1123679,
|
||||
-0.0674207, 0.2000000, 1.1123679, -0.0674207, 0.2000000, 1.1123679,
|
||||
-0.0674207, 0.2000000, 1.1123679, -0.0674207, 0.2000000, 1.1123679,
|
||||
-0.0674207, 0.2000000, 1.1123679, -0.0674207, 0.2000000, 1.1123679,
|
||||
-0.0674207, 0.2000000, 1.1123679, -0.0674207, 0.2000000, 1.1123679},
|
||||
Shape{3}, vector<float>{0.3, 0.2, 0.5});
|
||||
test_layernormFp32(
|
||||
Shape{2, 3, 2, 3},
|
||||
vector<float>{0., 1., 2., 3., 4., 5., 6., 7., 8.,
|
||||
9., 10., 11., 12., 13., 14., 15., 16., 17.,
|
||||
18., 19., 20., 21., 22., 23., 24., 25., 26.,
|
||||
27., 28., 29., 30., 31., 32., 33., 34., 35.},
|
||||
Shape{3}, vector<float>{0.3, 0.2, 0.5}, 1e-5, 3, 1,
|
||||
vector<float>{-0.3674207, 0.0000000, 0.6123678, -0.3674207,
|
||||
0.0000000, 0.6123678, -0.3674207, 0.0000000,
|
||||
0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207,
|
||||
0.0000000, 0.6123678, -0.3674207, 0.0000000,
|
||||
0.6123678, -0.3674207, 0.0000000, 0.6123678,
|
||||
-0.3674207, 0.0000000, 0.6123678, -0.3674207,
|
||||
0.0000000, 0.6123678, -0.3674207, 0.0000000,
|
||||
0.6123678, -0.3674207, 0.0000000, 0.6123678});
|
||||
|
||||
aclFinalize();
|
||||
} // python output
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,59 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/matmul.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testMatmul(const std::function<void(void *, size_t, DataType)> &generatorA,
|
||||
const std::function<void(void *, size_t, DataType)> &generatorB,
|
||||
bool transA, bool transB, const Shape &shapeA,
|
||||
const Shape &shapeB) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shapeA, DataType::Float32, cpuRuntime);
|
||||
Tensor inputCpu2 =
|
||||
make_ref<TensorObj>(shapeB, DataType::Float32, cpuRuntime);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu1 = npuGraph->cloneTensor(inputCpu1);
|
||||
auto inputNpu2 = npuGraph->cloneTensor(inputCpu2);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu1, inputNpu2, nullptr);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu1->setData(generatorA);
|
||||
inputNpu2->setData(generatorB);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
// CPU
|
||||
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
|
||||
auto cpuOp = cpuGraph->addOp<T>(inputCpu1, inputCpu2, nullptr);
|
||||
cpuGraph->addTensor(inputCpu1);
|
||||
cpuGraph->addTensor(inputCpu2);
|
||||
cpuGraph->dataMalloc();
|
||||
inputCpu1->setData(generatorA);
|
||||
inputCpu2->setData(generatorB);
|
||||
cpuRuntime->run(cpuGraph);
|
||||
auto outputCpu = cpuOp->getOutput();
|
||||
|
||||
// Check
|
||||
EXPECT_TRUE(outputCpu->equalData(outputNpu2Cpu));
|
||||
}
|
||||
|
||||
TEST(ascend_Matmul, run) {
|
||||
aclInit(nullptr);
|
||||
testMatmul<MatmulObj>(IncrementalGenerator(), IncrementalGenerator(), false,
|
||||
false, Shape{1, 2, 3}, Shape{1, 3, 4});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,49 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/pad.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testPad(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu, nullptr, vector<int>{1, 1, 1, 1},
|
||||
vector<int>{0, 3});
|
||||
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
std::cout << npuOp->toString() << std::endl;
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
// Check
|
||||
inputCpu->print();
|
||||
inputCpu->printData();
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(ascend_Pad, run) {
|
||||
aclInit(nullptr);
|
||||
testPad<PadObj>(IncrementalGenerator(), Shape{1, 1, 2, 3});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,48 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/pooling.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T, typename std::enable_if<std::is_base_of<PoolingObj, T>{},
|
||||
int>::type = 0>
|
||||
void testPooling(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp =
|
||||
npuGraph->addOp<T>(inputNpu, nullptr, 3, 3, 1, 1, 1, 1, 2, 2, 0);
|
||||
// npuGraph->addOp<T>(inputNpu, nullptr, 2, 2, 1, 1, 0, 0, 1, 1, 0);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
inputCpu->printData();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_Pooling, run) {
|
||||
aclInit(nullptr);
|
||||
testPooling<MaxPoolObj>(IncrementalGenerator(), Shape{1, 3, 5, 5});
|
||||
testPooling<AvgPoolObj>(IncrementalGenerator(), Shape{1, 2, 5, 5});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,84 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/reduce.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <typename ReduceObjT>
|
||||
void test_reduce(const Shape &shape, const vector<float> &data,
|
||||
const optional<const vector<int>> &axes, bool keepDims,
|
||||
const vector<float> &ExpectData) {
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
|
||||
// Build NPU graph
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto op = npuGraph->addOp<ReduceObjT>(inputNpu, nullptr, axes, keepDims);
|
||||
|
||||
// allocate NPU memory
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->copyin(data);
|
||||
|
||||
// Execute on NPU
|
||||
npuRuntime->run(npuGraph);
|
||||
|
||||
// clone NPU output to CPU
|
||||
auto outputNpu = op->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// check results on CPU
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(ExpectData));
|
||||
}
|
||||
|
||||
TEST(ascend_ReduceMean, run) {
|
||||
aclInit(nullptr);
|
||||
test_reduce<ReduceMeanObj>(
|
||||
Shape{3, 2, 2}, vector<float>{5, 1, 20, 2, 30, 1, 40, 2, 55, 1, 60, 2},
|
||||
std::nullopt, true, vector<float>{18.25});
|
||||
test_reduce<ReduceMeanObj>(
|
||||
Shape{1, 3, 2, 2, 1},
|
||||
vector<float>{5, 1, 20, 2, 30, 1, 40, 2, 55, 1, 60, 2}, std::nullopt,
|
||||
false, vector<float>{18.25});
|
||||
|
||||
test_reduce<ReduceMeanObj>(
|
||||
Shape{2, 3, 2, 2},
|
||||
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
|
||||
vector<int>{1, 2}, false, vector<float>{5, 6, 17, 18});
|
||||
test_reduce<ReduceMeanObj>(
|
||||
Shape{2, 3, 2, 2, 1},
|
||||
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
|
||||
vector<int>{1, 2}, true, vector<float>{5, 6, 17, 18});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
TEST(ascend_ReduceSum, run) {
|
||||
test_reduce<ReduceSumObj>(Shape{3, 2, 2},
|
||||
vector<float>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
||||
std::nullopt, true, vector<float>{12});
|
||||
test_reduce<ReduceSumObj>(Shape{1, 3, 2, 2, 1},
|
||||
vector<float>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
||||
std::nullopt, false, vector<float>{12});
|
||||
|
||||
test_reduce<ReduceSumObj>(
|
||||
Shape{2, 3, 2, 2},
|
||||
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
|
||||
vector<int>{1, 2}, false, vector<float>{30, 36, 102, 108});
|
||||
test_reduce<ReduceSumObj>(
|
||||
Shape{2, 3, 2, 2, 1},
|
||||
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
|
||||
vector<int>{1, 2}, true, vector<float>{30, 36, 102, 108});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,84 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/reshape.h"
|
||||
#include "operators/squeeze.h"
|
||||
#include "operators/unsqueeze.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testReshape(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape, const Shape &outputShape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu, nullptr, outputShape);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
inputCpu->print();
|
||||
inputCpu->printData();
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(inputCpu->equalData(outputNpu2Cpu, 1e-3));
|
||||
}
|
||||
|
||||
void testFlatten(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape, int axis) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<FlattenObj>(inputNpu, nullptr, axis);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
inputCpu->print();
|
||||
inputCpu->printData();
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(inputCpu->equalData(outputNpu2Cpu, 1e-3));
|
||||
}
|
||||
|
||||
TEST(ascend_Unary, run) {
|
||||
aclInit(nullptr);
|
||||
testReshape<ReshapeObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{1, 2, 6});
|
||||
testReshape<SqueezeObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{0});
|
||||
testReshape<UnsqueezeObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
Shape{4});
|
||||
testFlatten(IncrementalGenerator(), Shape{1, 2, 2, 3}, 2);
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,69 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/resize.h"
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
TEST(Resize, Ascend_downsample_scales_nearest) {
|
||||
aclInit(nullptr);
|
||||
{
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 2, 4}, DataType::Float32);
|
||||
auto scales = gCpu->addTensor({4}, DataType::Float32);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(vector<float>{1, 2, 3, 4, 5, 6, 7, 8});
|
||||
scales->copyin(vector<float>{1, 1, 0.6, 0.6});
|
||||
|
||||
auto ascendRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
Graph gNpu = make_ref<GraphObj>(ascendRuntime);
|
||||
|
||||
auto inputNpu = gNpu->cloneTensor(input);
|
||||
auto scalesNpu = gNpu->cloneTensor(scales);
|
||||
auto op = gNpu->addOp<ResizeObj>(inputNpu, nullptr, std::nullopt,
|
||||
nullptr, scalesNpu, nullptr);
|
||||
gNpu->dataMalloc();
|
||||
inputNpu->copyin(vector<float>{1, 2, 3, 4, 5, 6, 7, 8});
|
||||
scalesNpu->copyin(vector<float>{1, 1, 0.6, 0.6});
|
||||
ascendRuntime->run(gNpu);
|
||||
|
||||
// copy output from NPU to CPU
|
||||
auto oCpu = gCpu->cloneTensor(op->getOutput(0));
|
||||
EXPECT_TRUE(oCpu->equalData(vector<float>{1, 3}));
|
||||
}
|
||||
{
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 2, 2}, DataType::Float32);
|
||||
auto scales = gCpu->addTensor({4}, DataType::Float32);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(vector<float>{1, 2, 3, 4});
|
||||
scales->copyin(vector<float>{1, 1, 2, 3});
|
||||
|
||||
auto ascendRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
Graph gNpu = make_ref<GraphObj>(ascendRuntime);
|
||||
|
||||
auto inputNpu = gNpu->cloneTensor(input);
|
||||
auto scalesNpu = gNpu->cloneTensor(scales);
|
||||
auto op = gNpu->addOp<ResizeObj>(inputNpu, nullptr, std::nullopt,
|
||||
nullptr, scalesNpu, nullptr);
|
||||
gNpu->dataMalloc();
|
||||
inputNpu->copyin(vector<float>{1, 2, 3, 4});
|
||||
scalesNpu->copyin(vector<float>{1, 1, 2, 3});
|
||||
ascendRuntime->run(gNpu);
|
||||
|
||||
// copy output from NPU to CPU
|
||||
auto oCpu = gCpu->cloneTensor(op->getOutput(0));
|
||||
EXPECT_TRUE(
|
||||
oCpu->equalData(vector<float>{1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,
|
||||
3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4}));
|
||||
}
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,75 @@
|
|||
#ifdef INFINI_USE_HCCL
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "ascend/hccl_communicator.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/recv.h"
|
||||
#include "operators/send.h"
|
||||
#include "test.h"
|
||||
#include <thread>
|
||||
|
||||
namespace infini {
|
||||
|
||||
void sendrecv(const string taskName, int deviceID, vector<float> data,
|
||||
const Shape &dataShape, int WORLD_SIZE, int source,
|
||||
int destination) {
|
||||
// Create Runtimes and initiate communication
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
Runtime ascnedRuntime = make_ref<ASCENDRuntimeObj>(deviceID);
|
||||
ascnedRuntime->initComm(taskName, WORLD_SIZE, deviceID);
|
||||
|
||||
if (deviceID == source) {
|
||||
Graph gSend = make_ref<GraphObj>(ascnedRuntime);
|
||||
auto input = gSend->addTensor(Shape{static_cast<int>(data.size())},
|
||||
DataType::Float32);
|
||||
auto opSend =
|
||||
gSend->addOp<SendObj>(input, source, destination, nullptr);
|
||||
|
||||
// Copy data from CPU to GPU
|
||||
gSend->dataMalloc();
|
||||
input->copyin(data);
|
||||
ascnedRuntime->run(gSend);
|
||||
}
|
||||
|
||||
// ----------------
|
||||
|
||||
if (deviceID == destination) {
|
||||
Graph gRecv = make_ref<GraphObj>(ascnedRuntime);
|
||||
int outputType = 1;
|
||||
// auto input =
|
||||
// gRecv->addTensor(Shape{static_cast<int>(data.size())},DataType::Float32);
|
||||
auto opRecv = gRecv->addOp<RecvObj>(nullptr, source, destination,
|
||||
dataShape, outputType, nullptr);
|
||||
gRecv->dataMalloc();
|
||||
ascnedRuntime->run(gRecv);
|
||||
|
||||
auto result = opRecv->getOutput()->clone(cpuRuntime);
|
||||
EXPECT_TRUE(result->equalData(data));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ASCEND_SendRecv1, run) {
|
||||
// Only 1 device gets data. Every rank should have the same data after
|
||||
// sendrecv.
|
||||
aclInit(nullptr);
|
||||
{
|
||||
vector<float> data = {2., 3., 5., 6.};
|
||||
|
||||
int WORLD_SIZE = 4;
|
||||
int source = 0;
|
||||
int destination = 2;
|
||||
std::vector<std::thread> threads;
|
||||
for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
||||
threads.emplace_back(sendrecv, "test_sendrecv", gpu, data,
|
||||
Shape{2, 2}, WORLD_SIZE, source, destination);
|
||||
}
|
||||
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
#endif
|
|
@ -0,0 +1,41 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/slice.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
TEST(ascend_Unary, run) {
|
||||
aclInit(nullptr);
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu =
|
||||
make_ref<TensorObj>(Shape{3, 2, 1, 5}, DataType::Float32, cpuRuntime);
|
||||
// inputCpu->dataMalloc();
|
||||
// inputCpu->setData(IncrementalGenerator());
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<SliceObj>(inputNpu, nullptr, vector<int>{1, 1},
|
||||
vector<int>{2, 5}, vector<int>{0, 3},
|
||||
std::nullopt);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(IncrementalGenerator());
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(
|
||||
vector<float>{11, 12, 13, 14, 16, 17, 18, 19}));
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,61 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/softmax.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testSoftmax(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape, int axis, vector<float> Out) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu1->dataMalloc();
|
||||
// inputCpu1->setData(generator);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu1 = npuGraph->cloneTensor(inputCpu1);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu1, nullptr, axis);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu1->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(Out));
|
||||
}
|
||||
|
||||
TEST(ascend_ElementWise, run) {
|
||||
aclInit(nullptr);
|
||||
testSoftmax<SoftmaxObj>(
|
||||
IncrementalGenerator(), Shape{2, 2, 2, 2}, 1,
|
||||
vector<float>{0.0179862, 0.0179862, 0.0179862, 0.0179862, 0.9820138,
|
||||
0.9820138, 0.9820138, 0.9820138, 0.0179862, 0.0179862,
|
||||
0.0179862, 0.0179862, 0.9820138, 0.9820138, 0.9820138,
|
||||
0.9820138});
|
||||
testSoftmax<SoftmaxObj>(
|
||||
IncrementalGenerator(), Shape{2, 2, 2, 2}, 2,
|
||||
vector<float>{0.1192029, 0.1192029, 0.8807971, 0.8807971, 0.1192029,
|
||||
0.1192029, 0.8807971, 0.8807971, 0.1192029, 0.1192029,
|
||||
0.8807971, 0.8807971, 0.1192029, 0.1192029, 0.8807971,
|
||||
0.8807971});
|
||||
testSoftmax<SoftmaxObj>(
|
||||
IncrementalGenerator(), Shape{2, 2, 2, 2}, 3,
|
||||
vector<float>{0.2689414, 0.7310586, 0.2689414, 0.7310586, 0.2689414,
|
||||
0.7310586, 0.2689414, 0.7310586, 0.2689414, 0.7310586,
|
||||
0.2689414, 0.7310586, 0.2689414, 0.7310586, 0.2689414,
|
||||
0.7310586});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,50 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/split.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testSplit(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
// GPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto gpuOp = npuGraph->addOp<T>(inputNpu, std::nullopt, 3, 3);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto o0Cpu = gpuOp->getOutput(0)->clone(cpuRuntime);
|
||||
auto o1Cpu = gpuOp->getOutput(1)->clone(cpuRuntime);
|
||||
auto o2Cpu = gpuOp->getOutput(2)->clone(cpuRuntime);
|
||||
// Check
|
||||
inputCpu->print();
|
||||
inputCpu->printData();
|
||||
o0Cpu->print();
|
||||
o0Cpu->printData();
|
||||
o1Cpu->print();
|
||||
o1Cpu->printData();
|
||||
o2Cpu->print();
|
||||
o2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(ascend_Split, run) {
|
||||
aclInit(nullptr);
|
||||
testSplit<SplitObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,49 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/transpose.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testTranspose(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape, const Shape &permute) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu, nullptr, permute);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
inputCpu->print();
|
||||
inputCpu->printData();
|
||||
outputNpu2Cpu->print();
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(ascend_Unary, run) {
|
||||
aclInit(nullptr);
|
||||
testTranspose<TransposeObj>(IncrementalGenerator(), Shape{1, 1, 2, 3},
|
||||
vector<int>{0, 1, 3, 2});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,151 @@
|
|||
#include "ascend/ascend_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testUnary(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu, nullptr);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
// CPU
|
||||
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
|
||||
auto cpuOp = cpuGraph->addOp<T>(inputCpu, nullptr);
|
||||
cpuGraph->addTensor(inputCpu);
|
||||
cpuGraph->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
cpuRuntime->run(cpuGraph);
|
||||
auto outputCpu = cpuOp->getOutput();
|
||||
// Check
|
||||
EXPECT_TRUE(outputCpu->equalData(outputNpu2Cpu, 1e-3));
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void testUnarywithExpectData(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape, const vector<float> &ExpectData) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph gCpu = make_ref<GraphObj>(cpuRuntime);
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
auto ExpectOutput = gCpu->addTensor(shape, DataType::Float32);
|
||||
gCpu->dataMalloc();
|
||||
ExpectOutput->copyin(ExpectData);
|
||||
|
||||
// NPU
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
auto inputNpu = npuGraph->cloneTensor(inputCpu);
|
||||
auto npuOp = npuGraph->addOp<T>(inputNpu, nullptr);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->setData(generator);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
// CPU
|
||||
// Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
|
||||
// auto cpuOp = cpuGraph->addOp<T>(inputCpu, nullptr);
|
||||
// cpuGraph->addTensor(inputCpu);
|
||||
// cpuGraph->dataMalloc();
|
||||
// inputCpu->setData(generator);
|
||||
// cpuRuntime->run(cpuGraph);
|
||||
// auto outputCpu = cpuOp->getOutput();
|
||||
// Check
|
||||
outputNpu2Cpu->printData();
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(ExpectOutput, 1e-4));
|
||||
}
|
||||
|
||||
void testLeakyRelu(const Shape &shape, const vector<float> &inputData,
|
||||
const vector<float> &ExpectData, float alpha) {
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor(shape, DataType::Float32);
|
||||
|
||||
gCpu->dataMalloc();
|
||||
|
||||
input->copyin(inputData);
|
||||
auto npuRuntime = make_ref<ASCENDRuntimeObj>();
|
||||
Graph npuGraph = make_ref<GraphObj>(npuRuntime);
|
||||
// NPU
|
||||
|
||||
auto inputNpu = npuGraph->cloneTensor(input);
|
||||
auto npuOp = npuGraph->addOp<LeakyReluObj>(inputNpu, nullptr, alpha);
|
||||
npuGraph->dataMalloc();
|
||||
inputNpu->copyin(inputData);
|
||||
npuRuntime->run(npuGraph);
|
||||
auto outputNpu = npuOp->getOutput();
|
||||
auto outputNpu2Cpu = outputNpu->clone(cpuRuntime);
|
||||
|
||||
// Check
|
||||
EXPECT_TRUE(outputNpu2Cpu->equalData(ExpectData));
|
||||
}
|
||||
|
||||
TEST(ascend_Unary, run) {
|
||||
aclInit(nullptr);
|
||||
testLeakyRelu(Shape{1, 2, 2, 3},
|
||||
vector<float>{-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6},
|
||||
vector<float>{-0.0600, -0.0500, -0.0400, -0.0300, -0.0200,
|
||||
-0.0100, 1.0000, 2.0000, 3.0000, 4.0000, 5.0000,
|
||||
6.0000},
|
||||
0.01);
|
||||
testUnary<ReluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<AbsObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<SigmoidObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<HardSwishObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<TanhObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<SinObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<GeluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<CosObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<ACosObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<ATanObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<NegObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testUnary<SqrtObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
|
||||
testUnarywithExpectData<CeilObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
vector<float>{0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
|
||||
6.0, 7.0, 8.0, 9.0, 10.0,
|
||||
11.0});
|
||||
testUnarywithExpectData<FloorObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
vector<float>{0.0, 1.0, 2.0, 3.0, 4.0,
|
||||
5.0, 6.0, 7.0, 8.0, 9.0,
|
||||
10.0, 11.0});
|
||||
testUnarywithExpectData<ExpObj>(
|
||||
IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
vector<float>{1.0, 2.71828, 7.38906, 20.0855, 54.5981, 148.413, 403.429,
|
||||
1096.63, 2980.96, 8103.08, 22026.5, 59874.1});
|
||||
testUnarywithExpectData<ReciprocalObj>(
|
||||
IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
vector<float>{std::numeric_limits<float>::infinity(), 1, 0.5, 0.333333,
|
||||
0.25, 0.2, 0.166667, 0.142857, 0.125, 0.111111, 0.1,
|
||||
0.0909091});
|
||||
testUnarywithExpectData<RoundObj>(IncrementalGenerator(), Shape{1, 2, 2, 3},
|
||||
vector<float>{0.0, 1.0, 2.0, 3.0, 4.0,
|
||||
5.0, 6.0, 7.0, 8.0, 9.0,
|
||||
10.0, 11.0});
|
||||
aclFinalize();
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -11,10 +11,10 @@ TEST(Resize, Cuda_downsample_sizes_nearest) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 2, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(vector<float>{1, 2, 3, 4, 5, 6, 7, 8});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 1, 3});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 1, 3});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -26,7 +26,7 @@ TEST(Resize, Cuda_downsample_sizes_nearest) {
|
|||
ResizeObj::EKeepAspectRatioPolicy::stretch);
|
||||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(vector<float>{1, 2, 3, 4, 5, 6, 7, 8});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 1, 3});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 1, 3});
|
||||
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
|
@ -40,10 +40,10 @@ TEST(Resize, Cuda_upsample_sizes_nearest_notlarger) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 2, 2}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(vector<float>{1, 2, 3, 4});
|
||||
sizes->copyin(vector<uint32_t>{7, 8});
|
||||
sizes->copyin(vector<int64_t>{7, 8});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -57,7 +57,7 @@ TEST(Resize, Cuda_upsample_sizes_nearest_notlarger) {
|
|||
ResizeObj::ECoordinateTransMode::halfPixel);
|
||||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(vector<float>{1, 2, 3, 4});
|
||||
sizesCuda->copyin(vector<uint32_t>{7, 8});
|
||||
sizesCuda->copyin(vector<int64_t>{7, 8});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
// copy output from CUDA to CPU
|
||||
|
@ -73,10 +73,10 @@ TEST(Resize, Cuda_upsample_sizes_nearest_notsmaller) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 2, 2}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(vector<float>{1, 2, 3, 4});
|
||||
sizes->copyin(vector<uint32_t>{7, 8});
|
||||
sizes->copyin(vector<int64_t>{7, 8});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -90,7 +90,7 @@ TEST(Resize, Cuda_upsample_sizes_nearest_notsmaller) {
|
|||
ResizeObj::ECoordinateTransMode::halfPixel);
|
||||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(vector<float>{1, 2, 3, 4});
|
||||
sizesCuda->copyin(vector<uint32_t>{7, 8});
|
||||
sizesCuda->copyin(vector<int64_t>{7, 8});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
// copy output from CUDA to CPU
|
||||
|
@ -106,11 +106,11 @@ TEST(Resize, Cuda_upsample_sizes_nearest_ceil_half_pixel) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 8, 8});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 8, 8});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -125,7 +125,7 @@ TEST(Resize, Cuda_upsample_sizes_nearest_ceil_half_pixel) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 8, 8});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 8, 8});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
// copy output from CUDA to CPU
|
||||
|
@ -143,11 +143,11 @@ TEST(Resize, Cuda_upsample_sizes_nearest_floor_align_corners) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{8, 8});
|
||||
sizes->copyin(vector<int64_t>{8, 8});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -162,7 +162,7 @@ TEST(Resize, Cuda_upsample_sizes_nearest_floor_align_corners) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{8, 8});
|
||||
sizesCuda->copyin(vector<int64_t>{8, 8});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
// copy output from CUDA to CPU
|
||||
|
@ -180,11 +180,11 @@ TEST(Resize, Cuda_upsample_sizes_nearest_round_prefer_ceil_asymmetri) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 8, 8});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 8, 8});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -199,7 +199,7 @@ TEST(Resize, Cuda_upsample_sizes_nearest_round_prefer_ceil_asymmetri) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 8, 8});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 8, 8});
|
||||
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
|
@ -421,11 +421,11 @@ TEST(Resize, Cuda_downsample_sizes_linear_pytorchhalfpixel) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 3, 1});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 3, 1});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -440,7 +440,7 @@ TEST(Resize, Cuda_downsample_sizes_linear_pytorchhalfpixel) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 3, 1});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 3, 1});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
// copy output from CUDA to CPU
|
||||
|
@ -453,12 +453,12 @@ TEST(Resize, Cuda_tf_crop_and_resize) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
auto roi = gCpu->addTensor({8}, DataType::Float32);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 3, 3});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 3, 3});
|
||||
roi->copyin(vector<float>{0, 0, 0.4, 0.6, 1, 1, 0.6, 0.8});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
|
@ -475,7 +475,7 @@ TEST(Resize, Cuda_tf_crop_and_resize) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 3, 3});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 3, 3});
|
||||
roiCuda->copyin(vector<float>{0, 0, 0.4, 0.6, 1, 1, 0.6, 0.8});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
|
@ -490,12 +490,12 @@ TEST(Resize, Cuda_tf_crop_and_resize_axes_3_2) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({2}, DataType::Int64);
|
||||
auto roi = gCpu->addTensor({4}, DataType::Float32);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{3, 3});
|
||||
sizes->copyin(vector<int64_t>{3, 3});
|
||||
roi->copyin(vector<float>{0.6, 0.4, 0.8, 0.6});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
|
@ -512,7 +512,7 @@ TEST(Resize, Cuda_tf_crop_and_resize_axes_3_2) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{3, 3});
|
||||
sizesCuda->copyin(vector<int64_t>{3, 3});
|
||||
roiCuda->copyin(vector<float>{0.6, 0.4, 0.8, 0.6});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
|
@ -715,11 +715,11 @@ TEST(Resize, Cuda_downsample_sizes_cubic) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 3, 3});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 3, 3});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -733,7 +733,7 @@ TEST(Resize, Cuda_downsample_sizes_cubic) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 3, 3});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 3, 3});
|
||||
cudaRuntime->run(gCuda);
|
||||
|
||||
// copy output from CUDA to CPU
|
||||
|
@ -753,11 +753,11 @@ TEST(Resize, Cuda_upsample_sizes_cubic) {
|
|||
Graph gCpu = make_ref<GraphObj>(runtime);
|
||||
|
||||
auto input = gCpu->addTensor({1, 1, 4, 4}, DataType::Float32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::UInt32);
|
||||
auto sizes = gCpu->addTensor({4}, DataType::Int64);
|
||||
gCpu->dataMalloc();
|
||||
input->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 9, 10});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 9, 10});
|
||||
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
|
||||
|
@ -771,7 +771,7 @@ TEST(Resize, Cuda_upsample_sizes_cubic) {
|
|||
gCuda->dataMalloc();
|
||||
inputCuda->copyin(
|
||||
vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
||||
sizesCuda->copyin(vector<uint32_t>{1, 1, 9, 10});
|
||||
sizesCuda->copyin(vector<int64_t>{1, 1, 9, 10});
|
||||
cudaRuntime->run(gCuda);
|
||||
// copy output from CUDA to CPU
|
||||
auto oCpu = gCpu->cloneTensor(op->getOutput(0));
|
||||
|
|
|
@ -10,9 +10,9 @@ TEST(Resize, ShapeInference) {
|
|||
{
|
||||
Graph g = make_ref<GraphObj>(cpuRuntime);
|
||||
Tensor i = g->addTensor({1, 1, 2, 4}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({4}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({4}, DataType::Int64);
|
||||
sizes->dataMalloc();
|
||||
sizes->copyin(vector<uint32_t>{1, 1, 1, 3});
|
||||
sizes->copyin(vector<int64_t>{1, 1, 1, 3});
|
||||
auto op = g->addOp<ResizeObj>(
|
||||
i, nullptr, std::nullopt, sizes, nullptr, nullptr,
|
||||
ResizeObj::EKeepAspectRatioPolicy::stretch);
|
||||
|
@ -22,9 +22,9 @@ TEST(Resize, ShapeInference) {
|
|||
{
|
||||
Graph g = make_ref<GraphObj>(cpuRuntime);
|
||||
Tensor i = g->addTensor({1, 1, 2, 4}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({2}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({2}, DataType::Int64);
|
||||
sizes->dataMalloc();
|
||||
sizes->copyin(vector<uint32_t>{1, 3});
|
||||
sizes->copyin(vector<int64_t>{1, 3});
|
||||
auto op = g->addOp<ResizeObj>(
|
||||
i, nullptr, vector<int>{2, 3}, sizes, nullptr, nullptr,
|
||||
ResizeObj::EKeepAspectRatioPolicy::stretch);
|
||||
|
@ -34,9 +34,9 @@ TEST(Resize, ShapeInference) {
|
|||
{
|
||||
Graph g = make_ref<GraphObj>(cpuRuntime);
|
||||
Tensor i = g->addTensor({1, 3, 2, 4}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({2}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({2}, DataType::Int64);
|
||||
sizes->dataMalloc();
|
||||
sizes->copyin(vector<uint32_t>{7, 8});
|
||||
sizes->copyin(vector<int64_t>{7, 8});
|
||||
auto op = g->addOp<ResizeObj>(
|
||||
i, nullptr, vector<int>{2, 3}, sizes, nullptr, nullptr,
|
||||
ResizeObj::EKeepAspectRatioPolicy::notLarger);
|
||||
|
@ -46,9 +46,9 @@ TEST(Resize, ShapeInference) {
|
|||
{
|
||||
Graph g = make_ref<GraphObj>(cpuRuntime);
|
||||
Tensor i = g->addTensor({1, 3, 2, 4}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({3}, DataType::UInt32);
|
||||
Tensor sizes = g->addTensor({3}, DataType::Int64);
|
||||
sizes->dataMalloc();
|
||||
sizes->copyin(vector<uint32_t>{2, 6, 8});
|
||||
sizes->copyin(vector<int64_t>{2, 6, 8});
|
||||
auto op = g->addOp<ResizeObj>(
|
||||
i, nullptr, vector<int>{1, 2, 3}, sizes, nullptr, nullptr,
|
||||
ResizeObj::EKeepAspectRatioPolicy::notSmaller);
|
||||
|
|
Loading…
Reference in New Issue