gh-115727: Reduce confidence even on 100% predicted jumps (#115748)

The theory is that even if we saw a jump go in the same direction the
last 16 times we got there, we shouldn't be overly confident that it's
still going to go the same way in the future. This PR makes it so that
in the extreme cases, the confidence is multiplied by 0.9 instead of
remaining unchanged. For unpredictable jumps, there is no difference
(still 0.5). For somewhat predictable jumps, we interpolate.
This commit is contained in:
Guido van Rossum 2024-02-22 12:23:48 -08:00 committed by GitHub
parent 1002fbe12e
commit 4ee6bdfbaa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 13 additions and 7 deletions

View File

@ -546,6 +546,8 @@ translate_bytecode_to_trace(
uint32_t oparg = instr->op.arg;
uint32_t extended = 0;
DPRINTF(3, "%d: %s(%d)\n", target, _PyOpcode_OpName[opcode], oparg);
if (opcode == ENTER_EXECUTOR) {
assert(oparg < 256);
_PyExecutorObject *executor = code->co_executors->executors[oparg];
@ -593,21 +595,25 @@ translate_bytecode_to_trace(
int counter = instr[1].cache;
int bitcount = _Py_popcount32(counter);
int jump_likely = bitcount > 8;
/* If bitcount is 8 (half the jumps were taken), adjust confidence by 50%.
If it's 16 or 0 (all or none were taken), adjust by 10%
(since the future is still somewhat uncertain).
For values in between, adjust proportionally. */
if (jump_likely) {
confidence = confidence * bitcount / 16;
confidence = confidence * (bitcount + 2) / 20;
}
else {
confidence = confidence * (16 - bitcount) / 16;
confidence = confidence * (18 - bitcount) / 20;
}
uint32_t uopcode = BRANCH_TO_GUARD[opcode - POP_JUMP_IF_FALSE][jump_likely];
DPRINTF(2, "%d: %s(%d): counter=%x, bitcount=%d, likely=%d, confidence=%d, uopcode=%s\n",
target, _PyOpcode_OpName[opcode], oparg,
counter, bitcount, jump_likely, confidence, _PyUOpName(uopcode));
if (confidence < CONFIDENCE_CUTOFF) {
DPRINTF(2, "Confidence too low (%d)\n", confidence);
DPRINTF(2, "Confidence too low (%d < %d)\n", confidence, CONFIDENCE_CUTOFF);
OPT_STAT_INC(low_confidence);
goto done;
}
uint32_t uopcode = BRANCH_TO_GUARD[opcode - POP_JUMP_IF_FALSE][jump_likely];
DPRINTF(2, "%s(%d): counter=%x, bitcount=%d, likely=%d, confidence=%d, uopcode=%s\n",
_PyOpcode_OpName[opcode], oparg,
counter, bitcount, jump_likely, confidence, _PyUOpName(uopcode));
_Py_CODEUNIT *next_instr = instr + 1 + _PyOpcode_Caches[_PyOpcode_Deopt[opcode]];
_Py_CODEUNIT *target_instr = next_instr + oparg;
if (jump_likely) {