Reformat prior to expanding.

This commit is contained in:
Jeroen Ruigrok van der Werven 2009-04-25 11:15:06 +00:00
parent 0a6501bf56
commit bc25bf9d3e
1 changed files with 63 additions and 57 deletions

View File

@ -9,28 +9,29 @@ There are a large number of structures which are used in the definition of
object types for Python. This section describes these structures and how they
are used.
All Python objects ultimately share a small number of fields at the beginning of
the object's representation in memory. These are represented by the
:ctype:`PyObject` and :ctype:`PyVarObject` types, which are defined, in turn, by
the expansions of some macros also used, whether directly or indirectly, in the
definition of all other Python objects.
All Python objects ultimately share a small number of fields at the beginning
of the object's representation in memory. These are represented by the
:ctype:`PyObject` and :ctype:`PyVarObject` types, which are defined, in turn,
by the expansions of some macros also used, whether directly or indirectly, in
the definition of all other Python objects.
.. ctype:: PyObject
All object types are extensions of this type. This is a type which contains the
information Python needs to treat a pointer to an object as an object. In a
normal "release" build, it contains only the object's reference count and a
pointer to the corresponding type object. It corresponds to the fields defined
by the expansion of the ``PyObject_HEAD`` macro.
All object types are extensions of this type. This is a type which
contains the information Python needs to treat a pointer to an object as an
object. In a normal "release" build, it contains only the object's
reference count and a pointer to the corresponding type object. It
corresponds to the fields defined by the expansion of the ``PyObject_HEAD``
macro.
.. ctype:: PyVarObject
This is an extension of :ctype:`PyObject` that adds the :attr:`ob_size` field.
This is only used for objects that have some notion of *length*. This type does
not often appear in the Python/C API. It corresponds to the fields defined by
the expansion of the ``PyObject_VAR_HEAD`` macro.
This is an extension of :ctype:`PyObject` that adds the :attr:`ob_size`
field. This is only used for objects that have some notion of *length*.
This type does not often appear in the Python/C API. It corresponds to the
fields defined by the expansion of the ``PyObject_VAR_HEAD`` macro.
These macros are used in the definition of :ctype:`PyObject` and
:ctype:`PyVarObject`:
@ -40,9 +41,9 @@ These macros are used in the definition of :ctype:`PyObject` and
This is a macro which expands to the declarations of the fields of the
:ctype:`PyObject` type; it is used when declaring new types which represent
objects without a varying length. The specific fields it expands to depend on
the definition of :cmacro:`Py_TRACE_REFS`. By default, that macro is not
defined, and :cmacro:`PyObject_HEAD` expands to::
objects without a varying length. The specific fields it expands to depend
on the definition of :cmacro:`Py_TRACE_REFS`. By default, that macro is
not defined, and :cmacro:`PyObject_HEAD` expands to::
Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;
@ -57,9 +58,9 @@ These macros are used in the definition of :ctype:`PyObject` and
.. cmacro:: PyObject_VAR_HEAD
This is a macro which expands to the declarations of the fields of the
:ctype:`PyVarObject` type; it is used when declaring new types which represent
objects with a length that varies from instance to instance. This macro always
expands to::
:ctype:`PyVarObject` type; it is used when declaring new types which
represent objects with a length that varies from instance to instance.
This macro always expands to::
PyObject_HEAD
Py_ssize_t ob_size;
@ -72,11 +73,12 @@ PyObject_HEAD_INIT
.. ctype:: PyCFunction
Type of the functions used to implement most Python callables in C. Functions of
this type take two :ctype:`PyObject\*` parameters and return one such value. If
the return value is *NULL*, an exception shall have been set. If not *NULL*,
the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.
Type of the functions used to implement most Python callables in C.
Functions of this type take two :ctype:`PyObject\*` parameters and return
one such value. If the return value is *NULL*, an exception shall have
been set. If not *NULL*, the return value is interpreted as the return
value of the function as exposed in Python. The function must return a new
reference.
.. ctype:: PyMethodDef
@ -117,20 +119,21 @@ convention flags can be combined with a binding flag.
.. data:: METH_VARARGS
This is the typical calling convention, where the methods have the type
:ctype:`PyCFunction`. The function expects two :ctype:`PyObject\*` values. The
first one is the *self* object for methods; for module functions, it has the
value given to :cfunc:`Py_InitModule4` (or *NULL* if :cfunc:`Py_InitModule` was
used). The second parameter (often called *args*) is a tuple object
representing all arguments. This parameter is typically processed using
:cfunc:`PyArg_ParseTuple` or :cfunc:`PyArg_UnpackTuple`.
:ctype:`PyCFunction`. The function expects two :ctype:`PyObject\*` values.
The first one is the *self* object for methods; for module functions, it
has the value given to :cfunc:`Py_InitModule4` (or *NULL* if
:cfunc:`Py_InitModule` was used). The second parameter (often called
*args*) is a tuple object representing all arguments. This parameter is
typically processed using :cfunc:`PyArg_ParseTuple` or
:cfunc:`PyArg_UnpackTuple`.
.. data:: METH_KEYWORDS
Methods with these flags must be of type :ctype:`PyCFunctionWithKeywords`. The
function expects three parameters: *self*, *args*, and a dictionary of all the
keyword arguments. The flag is typically combined with :const:`METH_VARARGS`,
and the parameters are typically processed using
Methods with these flags must be of type :ctype:`PyCFunctionWithKeywords`.
The function expects three parameters: *self*, *args*, and a dictionary of
all the keyword arguments. The flag is typically combined with
:const:`METH_VARARGS`, and the parameters are typically processed using
:cfunc:`PyArg_ParseTupleAndKeywords`.
@ -139,8 +142,8 @@ convention flags can be combined with a binding flag.
Methods without parameters don't need to check whether arguments are given if
they are listed with the :const:`METH_NOARGS` flag. They need to be of type
:ctype:`PyCFunction`. When used with object methods, the first parameter is
typically named ``self`` and will hold a reference to the object instance. In
all cases the second parameter will be *NULL*.
typically named ``self`` and will hold a reference to the object instance.
In all cases the second parameter will be *NULL*.
.. data:: METH_O
@ -154,11 +157,11 @@ convention flags can be combined with a binding flag.
.. data:: METH_OLDARGS
This calling convention is deprecated. The method must be of type
:ctype:`PyCFunction`. The second argument is *NULL* if no arguments are given,
a single object if exactly one argument is given, and a tuple of objects if more
than one argument is given. There is no way for a function using this
convention to distinguish between a call with multiple arguments and a call with
a tuple as the only argument.
:ctype:`PyCFunction`. The second argument is *NULL* if no arguments are
given, a single object if exactly one argument is given, and a tuple of
objects if more than one argument is given. There is no way for a function
using this convention to distinguish between a call with multiple arguments
and a call with a tuple as the only argument.
These two constants are not used to indicate the calling convention but the
binding when use with methods of classes. These may not be used for functions
@ -170,9 +173,10 @@ method.
.. index:: builtin: classmethod
The method will be passed the type object as the first parameter rather than an
instance of the type. This is used to create *class methods*, similar to what
is created when using the :func:`classmethod` built-in function.
The method will be passed the type object as the first parameter rather
than an instance of the type. This is used to create *class methods*,
similar to what is created when using the :func:`classmethod` built-in
function.
.. versionadded:: 2.3
@ -181,9 +185,9 @@ method.
.. index:: builtin: staticmethod
The method will be passed *NULL* as the first parameter rather than an instance
of the type. This is used to create *static methods*, similar to what is
created when using the :func:`staticmethod` built-in function.
The method will be passed *NULL* as the first parameter rather than an
instance of the type. This is used to create *static methods*, similar to
what is created when using the :func:`staticmethod` built-in function.
.. versionadded:: 2.3
@ -195,12 +199,13 @@ definition with the same method name.
The method will be loaded in place of existing definitions. Without
*METH_COEXIST*, the default is to skip repeated definitions. Since slot
wrappers are loaded before the method table, the existence of a *sq_contains*
slot, for example, would generate a wrapped method named :meth:`__contains__`
and preclude the loading of a corresponding PyCFunction with the same name.
With the flag defined, the PyCFunction will be loaded in place of the wrapper
object and will co-exist with the slot. This is helpful because calls to
PyCFunctions are optimized more than wrapper object calls.
wrappers are loaded before the method table, the existence of a
*sq_contains* slot, for example, would generate a wrapped method named
:meth:`__contains__` and preclude the loading of a corresponding
PyCFunction with the same name. With the flag defined, the PyCFunction
will be loaded in place of the wrapper object and will co-exist with the
slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.
.. versionadded:: 2.4
@ -269,6 +274,7 @@ definition with the same method name.
.. cfunction:: PyObject* Py_FindMethod(PyMethodDef table[], PyObject *ob, char *name)
Return a bound method object for an extension type implemented in C. This can
be useful in the implementation of a :attr:`tp_getattro` or :attr:`tp_getattr`
handler that does not use the :cfunc:`PyObject_GenericGetAttr` function.
Return a bound method object for an extension type implemented in C. This
can be useful in the implementation of a :attr:`tp_getattro` or
:attr:`tp_getattr` handler that does not use the
:cfunc:`PyObject_GenericGetAttr` function.