Optimize `LOAD_FAST` opcodes into faster versions that load borrowed references onto the operand stack when we can prove that the lifetime of the local outlives the lifetime of the temporary that is loaded onto the stack.
Codegen phase has an optimization that transforms
```
LOAD_CONST x
LOAD_CONST y
LOAD_CONXT z
BUILD_LIST/BUILD_SET (3)
```
->
```
BUILD_LIST/BUILD_SET (0)
LOAD_CONST (x, y, z)
LIST_EXTEND/SET_UPDATE 1
```
This optimization has now been moved to CFG phase to make #128802 work.
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
Co-authored-by: Yan Yanchii <yyanchiy@gmail.com>
* Remove all 'if (0)' and 'if (1)' conditional stack effects
* Use array instead of conditional for BUILD_SLICE args
* Refactor LOAD_GLOBAL to use a common conditional uop
* Remove conditional stack effects from LOAD_ATTR specializations
* Replace conditional stack effects in LOAD_ATTR with a 0 or 1 sized array.
* Remove conditional stack effects from CALL_FUNCTION_EX
- The specialization logic determines the appropriate specialization using only the operand's type, which is safe to read non-atomically (changing it requires stopping the world). We are guaranteed that the type will not change in between when it is checked and when we specialize the bytecode because the types involved are immutable (you cannot assign to `__class__` for exact instances of `dict`, `set`, or `frozenset`). The bytecode is mutated atomically using helpers.
- The specialized instructions rely on the operand type not changing in between the `DEOPT_IF` checks and the calls to the appropriate type-specific helpers (e.g. `_PySet_Contains`). This is a correctness requirement in the default builds and there are no changes to the opcodes in the free-threaded builds that would invalidate this.
Each thread specializes a thread-local copy of the bytecode, created on the first RESUME, in free-threaded builds. All copies of the bytecode for a code object are stored in the co_tlbc array on the code object. Threads reserve a globally unique index identifying its copy of the bytecode in all co_tlbc arrays at thread creation and release the index at thread destruction. The first entry in every co_tlbc array always points to the "main" copy of the bytecode that is stored at the end of the code object. This ensures that no bytecode is copied for programs that do not use threads.
Thread-local bytecode can be disabled at runtime by providing either -X tlbc=0 or PYTHON_TLBC=0. Disabling thread-local bytecode also disables specialization.
Concurrent modifications to the bytecode made by the specializing interpreter and instrumentation use atomics, with specialization taking care not to overwrite an instruction that was instrumented concurrently.
The PEP 649 implementation will require a way to load NotImplementedError
from the bytecode. @markshannon suggested implementing this by converting
LOAD_ASSERTION_ERROR into a more general mechanism for loading constants.
This PR adds this new opcode. I will work on the rest of the implementation
of the PEP separately.
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
* Add CALL_PY_GENERAL, CALL_BOUND_METHOD_GENERAL and call CALL_NON_PY_GENERAL specializations.
* Remove CALL_PY_WITH_DEFAULTS specialization
* Use CALL_NON_PY_GENERAL in more cases when otherwise failing to specialize