* gh-112532: Use separate mimalloc heaps for GC objects
In `--disable-gil` builds, we now use four separate heaps in
anticipation of using mimalloc to find GC objects when the GIL is
disabled. To support this, we also make a few changes to mimalloc:
* `mi_heap_t` and `mi_tld_t` initialization is split from allocation.
This allows us to have a `mi_tld_t` per-`PyThreadState`, which is
important to keep interpreter isolation, since the same OS thread may
run in multiple interpreters (using different PyThreadStates.)
* Heap abandoning (mi_heap_collect_ex) can now be called from a
different thread than the one that created the heap. This is necessary
because we may clear and delete the containing PyThreadStates from a
different thread during finalization and after fork().
* Use enum instead of defines and guard mimalloc includes.
* The enum typedef will be convenient for future PRs that use the type.
* Guarding the mimalloc includes allows us to unconditionally include
pycore_mimalloc.h from other header files that rely on things like
`struct _mimalloc_thread_state`.
* Only define _mimalloc_thread_state in Py_GIL_DISABLED builds
The `PyThreadState_Clear()` function must only be called with the GIL
held and must be called from the same interpreter as the passed in
thread state. Otherwise, any Python objects on the thread state may be
destroyed using the wrong interpreter, leading to memory corruption.
This is also important for `Py_GIL_DISABLED` builds because free lists
will be associated with PyThreadStates and cleared in
`PyThreadState_Clear()`.
This fixes two places that called `PyThreadState_Clear()` from the wrong
interpreter and adds an assertion to `PyThreadState_Clear()`.
This replaces some usages of PyThread_type_lock with PyMutex, which does not require memory allocation to initialize.
This simplifies some of the runtime initialization and is also one step towards avoiding changing the default raw memory allocator during initialize/finalization, which can be non-thread-safe in some circumstances.
This updates `dtoa.c` to avoid using the Bigint free-list in --disable-gil builds and
to pre-computes the needed powers of 5 during interpreter initialization.
* gh-111962: Make dtoa thread-safe in `--disable-gil` builds.
This avoids using the Bigint free-list in `--disable-gil` builds
and pre-computes the needed powers of 5 during interpreter initialization.
* Fix size of cached powers of 5 array.
We need the powers of 5 up to 5**512 because we only jump straight to
underflow when the exponent is less than -512 (or larger than 308).
* Rename Py_NOGIL to Py_GIL_DISABLED
* Changes from review
* Fix assertion placement
* Move _PyRuntimeState.time to _posixstate.ticks_per_second and
time_module_state.ticks_per_second.
* Add time_module_state.clocks_per_second.
* Rename _PyTime_GetClockWithInfo() to py_clock().
* Rename _PyTime_GetProcessTimeWithInfo() to py_process_time().
* Add process_time_times() helper function, called by
py_process_time().
* os.times() is now always built: no longer rely on HAVE_TIMES.
Replace most of calls of _PyErr_WriteUnraisableMsg() and some
calls of PyErr_WriteUnraisable(NULL) with PyErr_FormatUnraisable().
Co-authored-by: Victor Stinner <vstinner@python.org>
This moves several general internal APIs out of _xxsubinterpretersmodule.c and into the new Python/crossinterp.c (and the corresponding internal headers).
Specifically:
* _Py_excinfo, etc.: the initial implementation for non-object exception snapshots (in pycore_pyerrors.h and Python/errors.c)
* _PyXI_exception_info, etc.: helpers for passing an exception beween interpreters (wraps _Py_excinfo)
* _PyXI_namespace, etc.: helpers for copying a dict of attrs between interpreters
* _PyXI_Enter(), _PyXI_Exit(): functions that abstract out the transitions between one interpreter and a second that will do some work temporarily
Again, these were all abstracted out of _xxsubinterpretersmodule.c as generalizations. I plan on proposing these as public API at some point.
- There is no longer a separate Python/executor.c file.
- Conventions in Python/bytecodes.c are slightly different -- don't use `goto error`,
you must use `GOTO_ERROR(error)` (same for others like `unused_local_error`).
- The `TIER_ONE` and `TIER_TWO` symbols are only valid in the generated (.c.h) files.
- In Lib/test/support/__init__.py, `Py_C_RECURSION_LIMIT` is imported from `_testcapi`.
- On Windows, in debug mode, stack allocation grows from 8MiB to 12MiB.
- **Beware!** This changes the env vars to enable uops and their debugging
to `PYTHON_UOPS` and `PYTHON_LLTRACE`.
This adds a new field 'state' to PyThreadState that can take on one of three values: _Py_THREAD_ATTACHED, _Py_THREAD_DETACHED, or _Py_THREAD_GC. The "attached" and "detached" states correspond closely to acquiring and releasing the GIL. The "gc" state is current unused, but will be used to implement stop-the-world GC for --disable-gil builds in the near future.
In a few places we switch to another interpreter without knowing if it has a thread state associated with the current thread. For the main interpreter there wasn't much of a problem, but for subinterpreters we were *mostly* okay re-using the tstate created with the interpreter (located via PyInterpreterState_ThreadHead()). There was a good chance that tstate wasn't actually in use by another thread.
However, there are no guarantees of that. Furthermore, re-using an already used tstate is currently fragile. To address this, now we create a new thread state in each of those places and use it.
One consequence of this change is that PyInterpreterState_ThreadHead() may not return NULL (though that won't happen for the main interpreter).
This change makes sure sys.path[0] is set properly for subinterpreters. Before, it wasn't getting set at all. This PR does not address the broader concerns from gh-109853.
* Remove unused <locale.h> includes.
* Remove unused <fcntl.h> include in traceback.h.
* Remove redundant <assert.h> and <stddef.h> includes. They are already
included by "Python.h".
* Remove <object.h> include in faulthandler.c. Python.h already includes it.
* Add missing <stdbool.h> in pycore_pythread.h if HAVE_PTHREAD_STUBS
is defined.
* Fix also warnings in pthread_stubs.h: don't redefine macros if they
are already defined, like the __NEED_pthread_t macro.
pycore_create_interpreter() now returns a status, rather than
calling Py_FatalError().
* PyInterpreterState_New() now calls Py_ExitStatusException() instead
of calling Py_FatalError() directly.
* Replace Py_FatalError() with PyStatus in init_interpreter() and
_PyObject_InitState().
* _PyErr_SetFromPyStatus() now raises RuntimeError, instead of
ValueError. It can now call PyErr_NoMemory(), raise MemoryError,
if it detects _PyStatus_NO_MEMORY() error message.
Python built with "configure --with-trace-refs" (tracing references)
is now ABI compatible with Python release build and debug build.
Moreover, it now also supports the Limited API.
Change Py_TRACE_REFS build:
* Remove _PyObject_EXTRA_INIT macro.
* The PyObject structure no longer has two extra members (_ob_prev
and _ob_next).
* Use a hash table (_Py_hashtable_t) to trace references (all
objects): PyInterpreterState.object_state.refchain.
* Py_TRACE_REFS build is now ABI compatible with release build and
debug build.
* Limited C API extensions can now be built with Py_TRACE_REFS:
xxlimited, xxlimited_35, _testclinic_limited.
* No longer rename PyModule_Create2() and PyModule_FromDefAndSpec2()
functions to PyModule_Create2TraceRefs() and
PyModule_FromDefAndSpec2TraceRefs().
* _Py_PrintReferenceAddresses() is now called before
finalize_interp_delete() which deletes the refchain hash table.
* test_tracemalloc find_trace() now also filters by size to ignore
the memory allocated by _PyRefchain_Trace().
Test changes for Py_TRACE_REFS:
* Add test.support.Py_TRACE_REFS constant.
* Add test_sys.test_getobjects() to test sys.getobjects() function.
* test_exceptions skips test_recursion_normalizing_with_no_memory()
and test_memory_error_in_PyErr_PrintEx() if Python is built with
Py_TRACE_REFS.
* test_repl skips test_no_memory().
* test_capi skisp test_set_nomemory().
Replace _PyDict_GetItemStringWithError() calls with
PyDict_GetItemStringRef() which returns a strong reference to the
item.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Replace PyDict_GetItem() calls with PyDict_GetItemRef()
or PyDict_GetItemWithError() to handle errors.
* Replace PyLong_AS_LONG() with _PyLong_AsInt()
and check for errors.
* Check for PyDict_Contains() error.
* pycore_init_builtins() checks for _PyType_Lookup() failure.
The linked list of objects was a global variable, which broke isolation between interpreters, causing crashes. To solve this, we've moved the linked list to each interpreter.
Remove the following private functions of the C API:
* _PyCodecInfo_GetIncrementalDecoder()
* _PyCodecInfo_GetIncrementalEncoder()
* _PyCodec_DecodeText()
* _PyCodec_EncodeText()
* _PyCodec_Forget()
* _PyCodec_Lookup()
* _PyCodec_LookupTextEncoding()
Move these functions to a new pycore_codecs.h internal header file.
These functions are no longer exported.
Remove the following private functions from the public C API:
* _Py_CheckFunctionResult()
* _PyObject_CallMethod()
* _PyObject_CallMethodId()
* _PyObject_CallMethodIdNoArgs()
* _PyObject_CallMethodIdObjArgs()
* _PyObject_CallMethodIdOneArg()
* _PyObject_MakeTpCall()
* _PyObject_VectorcallMethodId()
* _PyStack_AsDict()
Move these functions to the internal C API (pycore_call.h).
No longer export the following functions:
* _PyObject_Call()
* _PyObject_CallMethod()
* _PyObject_CallMethodId()
* _PyObject_CallMethodIdObjArgs()
* _PyObject_Call_Prepend()
* _PyObject_FastCallDictTstate()
* _PyStack_AsDict()
The following functions are still exported for stdlib shared
extensions:
* _Py_CheckFunctionResult()
* _PyObject_MakeTpCall()
Mark the following internal functions as extern:
* _PyStack_UnpackDict()
* _PyStack_UnpackDict_Free()
* _PyStack_UnpackDict_FreeNoDecRef()
Added a new, experimental, tracing optimizer and interpreter (a.k.a. "tier 2"). This currently pessimizes, so don't use yet -- this is infrastructure so we can experiment with optimizing passes. To enable it, pass ``-Xuops`` or set ``PYTHONUOPS=1``. To get debug output, set ``PYTHONUOPSDEBUG=N`` where ``N`` is a debug level (0-4, where 0 is no debug output and 4 is excessively verbose).
All of this code is likely to change dramatically before the 3.13 feature freeze. But this is a first step.
finalize_modules_clear_weaklist() now holds a strong reference to the
module longer than before: replace PyWeakref_GET_OBJECT() with
_PyWeakref_GET_REF().
* Add table describing possible executable classes for out-of-process debuggers.
* Remove shim code object creation code as it is no longer needed.
* Make lltrace a bit more robust w.r.t. non-standard frames.
For a while now, pending calls only run in the main thread (in the main interpreter). This PR changes things to allow any thread run a pending call, unless the pending call was explicitly added for the main thread to run.
This avoids the problematic race in drop_gil() by skipping the FORCE_SWITCHING code there for finalizing threads.
(The idea for this approach came out of discussions with @markshannon.)
Remove the following old functions to configure the Python
initialization, deprecated in Python 3.11:
* PySys_AddWarnOptionUnicode()
* PySys_AddWarnOption()
* PySys_AddXOption()
* PySys_HasWarnOptions()
* PySys_SetArgvEx()
* PySys_SetArgv()
* PySys_SetPath()
* Py_SetPath()
* Py_SetProgramName()
* Py_SetPythonHome()
* Py_SetStandardStreamEncoding()
* _Py_SetProgramFullPath()
Most of these functions are kept in the stable ABI, except:
* Py_SetStandardStreamEncoding()
* _Py_SetProgramFullPath()
Update Doc/extending/embedding.rst and Doc/extending/extending.rst to
use the new PyConfig API.
_testembed.c:
* check_stdio_details() now sets stdio_encoding and stdio_errors
of PyConfig.
* Add definitions of functions removed from the API but kept in the
stable ABI.
* test_init_from_config() and test_init_read_set() now use
PyConfig_SetString() instead of PyConfig_SetBytesString().
Remove _Py_ClearStandardStreamEncoding() internal function.
This implements PEP 695, Type Parameter Syntax. It adds support for:
- Generic functions (def func[T](): ...)
- Generic classes (class X[T](): ...)
- Type aliases (type X = ...)
- New scoping when the new syntax is used within a class body
- Compiler and interpreter changes to support the new syntax and scoping rules
Co-authored-by: Marc Mueller <30130371+cdce8p@users.noreply.github.com>
Co-authored-by: Eric Traut <eric@traut.com>
Co-authored-by: Larry Hastings <larry@hastings.org>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
We also add PyInterpreterState.ceval.own_gil to record if the interpreter actually has its own GIL.
Note that for now we don't actually respect own_gil; all interpreters still share the one GIL. However, PyInterpreterState.ceval.own_gil does reflect PyInterpreterConfig.own_gil. That lie is a temporary one that we will fix when the GIL really becomes per-interpreter.
This function no longer makes sense, since its runtime parameter is
no longer used. Use directly _PyThreadState_GET() and
_PyInterpreterState_GET() instead.
We also expose PyInterpreterConfig. This is part of the PEP 684 (per-interpreter GIL) implementation. We will add docs as soon as we can.
FYI, I'm adding the new config field for per-interpreter GIL in gh-99114.
This is strictly about moving the "obmalloc" runtime state from
`_PyRuntimeState` to `PyInterpreterState`. Doing so improves isolation
between interpreters, specifically most of the memory (incl. objects)
allocated for each interpreter's use. This is important for a
per-interpreter GIL, but such isolation is valuable even without it.
FWIW, a per-interpreter obmalloc is the proverbial
canary-in-the-coalmine when it comes to the isolation of objects between
interpreters. Any object that leaks (unintentionally) to another
interpreter is highly likely to cause a crash (on debug builds at
least). That's a useful thing to know, relative to interpreter
isolation.
This is the implementation of PEP683
Motivation:
The PR introduces the ability to immortalize instances in CPython which bypasses reference counting. Tagging objects as immortal allows up to skip certain operations when we know that the object will be around for the entire execution of the runtime.
Note that this by itself will bring a performance regression to the runtime due to the extra reference count checks. However, this brings the ability of having truly immutable objects that are useful in other contexts such as immutable data sharing between sub-interpreters.
The function is like Py_AtExit() but for a single interpreter. This is a companion to the atexit module's register() function, taking a C callback instead of a Python one.
We also update the _xxinterpchannels module to use _Py_AtExit(), which is the motivating case. (This is inspired by pain points felt while working on gh-101660.)
This reverts commit 87be8d9.
This approach to keeping the interned strings safe is turning out to be too complex for my taste (due to obmalloc isolation). For now I'm going with the simpler solution, making the dict per-interpreter. We can revisit that later if we want a sharing solution.
This is effectively two changes. The first (the bulk of the change) is where we add _Py_AddToGlobalDict() (and _PyRuntime.cached_objects.main_tstate, etc.). The second (much smaller) change is where we update PyUnicode_InternInPlace() to use _Py_AddToGlobalDict() instead of calling PyDict_SetDefault() directly.
Basically, _Py_AddToGlobalDict() is a wrapper around PyDict_SetDefault() that should be used whenever we need to add a value to a runtime-global dict object (in the few cases where we are leaving the container global rather than moving it to PyInterpreterState, e.g. the interned strings dict). _Py_AddToGlobalDict() does all the necessary work to make sure the target global dict is shared safely between isolated interpreters. This is especially important as we move the obmalloc state to each interpreter (gh-101660), as well as, potentially, the GIL (PEP 684).
https://github.com/python/cpython/issues/100227
Aside from sys and builtins, _io is the only core builtin module that hasn't been ported to multi-phase init. We may do so later (e.g. gh-101948), but in the meantime we must at least take care of the module's static types properly. (This came up while working on gh-101660.)
https://github.com/python/cpython/issues/94673
The error-handling code in new_interpreter() has been broken for a while. We hadn't noticed because those code mostly doesn't fail. (I noticed while working on gh-101660.) The problem is that we try to clear/delete the newly-created thread/interpreter using itself, which just failed. The solution is to switch back to the calling thread state first.
https://github.com/python/cpython/issues/98608
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
Prior to this change, errors in _Py_NewInterpreterFromConfig() were always fatal. Instead, callers should be able to handle such errors and keep going. That's what this change supports. (This was an oversight in the original implementation of _Py_NewInterpreterFromConfig().) Note that the existing [fatal] behavior of the public Py_NewInterpreter() is preserved.
https://github.com/python/cpython/issues/98608
The essentially eliminates the global variable, with the associated benefits. This is also a precursor to isolating this bit of state to PyInterpreterState.
Folks that currently read _Py_RefTotal directly would have to start using _Py_GetGlobalRefTotal() instead.
https://github.com/python/cpython/issues/102304
Add `MS_WINDOWS_DESKTOP`, `MS_WINDOWS_APPS`, `MS_WINDOWS_SYSTEM` and `MS_WINDOWS_GAMES` preprocessor definitions to allow switching off functionality missing from particular API partitions ("partitions" are used in Windows to identify overlapping subsets of APIs).
CPython only officially supports `MS_WINDOWS_DESKTOP` and `MS_WINDOWS_SYSTEM` (APPS is included by normal desktop builds, but APPS without DESKTOP is not covered). Other configurations are a convenience for people building their own runtimes.
`MS_WINDOWS_GAMES` is for the Xbox subset of the Windows API, which is also available on client OS, but is restricted compared to `MS_WINDOWS_DESKTOP`. These restrictions may change over time, as they relate to the build headers rather than the OS support, and so we assume that Xbox builds will use the latest available version of the GDK.
Enforcing (optionally) the restriction set by PEP 489 makes sense. Furthermore, this sets the stage for a potential restriction related to a per-interpreter GIL.
This change includes the following:
* add tests for extension module subinterpreter compatibility
* add _PyInterpreterConfig.check_multi_interp_extensions
* add Py_RTFLAGS_MULTI_INTERP_EXTENSIONS
* add _PyImport_CheckSubinterpIncompatibleExtensionAllowed()
* fail iff the module does not implement multi-phase init and the current interpreter is configured to check
https://github.com/python/cpython/issues/98627
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
A PyThreadState can be in one of many states in its lifecycle, represented by some status value. Those statuses haven't been particularly clear, so we're addressing that here. Specifically:
* made the distinct lifecycle statuses clear on PyThreadState
* identified expectations of how various lifecycle-related functions relate to status
* noted the various places where those expectations don't match the actual behavior
At some point we'll need to address the mismatches.
(This change also includes some cleanup.)
https://github.com/python/cpython/issues/59956
The objective of this change is to help make the GILState-related code easier to understand. This mostly involves moving code around and some semantically equivalent refactors. However, there are a also a small number of slight changes in structure and behavior:
* tstate_current is moved out of _PyRuntimeState.gilstate
* autoTSSkey is moved out of _PyRuntimeState.gilstate
* autoTSSkey is initialized earlier
* autoTSSkey is re-initialized (after fork) earlier
https://github.com/python/cpython/issues/59956
Fix a number of compile errors with GCC-12 on macOS:
1. In pylifecycle.c the compile rejects _Pragma within a declaration
2. posixmodule.c was missing a number of ..._RUNTIME macros for non-clang on macOS
3. _ctypes assumed that __builtin_available is always present on macOS
We actually don't move PyImport_Inittab. Instead, we make a copy that we keep on _PyRuntimeState and use only that after Py_Initialize(). We also prevent folks from modifying PyImport_Inittab (the best we can) after that point.
https://github.com/python/cpython/issues/81057
The global allocators were stored in 3 static global variables: _PyMem_Raw, _PyMem, and _PyObject. State for the "small block" allocator was stored in another 13. That makes a total of 16 global variables. We are moving all 16 to the _PyRuntimeState struct as part of the work for gh-81057. (If PEP 684 is accepted then we will follow up by moving them all to PyInterpreterState.)
https://github.com/python/cpython/issues/81057
As we consolidate global variables, we find some objects that are almost suitable to add to _PyRuntimeState.global_objects, but have some small/sneaky bit of per-interpreter state (e.g. a weakref list). We're adding PyInterpreterState.static_objects so we can move such objects there. (We'll removed the _not_used field once we've added others.)
https://github.com/python/cpython/issues/81057
* Adds EXIT_INTERPRETER instruction to exit PyEval_EvalDefault()
* Simplifies RETURN_VALUE, YIELD_VALUE and RETURN_GENERATOR instructions as they no longer need to check for entry frames.
We do the following:
* move the generated _PyUnicode_InitStaticStrings() to its own file
* move the generated _PyStaticObjects_CheckRefcnt() to its own file
* include pycore_global_objects.h in extension modules instead of pycore_runtime_init.h
These changes help us avoid including things that aren't needed.
https://github.com/python/cpython/issues/90868
Previously, the optional restrictions on subinterpreters were: disallow fork, subprocess, and threads. By default, we were disallowing all three for "isolated" interpreters. We always allowed all three for the main interpreter and those created through the legacy `Py_NewInterpreter()` API.
Those settings were a bit conservative, so here we've adjusted the optional restrictions to: fork, exec, threads, and daemon threads. The default for "isolated" interpreters disables fork, exec, and daemon threads. Regular threads are allowed by default. We continue always allowing everything For the main interpreter and the legacy API.
In the code, we add `_PyInterpreterConfig.allow_exec` and `_PyInterpreterConfig.allow_daemon_threads`. We also add `Py_RTFLAGS_DAEMON_THREADS` and `Py_RTFLAGS_EXEC`.
* As most of `test_embed` now uses `Py_InitializeFromConfig`, add
a specific test case to cover `Py_Initialize` (and `Py_InitializeEx`)
* Rename `_testembed` init helper to clarify the API used
* Add a `PyConfig_Clear` call in `Py_InitializeEx` to make
the code more obviously correct (it already didn't leak as
none of the dynamically allocated config fields were being
populated, but it's clearer if the wrappers follow the
documented API usage guidelines)
(see https://github.com/python/cpython/issues/98608)
This change does the following:
1. change the argument to a new `_PyInterpreterConfig` struct
2. rename the function to `_Py_NewInterpreterFromConfig()`, inspired by `Py_InitializeFromConfig()` (takes a `_PyInterpreterConfig` instead of `isolated_subinterpreter`)
3. split up the boolean `isolated_subinterpreter` into the corresponding multiple granular settings
* allow_fork
* allow_subprocess
* allow_threads
4. add `PyInterpreterState.feature_flags` to store those settings
5. add a function for checking if a feature is enabled on an opaque `PyInterpreterState *`
6. drop `PyConfig._isolated_interpreter`
The existing default (see `Py_NewInterpeter()` and `Py_Initialize*()`) allows fork, subprocess, and threads and the optional "isolated" interpreter (see the `_xxsubinterpreters` module) disables all three. None of that changes here; the defaults are preserved.
Note that the given `_PyInterpreterConfig` will not be used outside `_Py_NewInterpreterFromConfig()`, nor preserved. This contrasts with how `PyConfig` is currently preserved, used, and even modified outside `Py_InitializeFromConfig()`. I'd rather just avoid that mess from the start for `_PyInterpreterConfig`. We can preserve it later if we find an actual need.
This change allows us to follow up with a number of improvements (e.g. stop disallowing subprocess and support disallowing exec instead).
(Note that this PR adds "private" symbols. We'll probably make them public, and add docs, in a separate change.)
⚠️⚠️ Note for reviewers, hackers and fellow systems/low-level/compiler engineers ⚠️⚠️
If you have a lot of experience with this kind of shenanigans and want to improve the **first** version, **please make a PR against my branch** or **reach out by email** or **suggest code changes directly on GitHub**.
If you have any **refinements or optimizations** please, wait until the first version is merged before starting hacking or proposing those so we can keep this PR productive.
Static builtin types are finalized by calling _PyStaticType_Dealloc(). Before this change, we were skipping finalizing such a type if it still had subtypes (i.e. its tp_subclasses hadn't been cleared yet). The problem is that types hold several heap objects, which leak if we skip the type's finalization. This change addresses that.
For context, there's an old comment (from e9e3eab0b8) that says the following:
// If a type still has subtypes, it cannot be deallocated.
// A subtype can inherit attributes and methods of its parent type,
// and a type must no longer be used once it's deallocated.
However, it isn't clear that is actually still true. Clearing tp_dict should mean it isn't a problem.
Furthermore, the only subtypes that might still be around come from extension modules that didn't clean them up when unloaded (i.e. extensions that do not implement multi-phase initialization, AKA PEP 489). Those objects are already leaking, so this change doesn't change anything in that regard. Instead, this change means more objects gets cleaned up that before.
Seems in the past the copy of builtins was not made in some scenarios,
and the error was silenced. Write it now to stderr, so we have a chance
to see it.
It combines PyImport_ImportModule() and PyObject_GetAttrString()
and saves 4-6 lines of code on every use.
Add also _PyImport_GetModuleAttr() which takes Python strings as arguments.
This was added for bpo-40514 (gh-84694) to test out a per-interpreter GIL. However, it has since proven unnecessary to keep the experiment in the repo. (It can be done as a branch in a fork like normal.) So here we are removing:
* the configure option
* the macro
* the code enabled by the macro