cpython/Python/optimizer_symbols.c

912 lines
28 KiB
C

#ifdef _Py_TIER2
#include "Python.h"
#include "pycore_code.h"
#include "pycore_frame.h"
#include "pycore_long.h"
#include "pycore_optimizer.h"
#include "pycore_stats.h"
#include "pycore_tuple.h" // _PyTuple_FromArray()
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
/*
Symbols
=======
https://github.com/faster-cpython/ideas/blob/main/3.13/redundancy_eliminator.md
Logically, all symbols begin as UNKNOWN, and can transition downwards along the
edges of the lattice, but *never* upwards (see the diagram below). The UNKNOWN
state represents no information, and the BOTTOM state represents contradictory
information. Though symbols logically progress through all intermediate nodes,
we often skip in-between states for convenience:
UNKNOWN
| |
NULL |
| | <- Anything below this level is an object.
| NON_NULL
| | | <- Anything below this level has a known type version.
| TYPE_VERSION |
| | | <- Anything below this level has a known type.
| KNOWN_CLASS |
| | | | <- Anything below this level has a known truthiness.
| | | TRUTHINESS
| | | |
| TUPLE | |
| | | | <- Anything below this level is a known constant.
| KNOWN_VALUE
| | <- Anything below this level is unreachable.
BOTTOM
For example, after guarding that the type of an UNKNOWN local is int, we can
narrow the symbol to KNOWN_CLASS (logically progressing though NON_NULL and
TYPE_VERSION to get there). Later, we may learn that it is falsey based on the
result of a truth test, which would allow us to narrow the symbol to KNOWN_VALUE
(with a value of integer zero). If at any point we encounter a float guard on
the same symbol, that would be a contradiction, and the symbol would be set to
BOTTOM (indicating that the code is unreachable).
*/
#ifdef Py_DEBUG
static inline int get_lltrace(void) {
char *uop_debug = Py_GETENV("PYTHON_OPT_DEBUG");
int lltrace = 0;
if (uop_debug != NULL && *uop_debug >= '0') {
lltrace = *uop_debug - '0'; // TODO: Parse an int and all that
}
return lltrace;
}
#define DPRINTF(level, ...) \
if (get_lltrace() >= (level)) { printf(__VA_ARGS__); }
#else
#define DPRINTF(level, ...)
#endif
static JitOptSymbol NO_SPACE_SYMBOL = {
.tag = JIT_SYM_BOTTOM_TAG
};
static JitOptSymbol *
allocation_base(JitOptContext *ctx)
{
return ctx->t_arena.arena;
}
JitOptSymbol *
out_of_space(JitOptContext *ctx)
{
ctx->done = true;
ctx->out_of_space = true;
return &NO_SPACE_SYMBOL;
}
static JitOptSymbol *
sym_new(JitOptContext *ctx)
{
JitOptSymbol *self = &ctx->t_arena.arena[ctx->t_arena.ty_curr_number];
if (ctx->t_arena.ty_curr_number >= ctx->t_arena.ty_max_number) {
OPT_STAT_INC(optimizer_failure_reason_no_memory);
DPRINTF(1, "out of space for symbolic expression type\n");
return NULL;
}
ctx->t_arena.ty_curr_number++;
self->tag = JIT_SYM_UNKNOWN_TAG;
return self;
}
static void make_const(JitOptSymbol *sym, PyObject *val)
{
sym->tag = JIT_SYM_KNOWN_VALUE_TAG;
sym->value.value = Py_NewRef(val);
}
static inline void
sym_set_bottom(JitOptContext *ctx, JitOptSymbol *sym)
{
sym->tag = JIT_SYM_BOTTOM_TAG;
ctx->done = true;
ctx->contradiction = true;
}
bool
_Py_uop_sym_is_bottom(JitOptSymbol *sym)
{
return sym->tag == JIT_SYM_BOTTOM_TAG;
}
bool
_Py_uop_sym_is_not_null(JitOptSymbol *sym) {
return sym->tag == JIT_SYM_NON_NULL_TAG || sym->tag > JIT_SYM_BOTTOM_TAG;
}
bool
_Py_uop_sym_is_const(JitOptContext *ctx, JitOptSymbol *sym)
{
if (sym->tag == JIT_SYM_KNOWN_VALUE_TAG) {
return true;
}
if (sym->tag == JIT_SYM_TRUTHINESS_TAG) {
JitOptSymbol *value = allocation_base(ctx) + sym->truthiness.value;
int truthiness = _Py_uop_sym_truthiness(ctx, value);
if (truthiness < 0) {
return false;
}
make_const(sym, (truthiness ^ sym->truthiness.invert) ? Py_True : Py_False);
return true;
}
return false;
}
bool
_Py_uop_sym_is_null(JitOptSymbol *sym)
{
return sym->tag == JIT_SYM_NULL_TAG;
}
PyObject *
_Py_uop_sym_get_const(JitOptContext *ctx, JitOptSymbol *sym)
{
if (sym->tag == JIT_SYM_KNOWN_VALUE_TAG) {
return sym->value.value;
}
if (sym->tag == JIT_SYM_TRUTHINESS_TAG) {
JitOptSymbol *value = allocation_base(ctx) + sym->truthiness.value;
int truthiness = _Py_uop_sym_truthiness(ctx, value);
if (truthiness < 0) {
return NULL;
}
PyObject *res = (truthiness ^ sym->truthiness.invert) ? Py_True : Py_False;
make_const(sym, res);
return res;
}
return NULL;
}
void
_Py_uop_sym_set_type(JitOptContext *ctx, JitOptSymbol *sym, PyTypeObject *typ)
{
JitSymType tag = sym->tag;
switch(tag) {
case JIT_SYM_NULL_TAG:
sym_set_bottom(ctx, sym);
return;
case JIT_SYM_KNOWN_CLASS_TAG:
if (sym->cls.type != typ) {
sym_set_bottom(ctx, sym);
}
return;
case JIT_SYM_TYPE_VERSION_TAG:
if (sym->version.version == typ->tp_version_tag) {
sym->tag = JIT_SYM_KNOWN_CLASS_TAG;
sym->cls.type = typ;
sym->cls.version = typ->tp_version_tag;
}
else {
sym_set_bottom(ctx, sym);
}
return;
case JIT_SYM_KNOWN_VALUE_TAG:
if (Py_TYPE(sym->value.value) != typ) {
Py_CLEAR(sym->value.value);
sym_set_bottom(ctx, sym);
}
return;
case JIT_SYM_TUPLE_TAG:
if (typ != &PyTuple_Type) {
sym_set_bottom(ctx, sym);
}
return;
case JIT_SYM_BOTTOM_TAG:
return;
case JIT_SYM_NON_NULL_TAG:
case JIT_SYM_UNKNOWN_TAG:
sym->tag = JIT_SYM_KNOWN_CLASS_TAG;
sym->cls.version = 0;
sym->cls.type = typ;
return;
case JIT_SYM_TRUTHINESS_TAG:
if (typ != &PyBool_Type) {
sym_set_bottom(ctx, sym);
}
return;
}
}
bool
_Py_uop_sym_set_type_version(JitOptContext *ctx, JitOptSymbol *sym, unsigned int version)
{
PyTypeObject *type = _PyType_LookupByVersion(version);
if (type) {
_Py_uop_sym_set_type(ctx, sym, type);
}
JitSymType tag = sym->tag;
switch(tag) {
case JIT_SYM_NULL_TAG:
sym_set_bottom(ctx, sym);
return false;
case JIT_SYM_KNOWN_CLASS_TAG:
if (sym->cls.type->tp_version_tag != version) {
sym_set_bottom(ctx, sym);
return false;
}
else {
sym->cls.version = version;
return true;
}
case JIT_SYM_KNOWN_VALUE_TAG:
if (Py_TYPE(sym->value.value)->tp_version_tag != version) {
Py_CLEAR(sym->value.value);
sym_set_bottom(ctx, sym);
return false;
};
return true;
case JIT_SYM_TUPLE_TAG:
if (PyTuple_Type.tp_version_tag != version) {
sym_set_bottom(ctx, sym);
return false;
};
return true;
case JIT_SYM_TYPE_VERSION_TAG:
if (sym->version.version != version) {
sym_set_bottom(ctx, sym);
return false;
}
return true;
case JIT_SYM_BOTTOM_TAG:
return false;
case JIT_SYM_NON_NULL_TAG:
case JIT_SYM_UNKNOWN_TAG:
sym->tag = JIT_SYM_TYPE_VERSION_TAG;
sym->version.version = version;
return true;
case JIT_SYM_TRUTHINESS_TAG:
if (version != PyBool_Type.tp_version_tag) {
sym_set_bottom(ctx, sym);
return false;
}
return true;
}
Py_UNREACHABLE();
}
void
_Py_uop_sym_set_const(JitOptContext *ctx, JitOptSymbol *sym, PyObject *const_val)
{
JitSymType tag = sym->tag;
switch(tag) {
case JIT_SYM_NULL_TAG:
sym_set_bottom(ctx, sym);
return;
case JIT_SYM_KNOWN_CLASS_TAG:
if (sym->cls.type != Py_TYPE(const_val)) {
sym_set_bottom(ctx, sym);
return;
}
make_const(sym, const_val);
return;
case JIT_SYM_KNOWN_VALUE_TAG:
if (sym->value.value != const_val) {
Py_CLEAR(sym->value.value);
sym_set_bottom(ctx, sym);
}
return;
case JIT_SYM_TUPLE_TAG:
if (PyTuple_CheckExact(const_val)) {
Py_ssize_t len = _Py_uop_sym_tuple_length(sym);
if (len == PyTuple_GET_SIZE(const_val)) {
for (Py_ssize_t i = 0; i < len; i++) {
JitOptSymbol *sym_item = _Py_uop_sym_tuple_getitem(ctx, sym, i);
PyObject *item = PyTuple_GET_ITEM(const_val, i);
_Py_uop_sym_set_const(ctx, sym_item, item);
}
make_const(sym, const_val);
return;
}
}
sym_set_bottom(ctx, sym);
return;
case JIT_SYM_TYPE_VERSION_TAG:
if (sym->version.version != Py_TYPE(const_val)->tp_version_tag) {
sym_set_bottom(ctx, sym);
return;
}
make_const(sym, const_val);
return;
case JIT_SYM_BOTTOM_TAG:
return;
case JIT_SYM_NON_NULL_TAG:
case JIT_SYM_UNKNOWN_TAG:
make_const(sym, const_val);
return;
case JIT_SYM_TRUTHINESS_TAG:
if (!PyBool_Check(const_val) ||
(_Py_uop_sym_is_const(ctx, sym) &&
_Py_uop_sym_get_const(ctx, sym) != const_val))
{
sym_set_bottom(ctx, sym);
return;
}
JitOptSymbol *value = allocation_base(ctx) + sym->truthiness.value;
PyTypeObject *type = _Py_uop_sym_get_type(value);
if (const_val == (sym->truthiness.invert ? Py_False : Py_True)) {
// value is truthy. This is only useful for bool:
if (type == &PyBool_Type) {
_Py_uop_sym_set_const(ctx, value, Py_True);
}
}
// value is falsey:
else if (type == &PyBool_Type) {
_Py_uop_sym_set_const(ctx, value, Py_False);
}
else if (type == &PyLong_Type) {
_Py_uop_sym_set_const(ctx, value, Py_GetConstant(Py_CONSTANT_ZERO));
}
else if (type == &PyUnicode_Type) {
_Py_uop_sym_set_const(ctx, value, Py_GetConstant(Py_CONSTANT_EMPTY_STR));
}
// TODO: More types (GH-130415)!
make_const(sym, const_val);
return;
}
}
void
_Py_uop_sym_set_null(JitOptContext *ctx, JitOptSymbol *sym)
{
if (sym->tag == JIT_SYM_UNKNOWN_TAG) {
sym->tag = JIT_SYM_NULL_TAG;
}
else if (sym->tag > JIT_SYM_NULL_TAG) {
sym_set_bottom(ctx, sym);
}
}
void
_Py_uop_sym_set_non_null(JitOptContext *ctx, JitOptSymbol *sym)
{
if (sym->tag == JIT_SYM_UNKNOWN_TAG) {
sym->tag = JIT_SYM_NON_NULL_TAG;
}
else if (sym->tag == JIT_SYM_NULL_TAG) {
sym_set_bottom(ctx, sym);
}
}
JitOptSymbol *
_Py_uop_sym_new_unknown(JitOptContext *ctx)
{
JitOptSymbol *res = sym_new(ctx);
if (res == NULL) {
return out_of_space(ctx);
}
return res;
}
JitOptSymbol *
_Py_uop_sym_new_not_null(JitOptContext *ctx)
{
JitOptSymbol *res = sym_new(ctx);
if (res == NULL) {
return out_of_space(ctx);
}
res->tag = JIT_SYM_NON_NULL_TAG;
return res;
}
JitOptSymbol *
_Py_uop_sym_new_type(JitOptContext *ctx, PyTypeObject *typ)
{
JitOptSymbol *res = sym_new(ctx);
if (res == NULL) {
return out_of_space(ctx);
}
_Py_uop_sym_set_type(ctx, res, typ);
return res;
}
// Adds a new reference to const_val, owned by the symbol.
JitOptSymbol *
_Py_uop_sym_new_const(JitOptContext *ctx, PyObject *const_val)
{
assert(const_val != NULL);
JitOptSymbol *res = sym_new(ctx);
if (res == NULL) {
return out_of_space(ctx);
}
_Py_uop_sym_set_const(ctx, res, const_val);
return res;
}
JitOptSymbol *
_Py_uop_sym_new_null(JitOptContext *ctx)
{
JitOptSymbol *null_sym = sym_new(ctx);
if (null_sym == NULL) {
return out_of_space(ctx);
}
_Py_uop_sym_set_null(ctx, null_sym);
return null_sym;
}
PyTypeObject *
_Py_uop_sym_get_type(JitOptSymbol *sym)
{
JitSymType tag = sym->tag;
switch(tag) {
case JIT_SYM_NULL_TAG:
case JIT_SYM_BOTTOM_TAG:
case JIT_SYM_NON_NULL_TAG:
case JIT_SYM_UNKNOWN_TAG:
return NULL;
case JIT_SYM_KNOWN_CLASS_TAG:
return sym->cls.type;
case JIT_SYM_KNOWN_VALUE_TAG:
return Py_TYPE(sym->value.value);
case JIT_SYM_TYPE_VERSION_TAG:
return _PyType_LookupByVersion(sym->version.version);
case JIT_SYM_TUPLE_TAG:
return &PyTuple_Type;
case JIT_SYM_TRUTHINESS_TAG:
return &PyBool_Type;
}
Py_UNREACHABLE();
}
unsigned int
_Py_uop_sym_get_type_version(JitOptSymbol *sym)
{
JitSymType tag = sym->tag;
switch(tag) {
case JIT_SYM_NULL_TAG:
case JIT_SYM_BOTTOM_TAG:
case JIT_SYM_NON_NULL_TAG:
case JIT_SYM_UNKNOWN_TAG:
return 0;
case JIT_SYM_TYPE_VERSION_TAG:
return sym->version.version;
case JIT_SYM_KNOWN_CLASS_TAG:
return sym->cls.version;
case JIT_SYM_KNOWN_VALUE_TAG:
return Py_TYPE(sym->value.value)->tp_version_tag;
case JIT_SYM_TUPLE_TAG:
return PyTuple_Type.tp_version_tag;
case JIT_SYM_TRUTHINESS_TAG:
return PyBool_Type.tp_version_tag;
}
Py_UNREACHABLE();
}
bool
_Py_uop_sym_has_type(JitOptSymbol *sym)
{
return _Py_uop_sym_get_type(sym) != NULL;
}
bool
_Py_uop_sym_matches_type(JitOptSymbol *sym, PyTypeObject *typ)
{
assert(typ != NULL && PyType_Check(typ));
return _Py_uop_sym_get_type(sym) == typ;
}
bool
_Py_uop_sym_matches_type_version(JitOptSymbol *sym, unsigned int version)
{
return _Py_uop_sym_get_type_version(sym) == version;
}
int
_Py_uop_sym_truthiness(JitOptContext *ctx, JitOptSymbol *sym)
{
switch(sym->tag) {
case JIT_SYM_NULL_TAG:
case JIT_SYM_TYPE_VERSION_TAG:
case JIT_SYM_BOTTOM_TAG:
case JIT_SYM_NON_NULL_TAG:
case JIT_SYM_UNKNOWN_TAG:
return -1;
case JIT_SYM_KNOWN_CLASS_TAG:
/* TODO :
* Instances of some classes are always
* true. We should return 1 in those cases */
return -1;
case JIT_SYM_KNOWN_VALUE_TAG:
break;
case JIT_SYM_TUPLE_TAG:
return sym->tuple.length != 0;
case JIT_SYM_TRUTHINESS_TAG:
;
JitOptSymbol *value = allocation_base(ctx) + sym->truthiness.value;
int truthiness = _Py_uop_sym_truthiness(ctx, value);
if (truthiness < 0) {
return truthiness;
}
truthiness ^= sym->truthiness.invert;
make_const(sym, truthiness ? Py_True : Py_False);
return truthiness;
}
PyObject *value = sym->value.value;
/* Only handle a few known safe types */
if (value == Py_None) {
return 0;
}
PyTypeObject *tp = Py_TYPE(value);
if (tp == &PyLong_Type) {
return !_PyLong_IsZero((PyLongObject *)value);
}
if (tp == &PyUnicode_Type) {
return value != &_Py_STR(empty);
}
if (tp == &PyBool_Type) {
return value == Py_True;
}
return -1;
}
JitOptSymbol *
_Py_uop_sym_new_tuple(JitOptContext *ctx, int size, JitOptSymbol **args)
{
JitOptSymbol *res = sym_new(ctx);
if (res == NULL) {
return out_of_space(ctx);
}
if (size > MAX_SYMBOLIC_TUPLE_SIZE) {
res->tag = JIT_SYM_KNOWN_CLASS_TAG;
res->cls.type = &PyTuple_Type;
}
else {
res->tag = JIT_SYM_TUPLE_TAG;
res->tuple.length = size;
for (int i = 0; i < size; i++) {
res->tuple.items[i] = (uint16_t)(args[i] - allocation_base(ctx));
}
}
return res;
}
JitOptSymbol *
_Py_uop_sym_tuple_getitem(JitOptContext *ctx, JitOptSymbol *sym, int item)
{
assert(item >= 0);
if (sym->tag == JIT_SYM_KNOWN_VALUE_TAG) {
PyObject *tuple = sym->value.value;
if (PyTuple_CheckExact(tuple) && item < PyTuple_GET_SIZE(tuple)) {
return _Py_uop_sym_new_const(ctx, PyTuple_GET_ITEM(tuple, item));
}
}
else if (sym->tag == JIT_SYM_TUPLE_TAG && item < sym->tuple.length) {
return allocation_base(ctx) + sym->tuple.items[item];
}
return _Py_uop_sym_new_not_null(ctx);
}
int
_Py_uop_sym_tuple_length(JitOptSymbol *sym)
{
if (sym->tag == JIT_SYM_KNOWN_VALUE_TAG) {
PyObject *tuple = sym->value.value;
if (PyTuple_CheckExact(tuple)) {
return PyTuple_GET_SIZE(tuple);
}
}
else if (sym->tag == JIT_SYM_TUPLE_TAG) {
return sym->tuple.length;
}
return -1;
}
// Return true if known to be immortal.
bool
_Py_uop_sym_is_immortal(JitOptSymbol *sym)
{
if (sym->tag == JIT_SYM_KNOWN_VALUE_TAG) {
return _Py_IsImmortal(sym->value.value);
}
if (sym->tag == JIT_SYM_KNOWN_CLASS_TAG) {
return sym->cls.type == &PyBool_Type;
}
if (sym->tag == JIT_SYM_TRUTHINESS_TAG) {
return true;
}
return false;
}
JitOptSymbol *
_Py_uop_sym_new_truthiness(JitOptContext *ctx, JitOptSymbol *value, bool truthy)
{
// It's clearer to invert this in the signature:
bool invert = !truthy;
if (value->tag == JIT_SYM_TRUTHINESS_TAG && value->truthiness.invert == invert) {
return value;
}
JitOptSymbol *res = sym_new(ctx);
if (res == NULL) {
return out_of_space(ctx);
}
int truthiness = _Py_uop_sym_truthiness(ctx, value);
if (truthiness < 0) {
res->tag = JIT_SYM_TRUTHINESS_TAG;
res->truthiness.invert = invert;
res->truthiness.value = (uint16_t)(value - allocation_base(ctx));
}
else {
make_const(res, (truthiness ^ invert) ? Py_True : Py_False);
}
return res;
}
// 0 on success, -1 on error.
_Py_UOpsAbstractFrame *
_Py_uop_frame_new(
JitOptContext *ctx,
PyCodeObject *co,
int curr_stackentries,
JitOptSymbol **args,
int arg_len)
{
assert(ctx->curr_frame_depth < MAX_ABSTRACT_FRAME_DEPTH);
_Py_UOpsAbstractFrame *frame = &ctx->frames[ctx->curr_frame_depth];
frame->stack_len = co->co_stacksize;
frame->locals_len = co->co_nlocalsplus;
frame->locals = ctx->n_consumed;
frame->stack = frame->locals + co->co_nlocalsplus;
frame->stack_pointer = frame->stack + curr_stackentries;
ctx->n_consumed = ctx->n_consumed + (co->co_nlocalsplus + co->co_stacksize);
if (ctx->n_consumed >= ctx->limit) {
ctx->done = true;
ctx->out_of_space = true;
return NULL;
}
// Initialize with the initial state of all local variables
for (int i = 0; i < arg_len; i++) {
frame->locals[i] = args[i];
}
for (int i = arg_len; i < co->co_nlocalsplus; i++) {
JitOptSymbol *local = _Py_uop_sym_new_unknown(ctx);
frame->locals[i] = local;
}
// Initialize the stack as well
for (int i = 0; i < curr_stackentries; i++) {
JitOptSymbol *stackvar = _Py_uop_sym_new_unknown(ctx);
frame->stack[i] = stackvar;
}
return frame;
}
void
_Py_uop_abstractcontext_fini(JitOptContext *ctx)
{
if (ctx == NULL) {
return;
}
ctx->curr_frame_depth = 0;
int tys = ctx->t_arena.ty_curr_number;
for (int i = 0; i < tys; i++) {
JitOptSymbol *sym = &ctx->t_arena.arena[i];
if (sym->tag == JIT_SYM_KNOWN_VALUE_TAG) {
Py_CLEAR(sym->value.value);
}
}
}
void
_Py_uop_abstractcontext_init(JitOptContext *ctx)
{
static_assert(sizeof(JitOptSymbol) <= 2 * sizeof(uint64_t), "JitOptSymbol has grown");
ctx->limit = ctx->locals_and_stack + MAX_ABSTRACT_INTERP_SIZE;
ctx->n_consumed = ctx->locals_and_stack;
#ifdef Py_DEBUG // Aids debugging a little. There should never be NULL in the abstract interpreter.
for (int i = 0 ; i < MAX_ABSTRACT_INTERP_SIZE; i++) {
ctx->locals_and_stack[i] = NULL;
}
#endif
// Setup the arena for sym expressions.
ctx->t_arena.ty_curr_number = 0;
ctx->t_arena.ty_max_number = TY_ARENA_SIZE;
// Frame setup
ctx->curr_frame_depth = 0;
}
int
_Py_uop_frame_pop(JitOptContext *ctx)
{
_Py_UOpsAbstractFrame *frame = ctx->frame;
ctx->n_consumed = frame->locals;
ctx->curr_frame_depth--;
assert(ctx->curr_frame_depth >= 1);
ctx->frame = &ctx->frames[ctx->curr_frame_depth - 1];
return 0;
}
#define TEST_PREDICATE(PRED, MSG) \
do { \
if (!(PRED)) { \
PyErr_SetString( \
PyExc_AssertionError, \
(MSG)); \
goto fail; \
} \
} while (0)
static JitOptSymbol *
make_bottom(JitOptContext *ctx)
{
JitOptSymbol *sym = sym_new(ctx);
sym->tag = JIT_SYM_BOTTOM_TAG;
return sym;
}
PyObject *
_Py_uop_symbols_test(PyObject *Py_UNUSED(self), PyObject *Py_UNUSED(ignored))
{
JitOptContext context;
JitOptContext *ctx = &context;
_Py_uop_abstractcontext_init(ctx);
PyObject *val_42 = NULL;
PyObject *val_43 = NULL;
PyObject *tuple = NULL;
// Use a single 'sym' variable so copy-pasting tests is easier.
JitOptSymbol *sym = _Py_uop_sym_new_unknown(ctx);
if (sym == NULL) {
goto fail;
}
TEST_PREDICATE(!_Py_uop_sym_is_null(sym), "top is NULL");
TEST_PREDICATE(!_Py_uop_sym_is_not_null(sym), "top is not NULL");
TEST_PREDICATE(!_Py_uop_sym_matches_type(sym, &PyLong_Type), "top matches a type");
TEST_PREDICATE(!_Py_uop_sym_is_const(ctx, sym), "top is a constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == NULL, "top as constant is not NULL");
TEST_PREDICATE(!_Py_uop_sym_is_bottom(sym), "top is bottom");
sym = make_bottom(ctx);
if (sym == NULL) {
goto fail;
}
TEST_PREDICATE(!_Py_uop_sym_is_null(sym), "bottom is NULL is not false");
TEST_PREDICATE(!_Py_uop_sym_is_not_null(sym), "bottom is not NULL is not false");
TEST_PREDICATE(!_Py_uop_sym_matches_type(sym, &PyLong_Type), "bottom matches a type");
TEST_PREDICATE(!_Py_uop_sym_is_const(ctx, sym), "bottom is a constant is not false");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == NULL, "bottom as constant is not NULL");
TEST_PREDICATE(_Py_uop_sym_is_bottom(sym), "bottom isn't bottom");
sym = _Py_uop_sym_new_type(ctx, &PyLong_Type);
if (sym == NULL) {
goto fail;
}
TEST_PREDICATE(!_Py_uop_sym_is_null(sym), "int is NULL");
TEST_PREDICATE(_Py_uop_sym_is_not_null(sym), "int isn't not NULL");
TEST_PREDICATE(_Py_uop_sym_matches_type(sym, &PyLong_Type), "int isn't int");
TEST_PREDICATE(!_Py_uop_sym_matches_type(sym, &PyFloat_Type), "int matches float");
TEST_PREDICATE(!_Py_uop_sym_is_const(ctx, sym), "int is a constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == NULL, "int as constant is not NULL");
_Py_uop_sym_set_type(ctx, sym, &PyLong_Type); // Should be a no-op
TEST_PREDICATE(_Py_uop_sym_matches_type(sym, &PyLong_Type), "(int and int) isn't int");
_Py_uop_sym_set_type(ctx, sym, &PyFloat_Type); // Should make it bottom
TEST_PREDICATE(_Py_uop_sym_is_bottom(sym), "(int and float) isn't bottom");
val_42 = PyLong_FromLong(42);
assert(val_42 != NULL);
assert(_Py_IsImmortal(val_42));
val_43 = PyLong_FromLong(43);
assert(val_43 != NULL);
assert(_Py_IsImmortal(val_43));
sym = _Py_uop_sym_new_type(ctx, &PyLong_Type);
if (sym == NULL) {
goto fail;
}
_Py_uop_sym_set_const(ctx, sym, val_42);
TEST_PREDICATE(_Py_uop_sym_truthiness(ctx, sym) == 1, "bool(42) is not True");
TEST_PREDICATE(!_Py_uop_sym_is_null(sym), "42 is NULL");
TEST_PREDICATE(_Py_uop_sym_is_not_null(sym), "42 isn't not NULL");
TEST_PREDICATE(_Py_uop_sym_matches_type(sym, &PyLong_Type), "42 isn't an int");
TEST_PREDICATE(!_Py_uop_sym_matches_type(sym, &PyFloat_Type), "42 matches float");
TEST_PREDICATE(_Py_uop_sym_is_const(ctx, sym), "42 is not a constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) != NULL, "42 as constant is NULL");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == val_42, "42 as constant isn't 42");
TEST_PREDICATE(_Py_uop_sym_is_immortal(sym), "42 is not immortal");
_Py_uop_sym_set_type(ctx, sym, &PyLong_Type); // Should be a no-op
TEST_PREDICATE(_Py_uop_sym_matches_type(sym, &PyLong_Type), "(42 and 42) isn't an int");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == val_42, "(42 and 42) as constant isn't 42");
_Py_uop_sym_set_type(ctx, sym, &PyFloat_Type); // Should make it bottom
TEST_PREDICATE(_Py_uop_sym_is_bottom(sym), "(42 and float) isn't bottom");
sym = _Py_uop_sym_new_type(ctx, &PyBool_Type);
TEST_PREDICATE(_Py_uop_sym_is_immortal(sym), "a bool is not immortal");
sym = _Py_uop_sym_new_type(ctx, &PyLong_Type);
if (sym == NULL) {
goto fail;
}
_Py_uop_sym_set_const(ctx, sym, val_42);
_Py_uop_sym_set_const(ctx, sym, val_43); // Should make it bottom
TEST_PREDICATE(_Py_uop_sym_is_bottom(sym), "(42 and 43) isn't bottom");
sym = _Py_uop_sym_new_const(ctx, Py_None);
TEST_PREDICATE(_Py_uop_sym_truthiness(ctx, sym) == 0, "bool(None) is not False");
sym = _Py_uop_sym_new_const(ctx, Py_False);
TEST_PREDICATE(_Py_uop_sym_truthiness(ctx, sym) == 0, "bool(False) is not False");
sym = _Py_uop_sym_new_const(ctx, PyLong_FromLong(0));
TEST_PREDICATE(_Py_uop_sym_truthiness(ctx, sym) == 0, "bool(0) is not False");
JitOptSymbol *i1 = _Py_uop_sym_new_type(ctx, &PyFloat_Type);
JitOptSymbol *i2 = _Py_uop_sym_new_const(ctx, val_43);
JitOptSymbol *array[2] = { i1, i2 };
sym = _Py_uop_sym_new_tuple(ctx, 2, array);
TEST_PREDICATE(
_Py_uop_sym_matches_type(_Py_uop_sym_tuple_getitem(ctx, sym, 0), &PyFloat_Type),
"tuple item does not match value used to create tuple"
);
TEST_PREDICATE(
_Py_uop_sym_get_const(ctx, _Py_uop_sym_tuple_getitem(ctx, sym, 1)) == val_43,
"tuple item does not match value used to create tuple"
);
PyObject *pair[2] = { val_42, val_43 };
tuple = _PyTuple_FromArray(pair, 2);
sym = _Py_uop_sym_new_const(ctx, tuple);
TEST_PREDICATE(
_Py_uop_sym_get_const(ctx, _Py_uop_sym_tuple_getitem(ctx, sym, 1)) == val_43,
"tuple item does not match value used to create tuple"
);
sym = _Py_uop_sym_new_type(ctx, &PyTuple_Type);
TEST_PREDICATE(
_Py_uop_sym_is_not_null(_Py_uop_sym_tuple_getitem(ctx, sym, 42)),
"Unknown tuple item is not narrowed to non-NULL"
);
JitOptSymbol *value = _Py_uop_sym_new_type(ctx, &PyBool_Type);
sym = _Py_uop_sym_new_truthiness(ctx, value, false);
TEST_PREDICATE(_Py_uop_sym_matches_type(sym, &PyBool_Type), "truthiness is not boolean");
TEST_PREDICATE(_Py_uop_sym_truthiness(ctx, sym) == -1, "truthiness is not unknown");
TEST_PREDICATE(_Py_uop_sym_is_const(ctx, sym) == false, "truthiness is constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == NULL, "truthiness is not NULL");
TEST_PREDICATE(_Py_uop_sym_is_const(ctx, value) == false, "value is constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, value) == NULL, "value is not NULL");
_Py_uop_sym_set_const(ctx, sym, Py_False);
TEST_PREDICATE(_Py_uop_sym_matches_type(sym, &PyBool_Type), "truthiness is not boolean");
TEST_PREDICATE(_Py_uop_sym_truthiness(ctx, sym) == 0, "truthiness is not True");
TEST_PREDICATE(_Py_uop_sym_is_const(ctx, sym) == true, "truthiness is not constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, sym) == Py_False, "truthiness is not False");
TEST_PREDICATE(_Py_uop_sym_is_const(ctx, value) == true, "value is not constant");
TEST_PREDICATE(_Py_uop_sym_get_const(ctx, value) == Py_True, "value is not True");
_Py_uop_abstractcontext_fini(ctx);
Py_DECREF(val_42);
Py_DECREF(val_43);
Py_DECREF(tuple);
Py_RETURN_NONE;
fail:
_Py_uop_abstractcontext_fini(ctx);
Py_XDECREF(val_42);
Py_XDECREF(val_43);
Py_DECREF(tuple);
return NULL;
}
#endif /* _Py_TIER2 */