cpython/Python/remote_debugging.c

978 lines
28 KiB
C

#define _GNU_SOURCE
#include "pyconfig.h"
#include "Python.h"
#include "internal/pycore_runtime.h"
#include "internal/pycore_ceval.h"
#ifdef __linux__
# include <elf.h>
# include <sys/uio.h>
# if INTPTR_MAX == INT64_MAX
# define Elf_Ehdr Elf64_Ehdr
# define Elf_Shdr Elf64_Shdr
# define Elf_Phdr Elf64_Phdr
# else
# define Elf_Ehdr Elf32_Ehdr
# define Elf_Shdr Elf32_Shdr
# define Elf_Phdr Elf32_Phdr
# endif
# include <sys/mman.h>
#endif
#if defined(__APPLE__) && TARGET_OS_OSX
# include <libproc.h>
# include <mach-o/fat.h>
# include <mach-o/loader.h>
# include <mach-o/nlist.h>
# include <mach/mach.h>
# include <mach/mach_vm.h>
# include <mach/machine.h>
# include <sys/mman.h>
# include <sys/proc.h>
# include <sys/sysctl.h>
#endif
#ifdef MS_WINDOWS
// Windows includes and definitions
#include <windows.h>
#include <psapi.h>
#include <tlhelp32.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef MS_WINDOWS
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#ifndef HAVE_PROCESS_VM_READV
# define HAVE_PROCESS_VM_READV 0
#endif
#if defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
// Define a platform-independent process handle structure
typedef struct {
pid_t pid;
#ifdef MS_WINDOWS
HANDLE hProcess;
#endif
} proc_handle_t;
// Initialize the process handle
static int
init_proc_handle(proc_handle_t *handle, pid_t pid) {
handle->pid = pid;
#ifdef MS_WINDOWS
handle->hProcess = OpenProcess(
PROCESS_VM_READ | PROCESS_VM_WRITE | PROCESS_VM_OPERATION | PROCESS_QUERY_INFORMATION,
FALSE, pid);
if (handle->hProcess == NULL) {
PyErr_SetFromWindowsErr(0);
return -1;
}
#endif
return 0;
}
// Clean up the process handle
static void
cleanup_proc_handle(proc_handle_t *handle) {
#ifdef MS_WINDOWS
if (handle->hProcess != NULL) {
CloseHandle(handle->hProcess);
handle->hProcess = NULL;
}
#endif
handle->pid = 0;
}
#if defined(__APPLE__) && TARGET_OS_OSX
static uintptr_t
return_section_address(
const char* section,
mach_port_t proc_ref,
uintptr_t base,
void* map
) {
struct mach_header_64* hdr = (struct mach_header_64*)map;
int ncmds = hdr->ncmds;
int cmd_cnt = 0;
struct segment_command_64* cmd = map + sizeof(struct mach_header_64);
mach_vm_size_t size = 0;
mach_msg_type_number_t count = sizeof(vm_region_basic_info_data_64_t);
mach_vm_address_t address = (mach_vm_address_t)base;
vm_region_basic_info_data_64_t r_info;
mach_port_t object_name;
uintptr_t vmaddr = 0;
for (int i = 0; cmd_cnt < 2 && i < ncmds; i++) {
if (cmd->cmd == LC_SEGMENT_64 && strcmp(cmd->segname, "__TEXT") == 0) {
vmaddr = cmd->vmaddr;
}
if (cmd->cmd == LC_SEGMENT_64 && strcmp(cmd->segname, "__DATA") == 0) {
while (cmd->filesize != size) {
address += size;
kern_return_t ret = mach_vm_region(
proc_ref,
&address,
&size,
VM_REGION_BASIC_INFO_64,
(vm_region_info_t)&r_info, // cppcheck-suppress [uninitvar]
&count,
&object_name
);
if (ret != KERN_SUCCESS) {
PyErr_SetString(
PyExc_RuntimeError, "Cannot get any more VM maps.\n");
return 0;
}
}
int nsects = cmd->nsects;
struct section_64* sec = (struct section_64*)(
(void*)cmd + sizeof(struct segment_command_64)
);
for (int j = 0; j < nsects; j++) {
if (strcmp(sec[j].sectname, section) == 0) {
return base + sec[j].addr - vmaddr;
}
}
cmd_cnt++;
}
cmd = (struct segment_command_64*)((void*)cmd + cmd->cmdsize);
}
// We should not be here, but if we are there, we should say about this
PyErr_SetString(
PyExc_RuntimeError, "Cannot find section address.\n");
return 0;
}
static uintptr_t
search_section_in_file(const char* secname, char* path, uintptr_t base, mach_vm_size_t size, mach_port_t proc_ref)
{
int fd = open(path, O_RDONLY);
if (fd == -1) {
PyErr_Format(PyExc_RuntimeError, "Cannot open binary %s\n", path);
return 0;
}
struct stat fs;
if (fstat(fd, &fs) == -1) {
PyErr_Format(PyExc_RuntimeError, "Cannot get size of binary %s\n", path);
close(fd);
return 0;
}
void* map = mmap(0, fs.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (map == MAP_FAILED) {
PyErr_Format(PyExc_RuntimeError, "Cannot map binary %s\n", path);
close(fd);
return 0;
}
uintptr_t result = 0;
struct mach_header_64* hdr = (struct mach_header_64*)map;
switch (hdr->magic) {
case MH_MAGIC:
case MH_CIGAM:
case FAT_MAGIC:
case FAT_CIGAM:
PyErr_SetString(PyExc_RuntimeError, "32-bit Mach-O binaries are not supported");
break;
case MH_MAGIC_64:
case MH_CIGAM_64:
result = return_section_address(secname, proc_ref, base, map);
break;
default:
PyErr_SetString(PyExc_RuntimeError, "Unknown Mach-O magic");
break;
}
munmap(map, fs.st_size);
if (close(fd) != 0) {
PyErr_SetFromErrno(PyExc_OSError);
}
return result;
}
static mach_port_t
pid_to_task(pid_t pid)
{
mach_port_t task;
kern_return_t result;
result = task_for_pid(mach_task_self(), pid, &task);
if (result != KERN_SUCCESS) {
PyErr_Format(PyExc_PermissionError, "Cannot get task for PID %d", pid);
return 0;
}
return task;
}
static uintptr_t
search_map_for_section(proc_handle_t *handle, const char* secname, const char* substr) {
mach_vm_address_t address = 0;
mach_vm_size_t size = 0;
mach_msg_type_number_t count = sizeof(vm_region_basic_info_data_64_t);
vm_region_basic_info_data_64_t region_info;
mach_port_t object_name;
mach_port_t proc_ref = pid_to_task(handle->pid);
if (proc_ref == 0) {
PyErr_SetString(PyExc_PermissionError, "Cannot get task for PID");
return 0;
}
int match_found = 0;
char map_filename[MAXPATHLEN + 1];
while (mach_vm_region(
proc_ref,
&address,
&size,
VM_REGION_BASIC_INFO_64,
(vm_region_info_t)&region_info,
&count,
&object_name) == KERN_SUCCESS)
{
if ((region_info.protection & VM_PROT_READ) == 0
|| (region_info.protection & VM_PROT_EXECUTE) == 0) {
address += size;
continue;
}
int path_len = proc_regionfilename(
handle->pid, address, map_filename, MAXPATHLEN);
if (path_len == 0) {
address += size;
continue;
}
char* filename = strrchr(map_filename, '/');
if (filename != NULL) {
filename++; // Move past the '/'
} else {
filename = map_filename; // No path, use the whole string
}
if (!match_found && strncmp(filename, substr, strlen(substr)) == 0) {
match_found = 1;
return search_section_in_file(
secname, map_filename, address, size, proc_ref);
}
address += size;
}
PyErr_SetString(PyExc_RuntimeError,
"mach_vm_region failed to find the section");
return 0;
}
#endif // (__APPLE__ && TARGET_OS_OSX)
#if defined(__linux__) && HAVE_PROCESS_VM_READV
static uintptr_t
search_elf_file_for_section(
proc_handle_t *handle,
const char* secname,
uintptr_t start_address,
const char *elf_file)
{
if (start_address == 0) {
return 0;
}
uintptr_t result = 0;
void* file_memory = NULL;
int fd = open(elf_file, O_RDONLY);
if (fd < 0) {
PyErr_SetFromErrno(PyExc_OSError);
goto exit;
}
struct stat file_stats;
if (fstat(fd, &file_stats) != 0) {
PyErr_SetFromErrno(PyExc_OSError);
goto exit;
}
file_memory = mmap(NULL, file_stats.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (file_memory == MAP_FAILED) {
PyErr_SetFromErrno(PyExc_OSError);
goto exit;
}
Elf_Ehdr* elf_header = (Elf_Ehdr*)file_memory;
Elf_Shdr* section_header_table = (Elf_Shdr*)(file_memory + elf_header->e_shoff);
Elf_Shdr* shstrtab_section = &section_header_table[elf_header->e_shstrndx];
char* shstrtab = (char*)(file_memory + shstrtab_section->sh_offset);
Elf_Shdr* section = NULL;
for (int i = 0; i < elf_header->e_shnum; i++) {
char* this_sec_name = shstrtab + section_header_table[i].sh_name;
// Move 1 character to account for the leading "."
this_sec_name += 1;
if (strcmp(secname, this_sec_name) == 0) {
section = &section_header_table[i];
break;
}
}
Elf_Phdr* program_header_table = (Elf_Phdr*)(file_memory + elf_header->e_phoff);
// Find the first PT_LOAD segment
Elf_Phdr* first_load_segment = NULL;
for (int i = 0; i < elf_header->e_phnum; i++) {
if (program_header_table[i].p_type == PT_LOAD) {
first_load_segment = &program_header_table[i];
break;
}
}
if (section != NULL && first_load_segment != NULL) {
uintptr_t elf_load_addr = first_load_segment->p_vaddr
- (first_load_segment->p_vaddr % first_load_segment->p_align);
result = start_address + (uintptr_t)section->sh_addr - elf_load_addr;
}
exit:
if (file_memory != NULL) {
munmap(file_memory, file_stats.st_size);
}
if (fd >= 0 && close(fd) != 0) {
PyErr_SetFromErrno(PyExc_OSError);
}
return result;
}
static uintptr_t
search_linux_map_for_section(proc_handle_t *handle, const char* secname, const char* substr)
{
char maps_file_path[64];
sprintf(maps_file_path, "/proc/%d/maps", handle->pid);
FILE* maps_file = fopen(maps_file_path, "r");
if (maps_file == NULL) {
PyErr_SetFromErrno(PyExc_OSError);
return 0;
}
size_t linelen = 0;
size_t linesz = PATH_MAX;
char *line = PyMem_Malloc(linesz);
if (!line) {
fclose(maps_file);
PyErr_NoMemory();
return 0;
}
uintptr_t retval = 0;
while (fgets(line + linelen, linesz - linelen, maps_file) != NULL) {
linelen = strlen(line);
if (line[linelen - 1] != '\n') {
// Read a partial line: realloc and keep reading where we left off.
// Note that even the last line will be terminated by a newline.
linesz *= 2;
char *biggerline = PyMem_Realloc(line, linesz);
if (!biggerline) {
PyMem_Free(line);
fclose(maps_file);
PyErr_NoMemory();
return 0;
}
line = biggerline;
continue;
}
// Read a full line: strip the newline
line[linelen - 1] = '\0';
// and prepare to read the next line into the start of the buffer.
linelen = 0;
unsigned long start = 0;
unsigned long path_pos = 0;
sscanf(line, "%lx-%*x %*s %*s %*s %*s %ln", &start, &path_pos);
if (!path_pos) {
// Line didn't match our format string. This shouldn't be
// possible, but let's be defensive and skip the line.
continue;
}
const char *path = line + path_pos;
const char *filename = strrchr(path, '/');
if (filename) {
filename++; // Move past the '/'
} else {
filename = path; // No directories, or an empty string
}
if (strstr(filename, substr)) {
retval = search_elf_file_for_section(handle, secname, start, path);
if (retval) {
break;
}
}
}
PyMem_Free(line);
fclose(maps_file);
return retval;
}
#endif // __linux__
#ifdef MS_WINDOWS
static void* analyze_pe(const wchar_t* mod_path, BYTE* remote_base, const char* secname) {
HANDLE hFile = CreateFileW(mod_path, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
PyErr_SetFromWindowsErr(0);
return NULL;
}
HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, 0);
if (!hMap) {
PyErr_SetFromWindowsErr(0);
CloseHandle(hFile);
return NULL;
}
BYTE* mapView = (BYTE*)MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0);
if (!mapView) {
PyErr_SetFromWindowsErr(0);
CloseHandle(hMap);
CloseHandle(hFile);
return NULL;
}
IMAGE_DOS_HEADER* pDOSHeader = (IMAGE_DOS_HEADER*)mapView;
if (pDOSHeader->e_magic != IMAGE_DOS_SIGNATURE) {
PyErr_SetString(PyExc_RuntimeError, "Invalid DOS signature.");
UnmapViewOfFile(mapView);
CloseHandle(hMap);
CloseHandle(hFile);
return NULL;
}
IMAGE_NT_HEADERS* pNTHeaders = (IMAGE_NT_HEADERS*)(mapView + pDOSHeader->e_lfanew);
if (pNTHeaders->Signature != IMAGE_NT_SIGNATURE) {
PyErr_SetString(PyExc_RuntimeError, "Invalid NT signature.");
UnmapViewOfFile(mapView);
CloseHandle(hMap);
CloseHandle(hFile);
return NULL;
}
IMAGE_SECTION_HEADER* pSection_header = (IMAGE_SECTION_HEADER*)(mapView + pDOSHeader->e_lfanew + sizeof(IMAGE_NT_HEADERS));
void* runtime_addr = NULL;
for (int i = 0; i < pNTHeaders->FileHeader.NumberOfSections; i++) {
const char* name = (const char*)pSection_header[i].Name;
if (strncmp(name, secname, IMAGE_SIZEOF_SHORT_NAME) == 0) {
runtime_addr = remote_base + pSection_header[i].VirtualAddress;
break;
}
}
UnmapViewOfFile(mapView);
CloseHandle(hMap);
CloseHandle(hFile);
return runtime_addr;
}
static uintptr_t
search_windows_map_for_section(proc_handle_t* handle, const char* secname, const wchar_t* substr) {
HANDLE hProcSnap;
do {
hProcSnap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, handle->pid);
} while (hProcSnap == INVALID_HANDLE_VALUE && GetLastError() == ERROR_BAD_LENGTH);
if (hProcSnap == INVALID_HANDLE_VALUE) {
PyErr_SetString(PyExc_PermissionError, "Unable to create module snapshot. Check permissions or PID.");
return 0;
}
MODULEENTRY32W moduleEntry;
moduleEntry.dwSize = sizeof(moduleEntry);
void* runtime_addr = NULL;
for (BOOL hasModule = Module32FirstW(hProcSnap, &moduleEntry); hasModule; hasModule = Module32NextW(hProcSnap, &moduleEntry)) {
// Look for either python executable or DLL
if (wcsstr(moduleEntry.szModule, substr)) {
runtime_addr = analyze_pe(moduleEntry.szExePath, moduleEntry.modBaseAddr, secname);
if (runtime_addr != NULL) {
break;
}
}
}
CloseHandle(hProcSnap);
return (uintptr_t)runtime_addr;
}
#endif // MS_WINDOWS
// Get the PyRuntime section address for any platform
static uintptr_t
get_py_runtime(proc_handle_t* handle)
{
uintptr_t address = 0;
#ifdef MS_WINDOWS
// On Windows, search for 'python' in executable or DLL
address = search_windows_map_for_section(handle, "PyRuntime", L"python");
if (address == 0) {
// Error out: 'python' substring covers both executable and DLL
PyErr_SetString(PyExc_RuntimeError, "Failed to find the PyRuntime section in the process.");
}
#elif defined(__linux__)
// On Linux, search for 'python' in executable or DLL
address = search_linux_map_for_section(handle, "PyRuntime", "python");
if (address == 0) {
// Error out: 'python' substring covers both executable and DLL
PyErr_SetString(PyExc_RuntimeError, "Failed to find the PyRuntime section in the process.");
}
#else
// On macOS, try libpython first, then fall back to python
address = search_map_for_section(handle, "PyRuntime", "libpython");
if (address == 0) {
// TODO: Differentiate between not found and error
PyErr_Clear();
address = search_map_for_section(handle, "PyRuntime", "python");
}
#endif
return address;
}
// Platform-independent memory read function
static int
read_memory(proc_handle_t *handle, uint64_t remote_address, size_t len, void* dst)
{
#ifdef MS_WINDOWS
SIZE_T read_bytes = 0;
SIZE_T result = 0;
do {
if (!ReadProcessMemory(handle->hProcess, (LPCVOID)(remote_address + result), (char*)dst + result, len - result, &read_bytes)) {
PyErr_SetFromWindowsErr(0);
return -1;
}
result += read_bytes;
} while (result < len);
return 0;
#elif defined(__linux__) && HAVE_PROCESS_VM_READV
struct iovec local[1];
struct iovec remote[1];
Py_ssize_t result = 0;
Py_ssize_t read_bytes = 0;
do {
local[0].iov_base = (char*)dst + result;
local[0].iov_len = len - result;
remote[0].iov_base = (void*)(remote_address + result);
remote[0].iov_len = len - result;
read_bytes = process_vm_readv(handle->pid, local, 1, remote, 1, 0);
if (read_bytes < 0) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
result += read_bytes;
} while ((size_t)read_bytes != local[0].iov_len);
return 0;
#elif defined(__APPLE__) && TARGET_OS_OSX
Py_ssize_t result = -1;
kern_return_t kr = mach_vm_read_overwrite(
pid_to_task(handle->pid),
(mach_vm_address_t)remote_address,
len,
(mach_vm_address_t)dst,
(mach_vm_size_t*)&result);
if (kr != KERN_SUCCESS) {
switch (kr) {
case KERN_PROTECTION_FAILURE:
PyErr_SetString(PyExc_PermissionError, "Not enough permissions to read memory");
break;
case KERN_INVALID_ARGUMENT:
PyErr_SetString(PyExc_PermissionError, "Invalid argument to mach_vm_read_overwrite");
break;
default:
PyErr_SetString(PyExc_RuntimeError, "Unknown error reading memory");
}
return -1;
}
return 0;
#else
Py_UNREACHABLE();
#endif
}
// Platform-independent memory write function
static int
write_memory(proc_handle_t *handle, uintptr_t remote_address, size_t len, const void* src)
{
#ifdef MS_WINDOWS
SIZE_T written = 0;
SIZE_T result = 0;
do {
if (!WriteProcessMemory(handle->hProcess, (LPVOID)(remote_address + result), (const char*)src + result, len - result, &written)) {
PyErr_SetFromWindowsErr(0);
return -1;
}
result += written;
} while (result < len);
return 0;
#elif defined(__linux__) && HAVE_PROCESS_VM_READV
struct iovec local[1];
struct iovec remote[1];
Py_ssize_t result = 0;
Py_ssize_t written = 0;
do {
local[0].iov_base = (void*)((char*)src + result);
local[0].iov_len = len - result;
remote[0].iov_base = (void*)((char*)remote_address + result);
remote[0].iov_len = len - result;
written = process_vm_writev(handle->pid, local, 1, remote, 1, 0);
if (written < 0) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
result += written;
} while ((size_t)written != local[0].iov_len);
return 0;
#elif defined(__APPLE__) && TARGET_OS_OSX
kern_return_t kr = mach_vm_write(
pid_to_task(handle->pid),
(mach_vm_address_t)remote_address,
(vm_offset_t)src,
(mach_msg_type_number_t)len);
if (kr != KERN_SUCCESS) {
switch (kr) {
case KERN_PROTECTION_FAILURE:
PyErr_SetString(PyExc_PermissionError, "Not enough permissions to write memory");
break;
case KERN_INVALID_ARGUMENT:
PyErr_SetString(PyExc_PermissionError, "Invalid argument to mach_vm_write");
break;
default:
PyErr_Format(PyExc_RuntimeError, "Unknown error writing memory: %d", (int)kr);
}
return -1;
}
return 0;
#else
Py_UNREACHABLE();
#endif
}
static int
is_prerelease_version(uint64_t version)
{
return (version & 0xF0) != 0xF0;
}
static int
ensure_debug_offset_compatibility(const _Py_DebugOffsets* debug_offsets)
{
if (memcmp(debug_offsets->cookie, _Py_Debug_Cookie, sizeof(debug_offsets->cookie)) != 0) {
// The remote is probably running a Python version predating debug offsets.
PyErr_SetString(
PyExc_RuntimeError,
"Can't determine the Python version of the remote process");
return -1;
}
// Assume debug offsets could change from one pre-release version to another,
// or one minor version to another, but are stable across patch versions.
if (is_prerelease_version(Py_Version) && Py_Version != debug_offsets->version) {
PyErr_SetString(
PyExc_RuntimeError,
"Can't send commands from a pre-release Python interpreter"
" to a process running a different Python version");
return -1;
}
if (is_prerelease_version(debug_offsets->version) && Py_Version != debug_offsets->version) {
PyErr_SetString(
PyExc_RuntimeError,
"Can't send commands to a pre-release Python interpreter"
" from a process running a different Python version");
return -1;
}
unsigned int remote_major = (debug_offsets->version >> 24) & 0xFF;
unsigned int remote_minor = (debug_offsets->version >> 16) & 0xFF;
if (PY_MAJOR_VERSION != remote_major || PY_MINOR_VERSION != remote_minor) {
PyErr_Format(
PyExc_RuntimeError,
"Can't send commands from a Python %d.%d process to a Python %d.%d process",
PY_MAJOR_VERSION, PY_MINOR_VERSION, remote_major, remote_minor);
return -1;
}
// The debug offsets differ between free threaded and non-free threaded builds.
if (_Py_Debug_Free_Threaded && !debug_offsets->free_threaded) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot send commands from a free-threaded Python process"
" to a process running a non-free-threaded version");
return -1;
}
if (!_Py_Debug_Free_Threaded && debug_offsets->free_threaded) {
PyErr_SetString(
PyExc_RuntimeError,
"Cannot send commands to a free-threaded Python process"
" from a process running a non-free-threaded version");
return -1;
}
return 0;
}
static int
read_offsets(
proc_handle_t *handle,
uintptr_t *runtime_start_address,
_Py_DebugOffsets* debug_offsets
) {
*runtime_start_address = get_py_runtime(handle);
if (!*runtime_start_address) {
if (!PyErr_Occurred()) {
PyErr_SetString(
PyExc_RuntimeError, "Failed to get PyRuntime address");
}
return -1;
}
size_t size = sizeof(struct _Py_DebugOffsets);
if (0 != read_memory(handle, *runtime_start_address, size, debug_offsets)) {
return -1;
}
if (ensure_debug_offset_compatibility(debug_offsets)) {
return -1;
}
return 0;
}
static int
send_exec_to_proc_handle(proc_handle_t *handle, int tid, const char *debugger_script_path)
{
uintptr_t runtime_start_address;
struct _Py_DebugOffsets debug_offsets;
if (read_offsets(handle, &runtime_start_address, &debug_offsets)) {
return -1;
}
uintptr_t interpreter_state_list_head = (uintptr_t)debug_offsets.runtime_state.interpreters_head;
uintptr_t interpreter_state_addr;
if (0 != read_memory(
handle,
runtime_start_address + interpreter_state_list_head,
sizeof(void*),
&interpreter_state_addr))
{
return -1;
}
if (interpreter_state_addr == 0) {
PyErr_SetString(PyExc_RuntimeError, "Can't find a running interpreter in the remote process");
return -1;
}
int is_remote_debugging_enabled = 0;
if (0 != read_memory(
handle,
interpreter_state_addr + debug_offsets.debugger_support.remote_debugging_enabled,
sizeof(int),
&is_remote_debugging_enabled))
{
return -1;
}
if (is_remote_debugging_enabled != 1) {
PyErr_SetString(
PyExc_RuntimeError,
"Remote debugging is not enabled in the remote process");
return -1;
}
uintptr_t thread_state_addr;
unsigned long this_tid = 0;
if (tid != 0) {
if (0 != read_memory(
handle,
interpreter_state_addr + debug_offsets.interpreter_state.threads_head,
sizeof(void*),
&thread_state_addr))
{
return -1;
}
while (thread_state_addr != 0) {
if (0 != read_memory(
handle,
thread_state_addr + debug_offsets.thread_state.native_thread_id,
sizeof(this_tid),
&this_tid))
{
return -1;
}
if (this_tid == (unsigned long)tid) {
break;
}
if (0 != read_memory(
handle,
thread_state_addr + debug_offsets.thread_state.next,
sizeof(void*),
&thread_state_addr))
{
return -1;
}
}
if (thread_state_addr == 0) {
PyErr_SetString(
PyExc_RuntimeError,
"Can't find the specified thread in the remote process");
return -1;
}
} else {
if (0 != read_memory(
handle,
interpreter_state_addr + debug_offsets.interpreter_state.threads_main,
sizeof(void*),
&thread_state_addr))
{
return -1;
}
if (thread_state_addr == 0) {
PyErr_SetString(
PyExc_RuntimeError,
"Can't find the main thread in the remote process");
return -1;
}
}
// Ensure our path is not too long
if (debug_offsets.debugger_support.debugger_script_path_size <= strlen(debugger_script_path)) {
PyErr_SetString(PyExc_ValueError, "Debugger script path is too long");
return -1;
}
uintptr_t debugger_script_path_addr = (uintptr_t)(
thread_state_addr +
debug_offsets.debugger_support.remote_debugger_support +
debug_offsets.debugger_support.debugger_script_path);
if (0 != write_memory(
handle,
debugger_script_path_addr,
strlen(debugger_script_path) + 1,
debugger_script_path))
{
return -1;
}
int pending_call = 1;
uintptr_t debugger_pending_call_addr = (uintptr_t)(
thread_state_addr +
debug_offsets.debugger_support.remote_debugger_support +
debug_offsets.debugger_support.debugger_pending_call);
if (0 != write_memory(
handle,
debugger_pending_call_addr,
sizeof(int),
&pending_call))
{
return -1;
}
uintptr_t eval_breaker;
if (0 != read_memory(
handle,
thread_state_addr + debug_offsets.debugger_support.eval_breaker,
sizeof(uintptr_t),
&eval_breaker))
{
return -1;
}
eval_breaker |= _PY_EVAL_PLEASE_STOP_BIT;
if (0 != write_memory(
handle,
thread_state_addr + (uintptr_t)debug_offsets.debugger_support.eval_breaker,
sizeof(uintptr_t),
&eval_breaker))
{
return -1;
}
return 0;
}
#endif // defined(Py_REMOTE_DEBUG) && defined(Py_SUPPORTS_REMOTE_DEBUG)
int
_PySysRemoteDebug_SendExec(int pid, int tid, const char *debugger_script_path)
{
#if !defined(Py_SUPPORTS_REMOTE_DEBUG)
PyErr_SetString(PyExc_RuntimeError, "Remote debugging is not supported on this platform");
return -1;
#elif !defined(Py_REMOTE_DEBUG)
PyErr_SetString(PyExc_RuntimeError, "Remote debugging support has not been compiled in");
return -1;
#else
PyThreadState *tstate = _PyThreadState_GET();
const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
if (config->remote_debug != 1) {
PyErr_SetString(PyExc_RuntimeError, "Remote debugging is not enabled");
return -1;
}
proc_handle_t handle;
if (init_proc_handle(&handle, pid) < 0) {
return -1;
}
int rc = send_exec_to_proc_handle(&handle, tid, debugger_script_path);
cleanup_proc_handle(&handle);
return rc;
#endif
}