[DOCS] Adds examples to inference processor docs (#116018)
This commit is contained in:
parent
91605860ee
commit
f27cb5efd3
|
@ -735,3 +735,70 @@ You can also specify the target field as follows:
|
|||
|
||||
In this case, {feat-imp} is exposed in the
|
||||
`my_field.foo.feature_importance` field.
|
||||
|
||||
|
||||
[discrete]
|
||||
[[inference-processor-examples]]
|
||||
==== {infer-cap} processor examples
|
||||
|
||||
The following example uses an <<inference-apis,{infer} endpoint>> in an {infer} processor named `query_helper_pipeline` to perform a chat completion task.
|
||||
The processor generates an {es} query from natural language input using a prompt designed for a completion task type.
|
||||
Refer to <<put-inference-api-desc,this list>> for the {infer} service you use and check the corresponding examples of setting up an endpoint with the chat completion task type.
|
||||
|
||||
|
||||
[source,console]
|
||||
--------------------------------------------------
|
||||
PUT _ingest/pipeline/query_helper_pipeline
|
||||
{
|
||||
"processors": [
|
||||
{
|
||||
"script": {
|
||||
"source": "ctx.prompt = 'Please generate an elasticsearch search query on index `articles_index` for the following natural language query. Dates are in the field `@timestamp`, document types are in the field `type` (options are `news`, `publication`), categories in the field `category` and can be multiple (options are `medicine`, `pharmaceuticals`, `technology`), and document names are in the field `title` which should use a fuzzy match. Ignore fields which cannot be determined from the natural language query context: ' + ctx.content" <1>
|
||||
}
|
||||
},
|
||||
{
|
||||
"inference": {
|
||||
"model_id": "openai_chat_completions", <2>
|
||||
"input_output": {
|
||||
"input_field": "prompt",
|
||||
"output_field": "query"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"remove": {
|
||||
"field": "prompt"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
--------------------------------------------------
|
||||
// TEST[skip: An inference endpoint is required.]
|
||||
<1> The `prompt` field contains the prompt used for the completion task, created with <<modules-scripting-painless,Painless>>.
|
||||
`+ ctx.content` appends the natural language input to the prompt.
|
||||
<2> The ID of the pre-configured {infer} endpoint, which utilizes the <<infer-service-openai,`openai` service>> with the `completion` task type.
|
||||
|
||||
The following API request will simulate running a document through the ingest pipeline created previously:
|
||||
|
||||
[source,console]
|
||||
--------------------------------------------------
|
||||
POST _ingest/pipeline/query_helper_pipeline/_simulate
|
||||
{
|
||||
"docs": [
|
||||
{
|
||||
"_source": {
|
||||
"content": "artificial intelligence in medicine articles published in the last 12 months" <1>
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
--------------------------------------------------
|
||||
// TEST[skip: An inference processor with an inference endpoint is required.]
|
||||
<1> The natural language query used to generate an {es} query within the prompt created by the {infer} processor.
|
||||
|
||||
|
||||
[discrete]
|
||||
[[infer-proc-readings]]
|
||||
==== Further readings
|
||||
|
||||
* https://www.elastic.co/search-labs/blog/openwebcrawler-llms-semantic-text-resume-job-search[Which job is the best for you? Using LLMs and semantic_text to match resumes to jobs]
|
Loading…
Reference in New Issue