Make dictEntry opaque (#11465)

This PR refactors the abstraction of the dictEntry by making it opaque. This enables future optimizations of the dict implementation without affecting the code using it.

The PR contains 5 commits. More detailed commit messages are found in each commit.

* Make dictEntry opaque
* Let active expire cycle use dictScan instead of messing with internals
* activeDefragSdsDict use scan instead of iterator and drop dictSetNext
* Remove the bucket-cb from dictScan and move dictEntry defrag to dictScanDefrag
* Move stat_active_defrag_hits increment to activeDefragAlloc
This commit is contained in:
Oran Agra 2023-01-11 14:27:58 +02:00 committed by GitHub
commit 12826fa38f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 492 additions and 512 deletions

View File

@ -93,9 +93,9 @@ static void clusterBuildMessageHdr(clusterMsg *hdr, int type, size_t msglen);
/* Links to the next and previous entries for keys in the same slot are stored
* in the dict entry metadata. See Slot to Key API below. */
#define dictEntryNextInSlot(de) \
(((clusterDictEntryMetadata *)dictMetadata(de))->next)
(((clusterDictEntryMetadata *)dictEntryMetadata(de))->next)
#define dictEntryPrevInSlot(de) \
(((clusterDictEntryMetadata *)dictMetadata(de))->prev)
(((clusterDictEntryMetadata *)dictEntryMetadata(de))->prev)
#define RCVBUF_INIT_LEN 1024
#define RCVBUF_MAX_PREALLOC (1<<20) /* 1MB */
@ -7288,7 +7288,7 @@ int clusterRedirectBlockedClientIfNeeded(client *c) {
* understand if we have keys for a given hash slot. */
void slotToKeyAddEntry(dictEntry *entry, redisDb *db) {
sds key = entry->key;
sds key = dictGetKey(entry);
unsigned int hashslot = keyHashSlot(key, sdslen(key));
slotToKeys *slot_to_keys = &(*db->slots_to_keys).by_slot[hashslot];
slot_to_keys->count++;
@ -7305,7 +7305,7 @@ void slotToKeyAddEntry(dictEntry *entry, redisDb *db) {
}
void slotToKeyDelEntry(dictEntry *entry, redisDb *db) {
sds key = entry->key;
sds key = dictGetKey(entry);
unsigned int hashslot = keyHashSlot(key, sdslen(key));
slotToKeys *slot_to_keys = &(*db->slots_to_keys).by_slot[hashslot];
slot_to_keys->count--;
@ -7327,7 +7327,7 @@ void slotToKeyDelEntry(dictEntry *entry, redisDb *db) {
/* Updates neighbour entries when an entry has been replaced (e.g. reallocated
* during active defrag). */
void slotToKeyReplaceEntry(dictEntry *entry, redisDb *db) {
void slotToKeyReplaceEntry(dict *d, dictEntry *entry) {
dictEntry *next = dictEntryNextInSlot(entry);
dictEntry *prev = dictEntryPrevInSlot(entry);
if (next != NULL) {
@ -7337,8 +7337,10 @@ void slotToKeyReplaceEntry(dictEntry *entry, redisDb *db) {
dictEntryNextInSlot(prev) = entry;
} else {
/* The replaced entry was the first in the list. */
sds key = entry->key;
sds key = dictGetKey(entry);
unsigned int hashslot = keyHashSlot(key, sdslen(key));
clusterDictMetadata *dictmeta = dictMetadata(d);
redisDb *db = dictmeta->db;
slotToKeys *slot_to_keys = &(*db->slots_to_keys).by_slot[hashslot];
slot_to_keys->head = entry;
}
@ -7347,6 +7349,8 @@ void slotToKeyReplaceEntry(dictEntry *entry, redisDb *db) {
/* Initialize slots-keys map of given db. */
void slotToKeyInit(redisDb *db) {
db->slots_to_keys = zcalloc(sizeof(clusterSlotToKeyMapping));
clusterDictMetadata *dictmeta = dictMetadata(db->dict);
dictmeta->db = db;
}
/* Empty slots-keys map of given db. */

View File

@ -169,6 +169,9 @@ typedef struct clusterDictEntryMetadata {
dictEntry *next; /* Next entry with key in the same slot */
} clusterDictEntryMetadata;
typedef struct {
redisDb *db; /* A link back to the db this dict belongs to */
} clusterDictMetadata;
typedef struct clusterState {
clusterNode *myself; /* This node */
@ -409,7 +412,7 @@ void clusterPropagatePublish(robj *channel, robj *message, int sharded);
unsigned int keyHashSlot(char *key, int keylen);
void slotToKeyAddEntry(dictEntry *entry, redisDb *db);
void slotToKeyDelEntry(dictEntry *entry, redisDb *db);
void slotToKeyReplaceEntry(dictEntry *entry, redisDb *db);
void slotToKeyReplaceEntry(dict *d, dictEntry *entry);
void slotToKeyInit(redisDb *db);
void slotToKeyFlush(redisDb *db);
void slotToKeyDestroy(redisDb *db);

View File

@ -989,8 +989,8 @@ void configGetCommand(client *c) {
/* Note that hidden configs require an exact match (not a pattern) */
if (config->flags & HIDDEN_CONFIG) continue;
if (dictFind(matches, config->name)) continue;
if (stringmatch(name, de->key, 1)) {
dictAdd(matches, de->key, config);
if (stringmatch(name, dictGetKey(de), 1)) {
dictAdd(matches, dictGetKey(de), config);
}
}
dictReleaseIterator(di);
@ -1000,7 +1000,7 @@ void configGetCommand(client *c) {
addReplyMapLen(c, dictSize(matches));
while ((de = dictNext(di)) != NULL) {
standardConfig *config = (standardConfig *) dictGetVal(de);
addReplyBulkCString(c, de->key);
addReplyBulkCString(c, dictGetKey(de));
addReplyBulkSds(c, config->interface.get(config));
}
dictReleaseIterator(di);
@ -1754,7 +1754,7 @@ int rewriteConfig(char *path, int force_write) {
standardConfig *config = dictGetVal(de);
/* Only rewrite the primary names */
if (config->flags & ALIAS_CONFIG) continue;
if (config->interface.rewrite) config->interface.rewrite(config, de->key, state);
if (config->interface.rewrite) config->interface.rewrite(config, dictGetKey(de), state);
}
dictReleaseIterator(di);

View File

@ -228,7 +228,6 @@ static void dbSetValue(redisDb *db, robj *key, robj *val, int overwrite) {
dictEntry *de = dictFind(db->dict,key->ptr);
serverAssertWithInfo(NULL,key,de != NULL);
dictEntry auxentry = *de;
robj *old = dictGetVal(de);
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
val->lru = old->lru;
@ -246,17 +245,15 @@ static void dbSetValue(redisDb *db, robj *key, robj *val, int overwrite) {
decrRefCount(old);
/* Because of RM_StringDMA, old may be changed, so we need get old again */
old = dictGetVal(de);
/* Entry in auxentry may be changed, so we need update auxentry */
auxentry = *de;
}
dictSetVal(db->dict, de, val);
if (server.lazyfree_lazy_server_del) {
freeObjAsync(key,old,db->id);
dictSetVal(db->dict, &auxentry, NULL);
} else {
/* This is just decrRefCount(old); */
db->dict->type->valDestructor(db->dict, old);
}
dictFreeVal(db->dict, &auxentry);
}
/* Replace an existing key with a new value, we just replace value and don't
@ -942,7 +939,7 @@ void scanGenericCommand(client *c, robj *o, unsigned long cursor) {
privdata[0] = keys;
privdata[1] = o;
do {
cursor = dictScan(ht, cursor, scanCallback, NULL, privdata);
cursor = dictScan(ht, cursor, scanCallback, privdata);
} while (cursor &&
maxiterations-- &&
listLength(keys) < (unsigned long)count);

View File

@ -868,7 +868,7 @@ NULL
sds sizes = sdsempty();
sizes = sdscatprintf(sizes,"bits:%d ",(sizeof(void*) == 8)?64:32);
sizes = sdscatprintf(sizes,"robj:%d ",(int)sizeof(robj));
sizes = sdscatprintf(sizes,"dictentry:%d ",(int)sizeof(dictEntry));
sizes = sdscatprintf(sizes,"dictentry:%d ",(int)dictEntryMemUsage());
sizes = sdscatprintf(sizes,"sdshdr5:%d ",(int)sizeof(struct sdshdr5));
sizes = sdscatprintf(sizes,"sdshdr8:%d ",(int)sizeof(struct sdshdr8));
sizes = sdscatprintf(sizes,"sdshdr16:%d ",(int)sizeof(struct sdshdr16));

View File

@ -45,10 +45,6 @@
* pointers are worthwhile moving and which aren't */
int je_get_defrag_hint(void* ptr);
/* forward declarations*/
void defragDictBucketCallback(dict *d, dictEntry **bucketref);
dictEntry* replaceSatelliteDictKeyPtrAndOrDefragDictEntry(dict *d, sds oldkey, sds newkey, uint64_t hash, long *defragged);
/* Defrag helper for generic allocations.
*
* returns NULL in case the allocation wasn't moved.
@ -68,6 +64,7 @@ void* activeDefragAlloc(void *ptr) {
newptr = zmalloc_no_tcache(size);
memcpy(newptr, ptr, size);
zfree_no_tcache(ptr);
server.stat_active_defrag_hits++;
return newptr;
}
@ -92,7 +89,7 @@ sds activeDefragSds(sds sdsptr) {
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
robj *activeDefragStringOb(robj* ob, long *defragged) {
robj *activeDefragStringOb(robj* ob) {
robj *ret = NULL;
if (ob->refcount!=1)
return NULL;
@ -101,7 +98,6 @@ robj *activeDefragStringOb(robj* ob, long *defragged) {
if (ob->type!=OBJ_STRING || ob->encoding!=OBJ_ENCODING_EMBSTR) {
if ((ret = activeDefragAlloc(ob))) {
ob = ret;
(*defragged)++;
}
}
@ -111,7 +107,6 @@ robj *activeDefragStringOb(robj* ob, long *defragged) {
sds newsds = activeDefragSds((sds)ob->ptr);
if (newsds) {
ob->ptr = newsds;
(*defragged)++;
}
} else if (ob->encoding==OBJ_ENCODING_EMBSTR) {
/* The sds is embedded in the object allocation, calculate the
@ -119,7 +114,6 @@ robj *activeDefragStringOb(robj* ob, long *defragged) {
long ofs = (intptr_t)ob->ptr - (intptr_t)ob;
if ((ret = activeDefragAlloc(ob))) {
ret->ptr = (void*)((intptr_t)ret + ofs);
(*defragged)++;
}
} else if (ob->encoding!=OBJ_ENCODING_INT) {
serverPanic("Unknown string encoding");
@ -133,68 +127,36 @@ robj *activeDefragStringOb(robj* ob, long *defragged) {
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
luaScript *activeDefragLuaScript(luaScript *script, long *defragged) {
luaScript *activeDefragLuaScript(luaScript *script) {
luaScript *ret = NULL;
/* try to defrag script struct */
if ((ret = activeDefragAlloc(script))) {
script = ret;
(*defragged)++;
}
/* try to defrag actual script object */
robj *ob = activeDefragStringOb(script->body, defragged);
robj *ob = activeDefragStringOb(script->body);
if (ob) script->body = ob;
return ret;
}
/* Defrag helper for dictEntries to be used during dict iteration (called on
* each step). Returns a stat of how many pointers were moved. */
long dictIterDefragEntry(dictIterator *iter) {
/* This function is a little bit dirty since it messes with the internals
* of the dict and it's iterator, but the benefit is that it is very easy
* to use, and require no other changes in the dict. */
long defragged = 0;
/* Handle the next entry (if there is one), and update the pointer in the
* current entry. */
if (iter->nextEntry) {
dictEntry *newde = activeDefragAlloc(iter->nextEntry);
if (newde) {
defragged++;
iter->nextEntry = newde;
iter->entry->next = newde;
}
}
/* handle the case of the first entry in the hash bucket. */
if (iter->d->ht_table[iter->table][iter->index] == iter->entry) {
dictEntry *newde = activeDefragAlloc(iter->entry);
if (newde) {
iter->entry = newde;
iter->d->ht_table[iter->table][iter->index] = newde;
defragged++;
}
}
return defragged;
}
/* Defrag helper for dict main allocations (dict struct, and hash tables).
* receives a pointer to the dict* and implicitly updates it when the dict
* struct itself was moved. Returns a stat of how many pointers were moved. */
long dictDefragTables(dict* d) {
void dictDefragTables(dict* d) {
dictEntry **newtable;
long defragged = 0;
/* handle the first hash table */
newtable = activeDefragAlloc(d->ht_table[0]);
if (newtable)
defragged++, d->ht_table[0] = newtable;
d->ht_table[0] = newtable;
/* handle the second hash table */
if (d->ht_table[1]) {
newtable = activeDefragAlloc(d->ht_table[1]);
if (newtable)
defragged++, d->ht_table[1] = newtable;
d->ht_table[1] = newtable;
}
return defragged;
}
/* Internal function used by zslDefrag */
@ -258,19 +220,16 @@ double *zslDefrag(zskiplist *zsl, double score, sds oldele, sds newele) {
/* Defrag helper for sorted set.
* Defrag a single dict entry key name, and corresponding skiplist struct */
long activeDefragZsetEntry(zset *zs, dictEntry *de) {
void activeDefragZsetEntry(zset *zs, dictEntry *de) {
sds newsds;
double* newscore;
long defragged = 0;
sds sdsele = dictGetKey(de);
if ((newsds = activeDefragSds(sdsele)))
defragged++, de->key = newsds;
dictSetKey(zs->dict, de, newsds);
newscore = zslDefrag(zs->zsl, *(double*)dictGetVal(de), sdsele, newsds);
if (newscore) {
dictSetVal(zs->dict, de, newscore);
defragged++;
}
return defragged;
}
#define DEFRAG_SDS_DICT_NO_VAL 0
@ -279,43 +238,51 @@ long activeDefragZsetEntry(zset *zs, dictEntry *de) {
#define DEFRAG_SDS_DICT_VAL_VOID_PTR 3
#define DEFRAG_SDS_DICT_VAL_LUA_SCRIPT 4
/* Defrag a dict with sds key and optional value (either ptr, sds or robj string) */
long activeDefragSdsDict(dict* d, int val_type) {
dictIterator *di;
dictEntry *de;
long defragged = 0;
di = dictGetIterator(d);
while((de = dictNext(di)) != NULL) {
sds sdsele = dictGetKey(de), newsds;
typedef struct {
dict *dict;
int val_type;
} activeDefragSdsDictData;
void activeDefragSdsDictCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
activeDefragSdsDictData *data = privdata;
dict *d = data->dict;
int val_type = data->val_type;
sds sdsele = dictGetKey(de), newsds;
if ((newsds = activeDefragSds(sdsele)))
dictSetKey(d, de, newsds);
/* defrag the value */
if (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
de->key = newsds, defragged++;
/* defrag the value */
if (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
de->v.val = newsds, defragged++;
} else if (val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = dictGetVal(de);
if ((newele = activeDefragStringOb(ele, &defragged)))
de->v.val = newele;
} else if (val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = dictGetVal(de);
if ((newptr = activeDefragAlloc(ptr)))
de->v.val = newptr, defragged++;
} else if (val_type == DEFRAG_SDS_DICT_VAL_LUA_SCRIPT) {
void *newptr, *ptr = dictGetVal(de);
if ((newptr = activeDefragLuaScript(ptr, &defragged)))
de->v.val = newptr;
}
defragged += dictIterDefragEntry(di);
dictSetVal(d, de, newsds);
} else if (val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = dictGetVal(de);
if ((newele = activeDefragStringOb(ele)))
dictSetVal(d, de, newele);
} else if (val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = dictGetVal(de);
if ((newptr = activeDefragAlloc(ptr)))
dictSetVal(d, de, newptr);
} else if (val_type == DEFRAG_SDS_DICT_VAL_LUA_SCRIPT) {
void *newptr, *ptr = dictGetVal(de);
if ((newptr = activeDefragLuaScript(ptr)))
dictSetVal(d, de, newptr);
}
dictReleaseIterator(di);
return defragged;
}
/* Defrag a dict with sds key and optional value (either ptr, sds or robj string) */
void activeDefragSdsDict(dict* d, int val_type) {
activeDefragSdsDictData data = {d, val_type};
unsigned long cursor = 0;
do {
cursor = dictScanDefrag(d, cursor, activeDefragSdsDictCallback,
activeDefragAlloc, &data);
} while (cursor != 0);
}
/* Defrag a list of ptr, sds or robj string values */
long activeDefragList(list *l, int val_type) {
long defragged = 0;
void activeDefragList(list *l, int val_type) {
listNode *ln, *newln;
for (ln = l->head; ln; ln = ln->next) {
if ((newln = activeDefragAlloc(ln))) {
@ -328,107 +295,25 @@ long activeDefragList(list *l, int val_type) {
else
l->tail = newln;
ln = newln;
defragged++;
}
if (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sds newsds, sdsele = ln->value;
if ((newsds = activeDefragSds(sdsele)))
ln->value = newsds, defragged++;
ln->value = newsds;
} else if (val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = ln->value;
if ((newele = activeDefragStringOb(ele, &defragged)))
if ((newele = activeDefragStringOb(ele)))
ln->value = newele;
} else if (val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = ln->value;
if ((newptr = activeDefragAlloc(ptr)))
ln->value = newptr, defragged++;
ln->value = newptr;
}
}
return defragged;
}
/* Defrag a list of sds values and a dict with the same sds keys */
long activeDefragSdsListAndDict(list *l, dict *d, int dict_val_type) {
long defragged = 0;
sds newsds, sdsele;
listNode *ln, *newln;
dictIterator *di;
dictEntry *de;
/* Defrag the list and it's sds values */
for (ln = l->head; ln; ln = ln->next) {
if ((newln = activeDefragAlloc(ln))) {
if (newln->prev)
newln->prev->next = newln;
else
l->head = newln;
if (newln->next)
newln->next->prev = newln;
else
l->tail = newln;
ln = newln;
defragged++;
}
sdsele = ln->value;
if ((newsds = activeDefragSds(sdsele))) {
/* When defragging an sds value, we need to update the dict key */
uint64_t hash = dictGetHash(d, newsds);
dictEntry **deref = dictFindEntryRefByPtrAndHash(d, sdsele, hash);
if (deref)
(*deref)->key = newsds;
ln->value = newsds;
defragged++;
}
}
/* Defrag the dict values (keys were already handled) */
di = dictGetIterator(d);
while((de = dictNext(di)) != NULL) {
if (dict_val_type == DEFRAG_SDS_DICT_VAL_IS_SDS) {
sds newsds, sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
de->v.val = newsds, defragged++;
} else if (dict_val_type == DEFRAG_SDS_DICT_VAL_IS_STROB) {
robj *newele, *ele = dictGetVal(de);
if ((newele = activeDefragStringOb(ele, &defragged)))
de->v.val = newele;
} else if (dict_val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR) {
void *newptr, *ptr = dictGetVal(de);
if ((newptr = activeDefragAlloc(ptr)))
de->v.val = newptr, defragged++;
}
defragged += dictIterDefragEntry(di);
}
dictReleaseIterator(di);
return defragged;
}
/* Utility function that replaces an old key pointer in the dictionary with a
* new pointer. Additionally, we try to defrag the dictEntry in that dict.
* Oldkey may be a dead pointer and should not be accessed (we get a
* pre-calculated hash value). Newkey may be null if the key pointer wasn't
* moved. Return value is the dictEntry if found, or NULL if not found.
* NOTE: this is very ugly code, but it let's us avoid the complication of
* doing a scan on another dict. */
dictEntry* replaceSatelliteDictKeyPtrAndOrDefragDictEntry(dict *d, sds oldkey, sds newkey, uint64_t hash, long *defragged) {
dictEntry **deref = dictFindEntryRefByPtrAndHash(d, oldkey, hash);
if (deref) {
dictEntry *de = *deref;
dictEntry *newde = activeDefragAlloc(de);
if (newde) {
de = *deref = newde;
(*defragged)++;
}
if (newkey)
de->key = newkey;
return de;
}
return NULL;
}
long activeDefragQuickListNode(quicklist *ql, quicklistNode **node_ref) {
void activeDefragQuickListNode(quicklist *ql, quicklistNode **node_ref) {
quicklistNode *newnode, *node = *node_ref;
long defragged = 0;
unsigned char *newzl;
if ((newnode = activeDefragAlloc(node))) {
if (newnode->prev)
@ -440,21 +325,17 @@ long activeDefragQuickListNode(quicklist *ql, quicklistNode **node_ref) {
else
ql->tail = newnode;
*node_ref = node = newnode;
defragged++;
}
if ((newzl = activeDefragAlloc(node->entry)))
defragged++, node->entry = newzl;
return defragged;
node->entry = newzl;
}
long activeDefragQuickListNodes(quicklist *ql) {
void activeDefragQuickListNodes(quicklist *ql) {
quicklistNode *node = ql->head;
long defragged = 0;
while (node) {
defragged += activeDefragQuickListNode(ql, &node);
activeDefragQuickListNode(ql, &node);
node = node->next;
}
return defragged;
}
/* when the value has lots of elements, we want to handle it later and not as
@ -466,7 +347,7 @@ void defragLater(redisDb *db, dictEntry *kde) {
}
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
long scanLaterList(robj *ob, unsigned long *cursor, long long endtime, long long *defragged) {
long scanLaterList(robj *ob, unsigned long *cursor, long long endtime) {
quicklist *ql = ob->ptr;
quicklistNode *node;
long iterations = 0;
@ -489,7 +370,7 @@ long scanLaterList(robj *ob, unsigned long *cursor, long long endtime, long long
(*cursor)++;
while (node) {
(*defragged) += activeDefragQuickListNode(ql, &node);
activeDefragQuickListNode(ql, &node);
server.stat_active_defrag_scanned++;
if (++iterations > 128 && !bookmark_failed) {
if (ustime() > endtime) {
@ -511,82 +392,79 @@ long scanLaterList(robj *ob, unsigned long *cursor, long long endtime, long long
typedef struct {
zset *zs;
long defragged;
} scanLaterZsetData;
void scanLaterZsetCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
scanLaterZsetData *data = privdata;
data->defragged += activeDefragZsetEntry(data->zs, de);
activeDefragZsetEntry(data->zs, de);
server.stat_active_defrag_scanned++;
}
long scanLaterZset(robj *ob, unsigned long *cursor) {
void scanLaterZset(robj *ob, unsigned long *cursor) {
if (ob->type != OBJ_ZSET || ob->encoding != OBJ_ENCODING_SKIPLIST)
return 0;
return;
zset *zs = (zset*)ob->ptr;
dict *d = zs->dict;
scanLaterZsetData data = {zs, 0};
*cursor = dictScan(d, *cursor, scanLaterZsetCallback, defragDictBucketCallback, &data);
return data.defragged;
scanLaterZsetData data = {zs};
*cursor = dictScanDefrag(d, *cursor, scanLaterZsetCallback, activeDefragAlloc, &data);
}
typedef struct {
dict *dict;
} scanLaterDictData;
void scanLaterSetCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
long *defragged = privdata;
scanLaterDictData *data = privdata;
sds sdsele = dictGetKey(de), newsds;
if ((newsds = activeDefragSds(sdsele)))
(*defragged)++, de->key = newsds;
dictSetKey(data->dict, de, newsds);
server.stat_active_defrag_scanned++;
}
long scanLaterSet(robj *ob, unsigned long *cursor) {
long defragged = 0;
void scanLaterSet(robj *ob, unsigned long *cursor) {
if (ob->type != OBJ_SET || ob->encoding != OBJ_ENCODING_HT)
return 0;
return;
dict *d = ob->ptr;
*cursor = dictScan(d, *cursor, scanLaterSetCallback, defragDictBucketCallback, &defragged);
return defragged;
scanLaterDictData data = {d};
*cursor = dictScanDefrag(d, *cursor, scanLaterSetCallback, activeDefragAlloc, &data);
}
void scanLaterHashCallback(void *privdata, const dictEntry *_de) {
dictEntry *de = (dictEntry*)_de;
long *defragged = privdata;
scanLaterDictData *data = privdata;
sds sdsele = dictGetKey(de), newsds;
if ((newsds = activeDefragSds(sdsele)))
(*defragged)++, de->key = newsds;
dictSetKey(data->dict, de, newsds);
sdsele = dictGetVal(de);
if ((newsds = activeDefragSds(sdsele)))
(*defragged)++, de->v.val = newsds;
dictSetVal(data->dict, de, newsds);
server.stat_active_defrag_scanned++;
}
long scanLaterHash(robj *ob, unsigned long *cursor) {
long defragged = 0;
void scanLaterHash(robj *ob, unsigned long *cursor) {
if (ob->type != OBJ_HASH || ob->encoding != OBJ_ENCODING_HT)
return 0;
return;
dict *d = ob->ptr;
*cursor = dictScan(d, *cursor, scanLaterHashCallback, defragDictBucketCallback, &defragged);
return defragged;
scanLaterDictData data = {d};
*cursor = dictScanDefrag(d, *cursor, scanLaterHashCallback, activeDefragAlloc, &data);
}
long defragQuicklist(redisDb *db, dictEntry *kde) {
void defragQuicklist(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
long defragged = 0;
quicklist *ql = ob->ptr, *newql;
serverAssert(ob->type == OBJ_LIST && ob->encoding == OBJ_ENCODING_QUICKLIST);
if ((newql = activeDefragAlloc(ql)))
defragged++, ob->ptr = ql = newql;
ob->ptr = ql = newql;
if (ql->len > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else
defragged += activeDefragQuickListNodes(ql);
return defragged;
activeDefragQuickListNodes(ql);
}
long defragZsetSkiplist(redisDb *db, dictEntry *kde) {
void defragZsetSkiplist(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
long defragged = 0;
zset *zs = (zset*)ob->ptr;
zset *newzs;
zskiplist *newzsl;
@ -595,30 +473,28 @@ long defragZsetSkiplist(redisDb *db, dictEntry *kde) {
struct zskiplistNode *newheader;
serverAssert(ob->type == OBJ_ZSET && ob->encoding == OBJ_ENCODING_SKIPLIST);
if ((newzs = activeDefragAlloc(zs)))
defragged++, ob->ptr = zs = newzs;
ob->ptr = zs = newzs;
if ((newzsl = activeDefragAlloc(zs->zsl)))
defragged++, zs->zsl = newzsl;
zs->zsl = newzsl;
if ((newheader = activeDefragAlloc(zs->zsl->header)))
defragged++, zs->zsl->header = newheader;
zs->zsl->header = newheader;
if (dictSize(zs->dict) > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else {
dictIterator *di = dictGetIterator(zs->dict);
while((de = dictNext(di)) != NULL) {
defragged += activeDefragZsetEntry(zs, de);
activeDefragZsetEntry(zs, de);
}
dictReleaseIterator(di);
}
/* handle the dict struct */
if ((newdict = activeDefragAlloc(zs->dict)))
defragged++, zs->dict = newdict;
zs->dict = newdict;
/* defrag the dict tables */
defragged += dictDefragTables(zs->dict);
return defragged;
dictDefragTables(zs->dict);
}
long defragHash(redisDb *db, dictEntry *kde) {
long defragged = 0;
void defragHash(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
dict *d, *newd;
serverAssert(ob->type == OBJ_HASH && ob->encoding == OBJ_ENCODING_HT);
@ -626,17 +502,15 @@ long defragHash(redisDb *db, dictEntry *kde) {
if (dictSize(d) > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else
defragged += activeDefragSdsDict(d, DEFRAG_SDS_DICT_VAL_IS_SDS);
activeDefragSdsDict(d, DEFRAG_SDS_DICT_VAL_IS_SDS);
/* handle the dict struct */
if ((newd = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newd;
ob->ptr = newd;
/* defrag the dict tables */
defragged += dictDefragTables(ob->ptr);
return defragged;
dictDefragTables(ob->ptr);
}
long defragSet(redisDb *db, dictEntry *kde) {
long defragged = 0;
void defragSet(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
dict *d, *newd;
serverAssert(ob->type == OBJ_SET && ob->encoding == OBJ_ENCODING_HT);
@ -644,13 +518,12 @@ long defragSet(redisDb *db, dictEntry *kde) {
if (dictSize(d) > server.active_defrag_max_scan_fields)
defragLater(db, kde);
else
defragged += activeDefragSdsDict(d, DEFRAG_SDS_DICT_NO_VAL);
activeDefragSdsDict(d, DEFRAG_SDS_DICT_NO_VAL);
/* handle the dict struct */
if ((newd = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newd;
ob->ptr = newd;
/* defrag the dict tables */
defragged += dictDefragTables(ob->ptr);
return defragged;
dictDefragTables(ob->ptr);
}
/* Defrag callback for radix tree iterator, called for each node,
@ -665,7 +538,7 @@ int defragRaxNode(raxNode **noderef) {
}
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
int scanLaterStreamListpacks(robj *ob, unsigned long *cursor, long long endtime, long long *defragged) {
int scanLaterStreamListpacks(robj *ob, unsigned long *cursor, long long endtime) {
static unsigned char last[sizeof(streamID)];
raxIterator ri;
long iterations = 0;
@ -699,7 +572,7 @@ int scanLaterStreamListpacks(robj *ob, unsigned long *cursor, long long endtime,
while (raxNext(&ri)) {
void *newdata = activeDefragAlloc(ri.data);
if (newdata)
raxSetData(ri.node, ri.data=newdata), (*defragged)++;
raxSetData(ri.node, ri.data=newdata);
server.stat_active_defrag_scanned++;
if (++iterations > 128) {
if (ustime() > endtime) {
@ -717,19 +590,18 @@ int scanLaterStreamListpacks(robj *ob, unsigned long *cursor, long long endtime,
}
/* optional callback used defrag each rax element (not including the element pointer itself) */
typedef void *(raxDefragFunction)(raxIterator *ri, void *privdata, long *defragged);
typedef void *(raxDefragFunction)(raxIterator *ri, void *privdata);
/* defrag radix tree including:
* 1) rax struct
* 2) rax nodes
* 3) rax entry data (only if defrag_data is specified)
* 4) call a callback per element, and allow the callback to return a new pointer for the element */
long defragRadixTree(rax **raxref, int defrag_data, raxDefragFunction *element_cb, void *element_cb_data) {
long defragged = 0;
void defragRadixTree(rax **raxref, int defrag_data, raxDefragFunction *element_cb, void *element_cb_data) {
raxIterator ri;
rax* rax;
if ((rax = activeDefragAlloc(*raxref)))
defragged++, *raxref = rax;
*raxref = rax;
rax = *raxref;
raxStart(&ri,rax);
ri.node_cb = defragRaxNode;
@ -738,14 +610,13 @@ long defragRadixTree(rax **raxref, int defrag_data, raxDefragFunction *element_c
while (raxNext(&ri)) {
void *newdata = NULL;
if (element_cb)
newdata = element_cb(&ri, element_cb_data, &defragged);
newdata = element_cb(&ri, element_cb_data);
if (defrag_data && !newdata)
newdata = activeDefragAlloc(ri.data);
if (newdata)
raxSetData(ri.node, ri.data=newdata), defragged++;
raxSetData(ri.node, ri.data=newdata);
}
raxStop(&ri);
return defragged;
}
typedef struct {
@ -753,8 +624,7 @@ typedef struct {
streamConsumer *c;
} PendingEntryContext;
void* defragStreamConsumerPendingEntry(raxIterator *ri, void *privdata, long *defragged) {
UNUSED(defragged);
void* defragStreamConsumerPendingEntry(raxIterator *ri, void *privdata) {
PendingEntryContext *ctx = privdata;
streamNACK *nack = ri->data, *newnack;
nack->consumer = ctx->c; /* update nack pointer to consumer */
@ -764,102 +634,96 @@ void* defragStreamConsumerPendingEntry(raxIterator *ri, void *privdata, long *de
void *prev;
raxInsert(ctx->cg->pel, ri->key, ri->key_len, newnack, &prev);
serverAssert(prev==nack);
/* note: we don't increment 'defragged' that's done by the caller */
}
return newnack;
}
void* defragStreamConsumer(raxIterator *ri, void *privdata, long *defragged) {
void* defragStreamConsumer(raxIterator *ri, void *privdata) {
streamConsumer *c = ri->data;
streamCG *cg = privdata;
void *newc = activeDefragAlloc(c);
if (newc) {
/* note: we don't increment 'defragged' that's done by the caller */
c = newc;
}
sds newsds = activeDefragSds(c->name);
if (newsds)
(*defragged)++, c->name = newsds;
c->name = newsds;
if (c->pel) {
PendingEntryContext pel_ctx = {cg, c};
*defragged += defragRadixTree(&c->pel, 0, defragStreamConsumerPendingEntry, &pel_ctx);
defragRadixTree(&c->pel, 0, defragStreamConsumerPendingEntry, &pel_ctx);
}
return newc; /* returns NULL if c was not defragged */
}
void* defragStreamConsumerGroup(raxIterator *ri, void *privdata, long *defragged) {
void* defragStreamConsumerGroup(raxIterator *ri, void *privdata) {
streamCG *cg = ri->data;
UNUSED(privdata);
if (cg->consumers)
*defragged += defragRadixTree(&cg->consumers, 0, defragStreamConsumer, cg);
defragRadixTree(&cg->consumers, 0, defragStreamConsumer, cg);
if (cg->pel)
*defragged += defragRadixTree(&cg->pel, 0, NULL, NULL);
defragRadixTree(&cg->pel, 0, NULL, NULL);
return NULL;
}
long defragStream(redisDb *db, dictEntry *kde) {
long defragged = 0;
void defragStream(redisDb *db, dictEntry *kde) {
robj *ob = dictGetVal(kde);
serverAssert(ob->type == OBJ_STREAM && ob->encoding == OBJ_ENCODING_STREAM);
stream *s = ob->ptr, *news;
/* handle the main struct */
if ((news = activeDefragAlloc(s)))
defragged++, ob->ptr = s = news;
ob->ptr = s = news;
if (raxSize(s->rax) > server.active_defrag_max_scan_fields) {
rax *newrax = activeDefragAlloc(s->rax);
if (newrax)
defragged++, s->rax = newrax;
s->rax = newrax;
defragLater(db, kde);
} else
defragged += defragRadixTree(&s->rax, 1, NULL, NULL);
defragRadixTree(&s->rax, 1, NULL, NULL);
if (s->cgroups)
defragged += defragRadixTree(&s->cgroups, 1, defragStreamConsumerGroup, NULL);
return defragged;
defragRadixTree(&s->cgroups, 1, defragStreamConsumerGroup, NULL);
}
/* Defrag a module key. This is either done immediately or scheduled
* for later. Returns then number of pointers defragged.
*/
long defragModule(redisDb *db, dictEntry *kde) {
void defragModule(redisDb *db, dictEntry *kde) {
robj *obj = dictGetVal(kde);
serverAssert(obj->type == OBJ_MODULE);
long defragged = 0;
if (!moduleDefragValue(dictGetKey(kde), obj, &defragged, db->id))
if (!moduleDefragValue(dictGetKey(kde), obj, db->id))
defragLater(db, kde);
return defragged;
}
/* for each key we scan in the main dict, this function will attempt to defrag
* all the various pointers it has. Returns a stat of how many pointers were
* moved. */
long defragKey(redisDb *db, dictEntry *de) {
void defragKey(redisDb *db, dictEntry *de) {
sds keysds = dictGetKey(de);
robj *newob, *ob;
unsigned char *newzl;
long defragged = 0;
sds newsds;
/* Try to defrag the key name. */
newsds = activeDefragSds(keysds);
if (newsds)
defragged++, de->key = newsds;
if (dictSize(db->expires)) {
/* Dirty code:
* I can't search in db->expires for that key after i already released
* the pointer it holds it won't be able to do the string compare */
uint64_t hash = dictGetHash(db->dict, de->key);
replaceSatelliteDictKeyPtrAndOrDefragDictEntry(db->expires, keysds, newsds, hash, &defragged);
if (newsds) {
dictSetKey(db->dict, de, newsds);
if (dictSize(db->expires)) {
/* We can't search in db->expires for that key after we've released
* the pointer it holds, since it won't be able to do the string
* compare, but we can find the entry using key hash and pointer. */
uint64_t hash = dictGetHash(db->dict, newsds);
dictEntry *expire_de = dictFindEntryByPtrAndHash(db->expires, keysds, hash);
if (expire_de) dictSetKey(db->expires, expire_de, newsds);
}
}
/* Try to defrag robj and / or string value. */
ob = dictGetVal(de);
if ((newob = activeDefragStringOb(ob, &defragged))) {
de->v.val = newob;
if ((newob = activeDefragStringOb(ob))) {
dictSetVal(db->dict, de, newob);
ob = newob;
}
@ -867,78 +731,69 @@ long defragKey(redisDb *db, dictEntry *de) {
/* Already handled in activeDefragStringOb. */
} else if (ob->type == OBJ_LIST) {
if (ob->encoding == OBJ_ENCODING_QUICKLIST) {
defragged += defragQuicklist(db, de);
defragQuicklist(db, de);
} else if (ob->encoding == OBJ_ENCODING_LISTPACK) {
if ((newzl = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newzl;
ob->ptr = newzl;
} else {
serverPanic("Unknown list encoding");
}
} else if (ob->type == OBJ_SET) {
if (ob->encoding == OBJ_ENCODING_HT) {
defragged += defragSet(db, de);
defragSet(db, de);
} else if (ob->encoding == OBJ_ENCODING_INTSET ||
ob->encoding == OBJ_ENCODING_LISTPACK)
{
void *newptr, *ptr = ob->ptr;
if ((newptr = activeDefragAlloc(ptr)))
defragged++, ob->ptr = newptr;
ob->ptr = newptr;
} else {
serverPanic("Unknown set encoding");
}
} else if (ob->type == OBJ_ZSET) {
if (ob->encoding == OBJ_ENCODING_LISTPACK) {
if ((newzl = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newzl;
ob->ptr = newzl;
} else if (ob->encoding == OBJ_ENCODING_SKIPLIST) {
defragged += defragZsetSkiplist(db, de);
defragZsetSkiplist(db, de);
} else {
serverPanic("Unknown sorted set encoding");
}
} else if (ob->type == OBJ_HASH) {
if (ob->encoding == OBJ_ENCODING_LISTPACK) {
if ((newzl = activeDefragAlloc(ob->ptr)))
defragged++, ob->ptr = newzl;
ob->ptr = newzl;
} else if (ob->encoding == OBJ_ENCODING_HT) {
defragged += defragHash(db, de);
defragHash(db, de);
} else {
serverPanic("Unknown hash encoding");
}
} else if (ob->type == OBJ_STREAM) {
defragged += defragStream(db, de);
defragStream(db, de);
} else if (ob->type == OBJ_MODULE) {
defragged += defragModule(db, de);
defragModule(db, de);
} else {
serverPanic("Unknown object type");
}
return defragged;
}
/* Defrag scan callback for the main db dictionary. */
void defragScanCallback(void *privdata, const dictEntry *de) {
long defragged = defragKey((redisDb*)privdata, (dictEntry*)de);
server.stat_active_defrag_hits += defragged;
if(defragged)
long long hits_before = server.stat_active_defrag_hits;
defragKey((redisDb*)privdata, (dictEntry*)de);
if (server.stat_active_defrag_hits != hits_before)
server.stat_active_defrag_key_hits++;
else
server.stat_active_defrag_key_misses++;
server.stat_active_defrag_scanned++;
}
/* Defrag scan callback for each hash table bucket,
* used in order to defrag the dictEntry allocations. */
void defragDictBucketCallback(dict *d, dictEntry **bucketref) {
while(*bucketref) {
dictEntry *de = *bucketref, *newde;
if ((newde = activeDefragAlloc(de))) {
*bucketref = newde;
if (server.cluster_enabled && d == server.db[0].dict) {
/* Cluster keyspace dict. Update slot-to-entries mapping. */
slotToKeyReplaceEntry(newde, server.db);
}
}
bucketref = &(*bucketref)->next;
}
/* Dummy scan callback used when defragging the expire dictionary. We only
* defrag the entries, which is done per bucket. */
void defragExpireScanCallback(void *privdata, const dictEntry *de) {
UNUSED(privdata);
UNUSED(de);
server.stat_active_defrag_scanned++;
}
/* Utility function to get the fragmentation ratio from jemalloc.
@ -964,15 +819,13 @@ float getAllocatorFragmentation(size_t *out_frag_bytes) {
/* We may need to defrag other globals, one small allocation can hold a full allocator run.
* so although small, it is still important to defrag these */
long defragOtherGlobals() {
long defragged = 0;
void defragOtherGlobals() {
/* there are many more pointers to defrag (e.g. client argv, output / aof buffers, etc.
* but we assume most of these are short lived, we only need to defrag allocations
* that remain static for a long time */
defragged += activeDefragSdsDict(evalScriptsDict(), DEFRAG_SDS_DICT_VAL_LUA_SCRIPT);
defragged += moduleDefragGlobals();
return defragged;
activeDefragSdsDict(evalScriptsDict(), DEFRAG_SDS_DICT_VAL_LUA_SCRIPT);
moduleDefragGlobals();
}
/* returns 0 more work may or may not be needed (see non-zero cursor),
@ -981,17 +834,17 @@ int defragLaterItem(dictEntry *de, unsigned long *cursor, long long endtime, int
if (de) {
robj *ob = dictGetVal(de);
if (ob->type == OBJ_LIST) {
return scanLaterList(ob, cursor, endtime, &server.stat_active_defrag_hits);
return scanLaterList(ob, cursor, endtime);
} else if (ob->type == OBJ_SET) {
server.stat_active_defrag_hits += scanLaterSet(ob, cursor);
scanLaterSet(ob, cursor);
} else if (ob->type == OBJ_ZSET) {
server.stat_active_defrag_hits += scanLaterZset(ob, cursor);
scanLaterZset(ob, cursor);
} else if (ob->type == OBJ_HASH) {
server.stat_active_defrag_hits += scanLaterHash(ob, cursor);
scanLaterHash(ob, cursor);
} else if (ob->type == OBJ_STREAM) {
return scanLaterStreamListpacks(ob, cursor, endtime, &server.stat_active_defrag_hits);
return scanLaterStreamListpacks(ob, cursor, endtime);
} else if (ob->type == OBJ_MODULE) {
return moduleLateDefrag(dictGetKey(de), ob, cursor, endtime, &server.stat_active_defrag_hits, dbid);
return moduleLateDefrag(dictGetKey(de), ob, cursor, endtime, dbid);
} else {
*cursor = 0; /* object type may have changed since we schedule it for later */
}
@ -1106,6 +959,7 @@ void computeDefragCycles() {
void activeDefragCycle(void) {
static int current_db = -1;
static unsigned long cursor = 0;
static unsigned long expires_cursor = 0;
static redisDb *db = NULL;
static long long start_scan, start_stat;
unsigned int iterations = 0;
@ -1151,7 +1005,7 @@ void activeDefragCycle(void) {
do {
/* if we're not continuing a scan from the last call or loop, start a new one */
if (!cursor) {
if (!cursor && !expires_cursor) {
/* finish any leftovers from previous db before moving to the next one */
if (db && defragLaterStep(db, endtime)) {
quit = 1; /* time is up, we didn't finish all the work */
@ -1161,7 +1015,7 @@ void activeDefragCycle(void) {
/* Move on to next database, and stop if we reached the last one. */
if (++current_db >= server.dbnum) {
/* defrag other items not part of the db / keys */
server.stat_active_defrag_hits += defragOtherGlobals();
defragOtherGlobals();
long long now = ustime();
size_t frag_bytes;
@ -1198,16 +1052,27 @@ void activeDefragCycle(void) {
break; /* this will exit the function and we'll continue on the next cycle */
}
cursor = dictScan(db->dict, cursor, defragScanCallback, defragDictBucketCallback, db);
/* Scan the keyspace dict unless we're scanning the expire dict. */
if (!expires_cursor)
cursor = dictScanDefrag(db->dict, cursor, defragScanCallback,
activeDefragAlloc, db);
/* When done scanning the keyspace dict, we scan the expire dict. */
if (!cursor)
expires_cursor = dictScanDefrag(db->expires, expires_cursor,
defragExpireScanCallback,
activeDefragAlloc, NULL);
/* Once in 16 scan iterations, 512 pointer reallocations. or 64 keys
* (if we have a lot of pointers in one hash bucket or rehashing),
* check if we reached the time limit.
* But regardless, don't start a new db in this loop, this is because after
* the last db we call defragOtherGlobals, which must be done in one cycle */
if (!cursor || (++iterations > 16 ||
server.stat_active_defrag_hits - prev_defragged > 512 ||
server.stat_active_defrag_scanned - prev_scanned > 64)) {
if (!(cursor || expires_cursor) ||
++iterations > 16 ||
server.stat_active_defrag_hits - prev_defragged > 512 ||
server.stat_active_defrag_scanned - prev_scanned > 64)
{
if (!cursor || ustime() > endtime) {
quit = 1;
break;
@ -1216,7 +1081,7 @@ void activeDefragCycle(void) {
prev_defragged = server.stat_active_defrag_hits;
prev_scanned = server.stat_active_defrag_scanned;
}
} while(cursor && !quit);
} while((cursor || expires_cursor) && !quit);
} while(!quit);
latencyEndMonitor(latency);
@ -1243,9 +1108,8 @@ void *activeDefragAlloc(void *ptr) {
return NULL;
}
robj *activeDefragStringOb(robj *ob, long *defragged) {
robj *activeDefragStringOb(robj *ob) {
UNUSED(ob);
UNUSED(defragged);
return NULL;
}

View File

@ -58,6 +58,22 @@
static dictResizeEnable dict_can_resize = DICT_RESIZE_ENABLE;
static unsigned int dict_force_resize_ratio = 5;
/* -------------------------- types ----------------------------------------- */
struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next; /* Next entry in the same hash bucket. */
void *metadata[]; /* An arbitrary number of bytes (starting at a
* pointer-aligned address) of size as returned
* by dictType's dictEntryMetadataBytes(). */
};
/* -------------------------- private prototypes ---------------------------- */
static int _dictExpandIfNeeded(dict *d);
@ -104,7 +120,11 @@ static void _dictReset(dict *d, int htidx)
/* Create a new hash table */
dict *dictCreate(dictType *type)
{
dict *d = zmalloc(sizeof(*d));
size_t metasize = type->dictMetadataBytes ? type->dictMetadataBytes() : 0;
dict *d = zmalloc(sizeof(*d) + metasize);
if (metasize) {
memset(dictMetadata(d), 0, metasize);
}
_dictInit(d,type);
return d;
@ -303,6 +323,11 @@ static void _dictRehashStep(dict *d) {
if (d->pauserehash == 0) dictRehash(d,1);
}
/* Return a pointer to the metadata section within the dict. */
void *dictMetadata(dict *d) {
return &d->metadata;
}
/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
@ -349,10 +374,10 @@ dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
* system it is more likely that recently added entries are accessed
* more frequently. */
htidx = dictIsRehashing(d) ? 1 : 0;
size_t metasize = dictMetadataSize(d);
size_t metasize = dictEntryMetadataSize(d);
entry = zmalloc(sizeof(*entry) + metasize);
if (metasize > 0) {
memset(dictMetadata(entry), 0, metasize);
memset(dictEntryMetadata(entry), 0, metasize);
}
entry->next = d->ht_table[htidx][index];
d->ht_table[htidx][index] = entry;
@ -596,6 +621,82 @@ void dictTwoPhaseUnlinkFree(dict *d, dictEntry *he, dictEntry **plink, int table
dictResumeRehashing(d);
}
void dictSetKey(dict *d, dictEntry* de, void *key) {
if (d->type->keyDup)
de->key = d->type->keyDup(d, key);
else
de->key = key;
}
void dictSetVal(dict *d, dictEntry *de, void *val) {
de->v.val = d->type->valDup ? d->type->valDup(d, val) : val;
}
void dictSetSignedIntegerVal(dictEntry *de, int64_t val) {
de->v.s64 = val;
}
void dictSetUnsignedIntegerVal(dictEntry *de, uint64_t val) {
de->v.u64 = val;
}
void dictSetDoubleVal(dictEntry *de, double val) {
de->v.d = val;
}
int64_t dictIncrSignedIntegerVal(dictEntry *de, int64_t val) {
return de->v.s64 += val;
}
uint64_t dictIncrUnsignedIntegerVal(dictEntry *de, uint64_t val) {
return de->v.u64 += val;
}
double dictIncrDoubleVal(dictEntry *de, double val) {
return de->v.d += val;
}
/* A pointer to the metadata section within the dict entry. */
void *dictEntryMetadata(dictEntry *de) {
return &de->metadata;
}
void *dictGetKey(const dictEntry *de) {
return de->key;
}
void *dictGetVal(const dictEntry *de) {
return de->v.val;
}
int64_t dictGetSignedIntegerVal(const dictEntry *de) {
return de->v.s64;
}
uint64_t dictGetUnsignedIntegerVal(const dictEntry *de) {
return de->v.u64;
}
double dictGetDoubleVal(const dictEntry *de) {
return de->v.d;
}
/* Returns a mutable reference to the value as a double within the entry. */
double *dictGetDoubleValPtr(dictEntry *de) {
return &de->v.d;
}
/* Returns the memory usage in bytes of the dict, excluding the size of the keys
* and values. */
size_t dictMemUsage(const dict *d) {
return dictSize(d) * sizeof(dictEntry) +
dictSlots(d) * sizeof(dictEntry*);
}
size_t dictEntryMemUsage(void) {
return sizeof(dictEntry);
}
/* A fingerprint is a 64 bit number that represents the state of the dictionary
* at a given time, it's just a few dict properties xored together.
* When an unsafe iterator is initialized, we get the dict fingerprint, and check
@ -846,6 +947,21 @@ unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
return stored;
}
/* Reallocate the dictEntry allocations in a bucket using the provided
* allocation function in order to defrag them. */
static void dictDefragBucket(dict *d, dictEntry **bucketref, dictDefragAllocFunction *allocfn) {
while (bucketref && *bucketref) {
dictEntry *de = *bucketref, *newde;
if ((newde = allocfn(de))) {
*bucketref = newde;
if (d->type->afterReplaceEntry)
d->type->afterReplaceEntry(d, newde);
}
bucketref = &(*bucketref)->next;
}
}
/* This is like dictGetRandomKey() from the POV of the API, but will do more
* work to ensure a better distribution of the returned element.
*
@ -969,8 +1085,24 @@ static unsigned long rev(unsigned long v) {
unsigned long dictScan(dict *d,
unsigned long v,
dictScanFunction *fn,
dictScanBucketFunction* bucketfn,
void *privdata)
{
return dictScanDefrag(d, v, fn, NULL, privdata);
}
/* Like dictScan, but additionally reallocates the memory used by the dict
* entries using the provided allocation function. This feature was added for
* the active defrag feature.
*
* The 'defracallocfn' callback is called with a pointer to memory that callback
* can reallocate. The callback should return a new memory address or NULL,
* where NULL means that no reallocation happened and the old memory is still
* valid. */
unsigned long dictScanDefrag(dict *d,
unsigned long v,
dictScanFunction *fn,
dictDefragAllocFunction *defragallocfn,
void *privdata)
{
int htidx0, htidx1;
const dictEntry *de, *next;
@ -986,7 +1118,9 @@ unsigned long dictScan(dict *d,
m0 = DICTHT_SIZE_MASK(d->ht_size_exp[htidx0]);
/* Emit entries at cursor */
if (bucketfn) bucketfn(d, &d->ht_table[htidx0][v & m0]);
if (defragallocfn) {
dictDefragBucket(d, &d->ht_table[htidx0][v & m0], defragallocfn);
}
de = d->ht_table[htidx0][v & m0];
while (de) {
next = de->next;
@ -1017,7 +1151,9 @@ unsigned long dictScan(dict *d,
m1 = DICTHT_SIZE_MASK(d->ht_size_exp[htidx1]);
/* Emit entries at cursor */
if (bucketfn) bucketfn(d, &d->ht_table[htidx0][v & m0]);
if (defragallocfn) {
dictDefragBucket(d, &d->ht_table[htidx0][v & m0], defragallocfn);
}
de = d->ht_table[htidx0][v & m0];
while (de) {
next = de->next;
@ -1029,7 +1165,9 @@ unsigned long dictScan(dict *d,
* of the index pointed to by the cursor in the smaller table */
do {
/* Emit entries at cursor */
if (bucketfn) bucketfn(d, &d->ht_table[htidx1][v & m1]);
if (defragallocfn) {
dictDefragBucket(d, &d->ht_table[htidx1][v & m1], defragallocfn);
}
de = d->ht_table[htidx1][v & m1];
while (de) {
next = de->next;
@ -1150,25 +1288,23 @@ uint64_t dictGetHash(dict *d, const void *key) {
return dictHashKey(d, key);
}
/* Finds the dictEntry reference by using pointer and pre-calculated hash.
/* Finds the dictEntry using pointer and pre-calculated hash.
* oldkey is a dead pointer and should not be accessed.
* the hash value should be provided using dictGetHash.
* no string / key comparison is performed.
* return value is the reference to the dictEntry if found, or NULL if not found. */
dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
dictEntry *he, **heref;
* return value is a pointer to the dictEntry if found, or NULL if not found. */
dictEntry *dictFindEntryByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
dictEntry *he;
unsigned long idx, table;
if (dictSize(d) == 0) return NULL; /* dict is empty */
for (table = 0; table <= 1; table++) {
idx = hash & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
heref = &d->ht_table[table][idx];
he = *heref;
he = d->ht_table[table][idx];
while(he) {
if (oldptr==he->key)
return heref;
heref = &he->next;
he = *heref;
return he;
he = he->next;
}
if (!dictIsRehashing(d)) return NULL;
}

View File

@ -44,19 +44,7 @@
#define DICT_OK 0
#define DICT_ERR 1
typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next; /* Next entry in the same hash bucket. */
void *metadata[]; /* An arbitrary number of bytes (starting at a
* pointer-aligned address) of size as returned
* by dictType's dictEntryMetadataBytes(). */
} dictEntry;
typedef struct dictEntry dictEntry; /* opaque */
typedef struct dict dict;
@ -68,9 +56,13 @@ typedef struct dictType {
void (*keyDestructor)(dict *d, void *key);
void (*valDestructor)(dict *d, void *obj);
int (*expandAllowed)(size_t moreMem, double usedRatio);
/* Allow a dictEntry to carry extra caller-defined metadata. The
* extra memory is initialized to 0 when a dictEntry is allocated. */
/* Allow each dict and dictEntry to carry extra caller-defined metadata. The
* extra memory is initialized to 0 when allocated. */
size_t (*dictEntryMetadataBytes)(dict *d);
size_t (*dictMetadataBytes)(void);
/* Optional callback called after an entry has been reallocated (due to
* active defrag). Only called if the entry has metadata. */
void (*afterReplaceEntry)(dict *d, dictEntry *entry);
} dictType;
#define DICTHT_SIZE(exp) ((exp) == -1 ? 0 : (unsigned long)1<<(exp))
@ -87,6 +79,10 @@ struct dict {
/* Keep small vars at end for optimal (minimal) struct padding */
int16_t pauserehash; /* If >0 rehashing is paused (<0 indicates coding error) */
signed char ht_size_exp[2]; /* exponent of size. (size = 1<<exp) */
void *metadata[]; /* An arbitrary number of bytes (starting at a
* pointer-aligned address) of size as defined
* by dictType's dictEntryBytes. */
};
/* If safe is set to 1 this is a safe iterator, that means, you can call
@ -103,7 +99,7 @@ typedef struct dictIterator {
} dictIterator;
typedef void (dictScanFunction)(void *privdata, const dictEntry *de);
typedef void (dictScanBucketFunction)(dict *d, dictEntry **bucketref);
typedef void *(dictDefragAllocFunction)(void *ptr);
/* This is the initial size of every hash table */
#define DICT_HT_INITIAL_EXP 2
@ -112,60 +108,24 @@ typedef void (dictScanBucketFunction)(dict *d, dictEntry **bucketref);
/* ------------------------------- Macros ------------------------------------*/
#define dictFreeVal(d, entry) do { \
if ((d)->type->valDestructor) \
(d)->type->valDestructor((d), (entry)->v.val); \
(d)->type->valDestructor((d), dictGetVal(entry)); \
} while(0)
#define dictSetVal(d, entry, _val_) do { \
if ((d)->type->valDup) \
(entry)->v.val = (d)->type->valDup((d), _val_); \
else \
(entry)->v.val = (_val_); \
} while(0)
#define dictSetSignedIntegerVal(entry, _val_) \
do { (entry)->v.s64 = _val_; } while(0)
#define dictSetUnsignedIntegerVal(entry, _val_) \
do { (entry)->v.u64 = _val_; } while(0)
#define dictSetDoubleVal(entry, _val_) \
do { (entry)->v.d = _val_; } while(0)
#define dictIncrSignedIntegerVal(entry, _val_) \
((entry)->v.s64 += _val_)
#define dictIncrUnsignedIntegerVal(entry, _val_) \
((entry)->v.u64 += _val_)
#define dictIncrDoubleVal(entry, _val_) \
((entry)->v.d += _val_)
#define dictFreeKey(d, entry) \
if ((d)->type->keyDestructor) \
(d)->type->keyDestructor((d), (entry)->key)
#define dictSetKey(d, entry, _key_) do { \
if ((d)->type->keyDup) \
(entry)->key = (d)->type->keyDup((d), _key_); \
else \
(entry)->key = (_key_); \
} while(0)
(d)->type->keyDestructor((d), dictGetKey(entry))
#define dictCompareKeys(d, key1, key2) \
(((d)->type->keyCompare) ? \
(d)->type->keyCompare((d), key1, key2) : \
(key1) == (key2))
#define dictMetadata(entry) (&(entry)->metadata)
#define dictMetadataSize(d) ((d)->type->dictEntryMetadataBytes \
? (d)->type->dictEntryMetadataBytes(d) : 0)
#define dictEntryMetadataSize(d) ((d)->type->dictEntryMetadataBytes \
? (d)->type->dictEntryMetadataBytes(d) : 0)
#define dictMetadataSize(d) ((d)->type->dictMetadataBytes \
? (d)->type->dictMetadataBytes() : 0)
#define dictHashKey(d, key) ((d)->type->hashFunction(key))
#define dictGetKey(he) ((he)->key)
#define dictGetVal(he) ((he)->v.val)
#define dictGetSignedIntegerVal(he) ((he)->v.s64)
#define dictGetUnsignedIntegerVal(he) ((he)->v.u64)
#define dictGetDoubleVal(he) ((he)->v.d)
#define dictSlots(d) (DICTHT_SIZE((d)->ht_size_exp[0])+DICTHT_SIZE((d)->ht_size_exp[1]))
#define dictSize(d) ((d)->ht_used[0]+(d)->ht_used[1])
#define dictIsRehashing(d) ((d)->rehashidx != -1)
@ -189,6 +149,7 @@ typedef enum {
dict *dictCreate(dictType *type);
int dictExpand(dict *d, unsigned long size);
int dictTryExpand(dict *d, unsigned long size);
void *dictMetadata(dict *d);
int dictAdd(dict *d, void *key, void *val);
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing);
dictEntry *dictAddOrFind(dict *d, void *key);
@ -202,6 +163,23 @@ void dictRelease(dict *d);
dictEntry * dictFind(dict *d, const void *key);
void *dictFetchValue(dict *d, const void *key);
int dictResize(dict *d);
void dictSetKey(dict *d, dictEntry* de, void *key);
void dictSetVal(dict *d, dictEntry *de, void *val);
void dictSetSignedIntegerVal(dictEntry *de, int64_t val);
void dictSetUnsignedIntegerVal(dictEntry *de, uint64_t val);
void dictSetDoubleVal(dictEntry *de, double val);
int64_t dictIncrSignedIntegerVal(dictEntry *de, int64_t val);
uint64_t dictIncrUnsignedIntegerVal(dictEntry *de, uint64_t val);
double dictIncrDoubleVal(dictEntry *de, double val);
void *dictEntryMetadata(dictEntry *de);
void *dictGetKey(const dictEntry *de);
void *dictGetVal(const dictEntry *de);
int64_t dictGetSignedIntegerVal(const dictEntry *de);
uint64_t dictGetUnsignedIntegerVal(const dictEntry *de);
double dictGetDoubleVal(const dictEntry *de);
double *dictGetDoubleValPtr(dictEntry *de);
size_t dictMemUsage(const dict *d);
size_t dictEntryMemUsage(void);
dictIterator *dictGetIterator(dict *d);
dictIterator *dictGetSafeIterator(dict *d);
void dictInitIterator(dictIterator *iter, dict *d);
@ -221,9 +199,10 @@ int dictRehash(dict *d, int n);
int dictRehashMilliseconds(dict *d, int ms);
void dictSetHashFunctionSeed(uint8_t *seed);
uint8_t *dictGetHashFunctionSeed(void);
unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, dictScanBucketFunction *bucketfn, void *privdata);
unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata);
unsigned long dictScanDefrag(dict *d, unsigned long v, dictScanFunction *fn, dictDefragAllocFunction *allocfn, void *privdata);
uint64_t dictGetHash(dict *d, const void *key);
dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash);
dictEntry *dictFindEntryByPtrAndHash(dict *d, const void *oldptr, uint64_t hash);
#ifdef REDIS_TEST
int dictTest(int argc, char *argv[], int flags);

View File

@ -677,8 +677,8 @@ dict* evalScriptsDict() {
unsigned long evalScriptsMemory() {
return lctx.lua_scripts_mem +
dictSize(lctx.lua_scripts) * (sizeof(dictEntry) + sizeof(luaScript)) +
dictSlots(lctx.lua_scripts) * sizeof(dictEntry*);
dictMemUsage(lctx.lua_scripts) +
dictSize(lctx.lua_scripts) * sizeof(luaScript);
}
/* ---------------------------------------------------------------------------

View File

@ -110,6 +110,33 @@ int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) {
#define ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE 10 /* % of stale keys after which
we do extra efforts. */
/* Data used by the expire dict scan callback. */
typedef struct {
redisDb *db;
long long now;
unsigned long sampled; /* num keys checked */
unsigned long expired; /* num keys expired */
long long ttl_sum; /* sum of ttl for key with ttl not yet expired */
int ttl_samples; /* num keys with ttl not yet expired */
} expireScanData;
void expireScanCallback(void *privdata, const dictEntry *const_de) {
dictEntry *de = (dictEntry *)const_de;
expireScanData *data = privdata;
long long ttl = dictGetSignedIntegerVal(de) - data->now;
if (activeExpireCycleTryExpire(data->db, de, data->now)) {
data->expired++;
/* Propagate the DEL command */
postExecutionUnitOperations();
}
if (ttl > 0) {
/* We want the average TTL of keys yet not expired. */
data->ttl_sum += ttl;
data->ttl_samples++;
}
data->sampled++;
}
void activeExpireCycle(int type) {
/* Adjust the running parameters according to the configured expire
* effort. The default effort is 1, and the maximum configurable effort
@ -186,10 +213,11 @@ void activeExpireCycle(int type) {
serverAssert(server.also_propagate.numops == 0);
for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
/* Expired and checked in a single loop. */
unsigned long expired, sampled;
/* Scan callback data including expired and checked count per iteration. */
expireScanData data;
redisDb *db = server.db+(current_db % server.dbnum);
data.db = db;
/* Increment the DB now so we are sure if we run out of time
* in the current DB we'll restart from the next. This allows to
@ -202,8 +230,6 @@ void activeExpireCycle(int type) {
* is not fixed, but depends on the Redis configured "expire effort". */
do {
unsigned long num, slots;
long long now, ttl_sum;
int ttl_samples;
iteration++;
/* If there is nothing to expire try next DB ASAP. */
@ -212,7 +238,7 @@ void activeExpireCycle(int type) {
break;
}
slots = dictSlots(db->expires);
now = mstime();
data.now = mstime();
/* When there are less than 1% filled slots, sampling the key
* space is expensive, so stop here waiting for better times...
@ -220,12 +246,12 @@ void activeExpireCycle(int type) {
if (slots > DICT_HT_INITIAL_SIZE &&
(num*100/slots < 1)) break;
/* The main collection cycle. Sample random keys among keys
/* The main collection cycle. Scan through keys among keys
* with an expire set, checking for expired ones. */
expired = 0;
sampled = 0;
ttl_sum = 0;
ttl_samples = 0;
data.sampled = 0;
data.expired = 0;
data.ttl_sum = 0;
data.ttl_samples = 0;
if (num > config_keys_per_loop)
num = config_keys_per_loop;
@ -243,46 +269,17 @@ void activeExpireCycle(int type) {
long max_buckets = num*20;
long checked_buckets = 0;
while (sampled < num && checked_buckets < max_buckets) {
for (int table = 0; table < 2; table++) {
if (table == 1 && !dictIsRehashing(db->expires)) break;
unsigned long idx = db->expires_cursor;
idx &= DICTHT_SIZE_MASK(db->expires->ht_size_exp[table]);
dictEntry *de = db->expires->ht_table[table][idx];
long long ttl;
/* Scan the current bucket of the current table. */
checked_buckets++;
while(de) {
/* Get the next entry now since this entry may get
* deleted. */
dictEntry *e = de;
de = de->next;
ttl = dictGetSignedIntegerVal(e)-now;
if (activeExpireCycleTryExpire(db,e,now)) {
expired++;
/* Propagate the DEL command */
postExecutionUnitOperations();
}
if (ttl > 0) {
/* We want the average TTL of keys yet
* not expired. */
ttl_sum += ttl;
ttl_samples++;
}
sampled++;
}
}
db->expires_cursor++;
while (data.sampled < num && checked_buckets < max_buckets) {
db->expires_cursor = dictScan(db->expires, db->expires_cursor,
expireScanCallback, &data);
checked_buckets++;
}
total_expired += expired;
total_sampled += sampled;
total_expired += data.expired;
total_sampled += data.sampled;
/* Update the average TTL stats for this database. */
if (ttl_samples) {
long long avg_ttl = ttl_sum/ttl_samples;
if (data.ttl_samples) {
long long avg_ttl = data.ttl_sum / data.ttl_samples;
/* Do a simple running average with a few samples.
* We just use the current estimate with a weight of 2%
@ -305,8 +302,8 @@ void activeExpireCycle(int type) {
/* We don't repeat the cycle for the current database if there are
* an acceptable amount of stale keys (logically expired but yet
* not reclaimed). */
} while (sampled == 0 ||
(expired*100/sampled) > config_cycle_acceptable_stale);
} while (data.sampled == 0 ||
(data.expired * 100 / data.sampled) > config_cycle_acceptable_stale);
}
elapsed = ustime()-start;
@ -444,8 +441,8 @@ void rememberSlaveKeyWithExpire(redisDb *db, robj *key) {
* representing the key: we don't want to need to take those keys
* in sync with the main DB. The keys will be removed by expireSlaveKeys()
* as it scans to find keys to remove. */
if (de->key == key->ptr) {
de->key = sdsdup(key->ptr);
if (dictGetKey(de) == key->ptr) {
dictSetKey(slaveKeysWithExpire, de, sdsdup(key->ptr));
dictSetUnsignedIntegerVal(de,0);
}

View File

@ -1091,10 +1091,9 @@ unsigned long functionsMemory() {
/* Return memory overhead of all the engines combine */
unsigned long functionsMemoryOverhead() {
size_t memory_overhead = dictSize(engines) * sizeof(dictEntry) +
dictSlots(engines) * sizeof(dictEntry*);
memory_overhead += dictSize(curr_functions_lib_ctx->functions) * sizeof(dictEntry) +
dictSlots(curr_functions_lib_ctx->functions) * sizeof(dictEntry*) + sizeof(functionsLibCtx);
size_t memory_overhead = dictMemUsage(engines);
memory_overhead += dictMemUsage(curr_functions_lib_ctx->functions);
memory_overhead += sizeof(functionsLibCtx);
memory_overhead += curr_functions_lib_ctx->cache_memory;
memory_overhead += engine_cache_memory;

View File

@ -10336,7 +10336,7 @@ int RM_Scan(RedisModuleCtx *ctx, RedisModuleScanCursor *cursor, RedisModuleScanC
}
int ret = 1;
ScanCBData data = { ctx, privdata, fn };
cursor->cursor = dictScan(ctx->client->db->dict, cursor->cursor, moduleScanCallback, NULL, &data);
cursor->cursor = dictScan(ctx->client->db->dict, cursor->cursor, moduleScanCallback, &data);
if (cursor->cursor == 0) {
cursor->done = 1;
ret = 0;
@ -10448,7 +10448,7 @@ int RM_ScanKey(RedisModuleKey *key, RedisModuleScanCursor *cursor, RedisModuleSc
int ret = 1;
if (ht) {
ScanKeyCBData data = { key, privdata, fn };
cursor->cursor = dictScan(ht, cursor->cursor, moduleScanKeyCallback, NULL, &data);
cursor->cursor = dictScan(ht, cursor->cursor, moduleScanKeyCallback, &data);
if (cursor->cursor == 0) {
cursor->done = 1;
ret = 0;
@ -12562,7 +12562,6 @@ const char *RM_GetCurrentCommandName(RedisModuleCtx *ctx) {
* defrag callback.
*/
struct RedisModuleDefragCtx {
long defragged;
long long int endtime;
unsigned long *cursor;
struct redisObject *key; /* Optional name of key processed, NULL when unknown. */
@ -12651,11 +12650,8 @@ int RM_DefragCursorGet(RedisModuleDefragCtx *ctx, unsigned long *cursor) {
* be used again.
*/
void *RM_DefragAlloc(RedisModuleDefragCtx *ctx, void *ptr) {
void *newptr = activeDefragAlloc(ptr);
if (newptr)
ctx->defragged++;
return newptr;
UNUSED(ctx);
return activeDefragAlloc(ptr);
}
/* Defrag a RedisModuleString previously allocated by RM_Alloc, RM_Calloc, etc.
@ -12669,7 +12665,8 @@ void *RM_DefragAlloc(RedisModuleDefragCtx *ctx, void *ptr) {
* on the Redis side is dropped as soon as the command callback returns).
*/
RedisModuleString *RM_DefragRedisModuleString(RedisModuleDefragCtx *ctx, RedisModuleString *str) {
return activeDefragStringOb(str, &ctx->defragged);
UNUSED(ctx);
return activeDefragStringOb(str);
}
@ -12678,11 +12675,11 @@ RedisModuleString *RM_DefragRedisModuleString(RedisModuleDefragCtx *ctx, RedisMo
* Returns a zero value (and initializes the cursor) if no more needs to be done,
* or a non-zero value otherwise.
*/
int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long endtime, long long *defragged, int dbid) {
int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long endtime, int dbid) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
RedisModuleDefragCtx defrag_ctx = { 0, endtime, cursor, key, dbid};
RedisModuleDefragCtx defrag_ctx = { endtime, cursor, key, dbid};
/* Invoke callback. Note that the callback may be missing if the key has been
* replaced with a different type since our last visit.
@ -12691,7 +12688,6 @@ int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long en
if (mt->defrag)
ret = mt->defrag(&defrag_ctx, key, &mv->value);
*defragged += defrag_ctx.defragged;
if (!ret) {
*cursor = 0; /* No more work to do */
return 0;
@ -12706,7 +12702,7 @@ int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long en
* Returns 1 if the operation has been completed or 0 if it needs to
* be scheduled for late defrag.
*/
int moduleDefragValue(robj *key, robj *value, long *defragged, int dbid) {
int moduleDefragValue(robj *key, robj *value, int dbid) {
moduleValue *mv = value->ptr;
moduleType *mt = mv->type;
@ -12715,7 +12711,6 @@ int moduleDefragValue(robj *key, robj *value, long *defragged, int dbid) {
*/
moduleValue *newmv = activeDefragAlloc(mv);
if (newmv) {
(*defragged)++;
value->ptr = mv = newmv;
}
@ -12733,29 +12728,24 @@ int moduleDefragValue(robj *key, robj *value, long *defragged, int dbid) {
return 0; /* Defrag later */
}
RedisModuleDefragCtx defrag_ctx = { 0, 0, NULL, key, dbid};
RedisModuleDefragCtx defrag_ctx = { 0, NULL, key, dbid };
mt->defrag(&defrag_ctx, key, &mv->value);
(*defragged) += defrag_ctx.defragged;
return 1;
}
/* Call registered module API defrag functions */
long moduleDefragGlobals(void) {
void moduleDefragGlobals(void) {
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
long defragged = 0;
while ((de = dictNext(di)) != NULL) {
struct RedisModule *module = dictGetVal(de);
if (!module->defrag_cb)
continue;
RedisModuleDefragCtx defrag_ctx = { 0, 0, NULL, NULL, -1};
RedisModuleDefragCtx defrag_ctx = { 0, NULL, NULL, -1};
module->defrag_cb(&defrag_ctx);
defragged += defrag_ctx.defragged;
}
dictReleaseIterator(di);
return defragged;
}
/* Returns the name of the key currently being processed.

View File

@ -1029,7 +1029,7 @@ size_t objectComputeSize(robj *key, robj *o, size_t sample_size, int dbid) {
asize = sizeof(*o)+sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d));
while((de = dictNext(di)) != NULL && samples < sample_size) {
ele = dictGetKey(de);
elesize += sizeof(struct dictEntry) + sdsZmallocSize(ele);
elesize += dictEntryMemUsage() + sdsZmallocSize(ele);
samples++;
}
dictReleaseIterator(di);
@ -1053,7 +1053,7 @@ size_t objectComputeSize(robj *key, robj *o, size_t sample_size, int dbid) {
zmalloc_size(zsl->header);
while(znode != NULL && samples < sample_size) {
elesize += sdsZmallocSize(znode->ele);
elesize += sizeof(struct dictEntry)+zmalloc_size(znode);
elesize += dictEntryMemUsage()+zmalloc_size(znode);
samples++;
znode = znode->level[0].forward;
}
@ -1072,7 +1072,7 @@ size_t objectComputeSize(robj *key, robj *o, size_t sample_size, int dbid) {
ele = dictGetKey(de);
ele2 = dictGetVal(de);
elesize += sdsZmallocSize(ele) + sdsZmallocSize(ele2);
elesize += sizeof(struct dictEntry);
elesize += dictEntryMemUsage();
samples++;
}
dictReleaseIterator(di);
@ -1242,19 +1242,18 @@ struct redisMemOverhead *getMemoryOverheadData(void) {
mh->db = zrealloc(mh->db,sizeof(mh->db[0])*(mh->num_dbs+1));
mh->db[mh->num_dbs].dbid = j;
mem = dictSize(db->dict) * sizeof(dictEntry) +
dictSlots(db->dict) * sizeof(dictEntry*) +
mem = dictMemUsage(db->dict) +
dictSize(db->dict) * sizeof(robj);
mh->db[mh->num_dbs].overhead_ht_main = mem;
mem_total+=mem;
mem = dictSize(db->expires) * sizeof(dictEntry) +
dictSlots(db->expires) * sizeof(dictEntry*);
mem = dictMemUsage(db->expires);
mh->db[mh->num_dbs].overhead_ht_expires = mem;
mem_total+=mem;
/* Account for the slot to keys map in cluster mode */
mem = dictSize(db->dict) * dictMetadataSize(db->dict);
mem = dictSize(db->dict) * dictEntryMetadataSize(db->dict) +
dictMetadataSize(db->dict);
mh->db[mh->num_dbs].overhead_ht_slot_to_keys = mem;
mem_total+=mem;
@ -1547,7 +1546,7 @@ NULL
}
size_t usage = objectComputeSize(c->argv[2],dictGetVal(de),samples,c->db->id);
usage += sdsZmallocSize(dictGetKey(de));
usage += sizeof(dictEntry);
usage += dictEntryMemUsage();
usage += dictMetadataSize(c->db->dict);
addReplyLongLong(c,usage);
} else if (!strcasecmp(c->argv[1]->ptr,"stats") && c->argc == 2) {

View File

@ -727,10 +727,8 @@ size_t pubsubMemOverhead(client *c) {
/* PubSub patterns */
size_t mem = listLength(c->pubsub_patterns) * sizeof(listNode);
/* Global PubSub channels */
mem += dictSize(c->pubsub_channels) * sizeof(dictEntry) +
dictSlots(c->pubsub_channels) * sizeof(dictEntry*);
mem += dictMemUsage(c->pubsub_channels);
/* Sharded PubSub channels */
mem += dictSize(c->pubsubshard_channels) * sizeof(dictEntry) +
dictSlots(c->pubsubshard_channels) * sizeof(dictEntry*);
mem += dictMemUsage(c->pubsubshard_channels);
return mem;
}

View File

@ -762,7 +762,7 @@ void cliInitGroupHelpEntries(dict *groups) {
for (entry = dictNext(iter); entry != NULL; entry = dictNext(iter)) {
tmp.argc = 1;
tmp.argv = zmalloc(sizeof(sds));
tmp.argv[0] = sdscatprintf(sdsempty(),"@%s",(char *)entry->key);
tmp.argv[0] = sdscatprintf(sdsempty(),"@%s",(char *)dictGetKey(entry));
tmp.full = tmp.argv[0];
tmp.type = CLI_HELP_GROUP;
tmp.org.name = NULL;

View File

@ -399,13 +399,24 @@ int dictExpandAllowed(size_t moreMem, double usedRatio) {
/* Returns the size of the DB dict entry metadata in bytes. In cluster mode, the
* metadata is used for constructing a doubly linked list of the dict entries
* belonging to the same cluster slot. See the Slot to Key API in cluster.c. */
size_t dictEntryMetadataSize(dict *d) {
size_t dbDictEntryMetadataSize(dict *d) {
UNUSED(d);
/* NOTICE: this also affects overhead_ht_slot_to_keys in getMemoryOverheadData.
* If we ever add non-cluster related data here, that code must be modified too. */
return server.cluster_enabled ? sizeof(clusterDictEntryMetadata) : 0;
}
/* Returns the size of the DB dict metadata in bytes. In cluster mode, we store
* a pointer to the db in the main db dict, used for updating the slot-to-key
* mapping when a dictEntry is reallocated. */
size_t dbDictMetadataSize(void) {
return server.cluster_enabled ? sizeof(clusterDictMetadata) : 0;
}
void dbDictAfterReplaceEntry(dict *d, dictEntry *de) {
if (server.cluster_enabled) slotToKeyReplaceEntry(d, de);
}
/* Generic hash table type where keys are Redis Objects, Values
* dummy pointers. */
dictType objectKeyPointerValueDictType = {
@ -460,7 +471,9 @@ dictType dbDictType = {
dictSdsDestructor, /* key destructor */
dictObjectDestructor, /* val destructor */
dictExpandAllowed, /* allow to expand */
dictEntryMetadataSize /* size of entry metadata in bytes */
dbDictEntryMetadataSize, /* size of entry metadata in bytes */
dbDictMetadataSize, /* size of dict metadata in bytes */
dbDictAfterReplaceEntry /* notify entry moved/reallocated */
};
/* Db->expires */

View File

@ -2442,9 +2442,9 @@ void moduleNotifyKeyUnlink(robj *key, robj *val, int dbid, int flags);
size_t moduleGetFreeEffort(robj *key, robj *val, int dbid);
size_t moduleGetMemUsage(robj *key, robj *val, size_t sample_size, int dbid);
robj *moduleTypeDupOrReply(client *c, robj *fromkey, robj *tokey, int todb, robj *value);
int moduleDefragValue(robj *key, robj *obj, long *defragged, int dbid);
int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long endtime, long long *defragged, int dbid);
long moduleDefragGlobals(void);
int moduleDefragValue(robj *key, robj *obj, int dbid);
int moduleLateDefrag(robj *key, robj *value, unsigned long *cursor, long long endtime, int dbid);
void moduleDefragGlobals(void);
void *moduleGetHandleByName(char *modulename);
int moduleIsModuleCommand(void *module_handle, struct redisCommand *cmd);
@ -2988,7 +2988,7 @@ void checkChildrenDone(void);
int setOOMScoreAdj(int process_class);
void rejectCommandFormat(client *c, const char *fmt, ...);
void *activeDefragAlloc(void *ptr);
robj *activeDefragStringOb(robj* ob, long *defragged);
robj *activeDefragStringOb(robj* ob);
void dismissSds(sds s);
void dismissMemory(void* ptr, size_t size_hint);
void dismissMemoryInChild(void);

View File

@ -1428,7 +1428,7 @@ int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, dou
/* Note that we did not removed the original element from
* the hash table representing the sorted set, so we just
* update the score. */
dictGetVal(de) = &znode->score; /* Update score ptr. */
dictSetVal(zs->dict, de, &znode->score); /* Update score ptr. */
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
@ -2741,7 +2741,8 @@ void zunionInterDiffGenericCommand(client *c, robj *dstkey, int numkeysIndex, in
* Here we access directly the dictEntry double
* value inside the union as it is a big speedup
* compared to using the getDouble/setDouble API. */
zunionInterAggregate(&existing->v.d,score,aggregate);
double *existing_score_ptr = dictGetDoubleValPtr(existing);
zunionInterAggregate(existing_score_ptr, score, aggregate);
}
}
zuiClearIterator(&src[i]);