Now that the command argument specs are available at runtime (#9656), this PR addresses
#8084 by implementing a complete solution for command-line hinting in `redis-cli`.
It correctly handles nearly every case in Redis's complex command argument definitions, including
`BLOCK` and `ONEOF` arguments, reordering of optional arguments, and repeated arguments
(even when followed by mandatory arguments). It also validates numerically-typed arguments.
It may not correctly handle all possible combinations of those, but overall it is quite robust.
Arguments are only matched after the space bar is typed, so partial word matching is not
supported - that proved to be more confusing than helpful. When the user's current input
cannot be matched against the argument specs, hinting is disabled.
Partial support has been implemented for legacy (pre-7.0) servers that do not support
`COMMAND DOCS`, by falling back to a statically-compiled command argument table.
On startup, if the server does not support `COMMAND DOCS`, `redis-cli` will now issue
an `INFO SERVER` command to retrieve the server version (unless `HELLO` has already
been sent, in which case the server version will be extracted from the reply to `HELLO`).
The server version will be used to filter the commands and arguments in the command table,
removing those not supported by that version of the server. However, the static table only
includes core Redis commands, so with a legacy server hinting will not be supported for
module commands. The auto generated help.h and the scripts that generates it are gone.
Command and argument tables for the server and CLI use different structs, due primarily
to the need to support different runtime data. In order to generate code for both, macros
have been added to `commands.def` (previously `commands.c`) to make it possible to
configure the code generation differently for different use cases (one linked with redis-server,
and one with redis-cli).
Also adding a basic testing framework for the command hints based on new (undocumented)
command line options to `redis-cli`: `--test_hint 'INPUT'` prints out the command-line hint for
a given input string, and `--test_hint_file <filename>` runs a suite of test cases for the hinting
mechanism. The test suite is in `tests/assets/test_cli_hint_suite.txt`, and it is run from
`tests/integration/redis-cli.tcl`.
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
The reason is in reply-schemas-validator, the resp of the
client we create will be client_default_resp (currently 3):
```
client *createClient(connection *conn) {
client *c = zmalloc(sizeof(client));
#ifdef LOG_REQ_RES
reqresReset(c, 0);
c->resp = server.client_default_resp;
#else
c->resp = 2;
#endif
}
```
But current_resp3 in redis-cli will be inconsistent with it,
the test adds a simple hello 3 to avoid this failure, test
was added in #11873.
Added help descriptions for dont-pre-clean option, it was
added in #10273
The message "Reading messages... (press Ctrl-C to quit)" is replaced by
"Reading messages... (press Ctrl-C to quit or any key to type command)".
This allows users to subscribe to more channels, to try out UNSUBSCRIBE and to
combine pubsub with other features such as push messages from client tracking.
The "Reading messages" info message is displayed in the bottom of the output in a
distinct style and moves downward as more messages appear. When any key is pressed,
the info message is replaced by the prompt with for entering commands.
After entering a command and the reply is displayed, the "Reading messages" info
messages appears again. This is added to the repl loop in redis-cli and in the
corresponding place for non-interactive mode.
An indication "(subscribed mode)" is included in the prompt when entering commands
in subscribed mode.
Also:
* Fixes a problem that UNSUBSCRIBE hanged when used with RESP3 and push callback,
without first entering subscribe mode. It hanged because UNSUBSCRIBE gets one or
more push replies but no in-band reply.
* Exit subscribed mode after RESET.
In #11666, we added a while loop and will split a big reply
node to multiple nodes. The update of tail->repl_offset may
be wrong. Like before #11666, we would have created at most
one new reply node, and now we will create multiple nodes if
it is a big reply node.
Now we are creating more than one node, and the tail->repl_offset
of all the nodes except the last one are incorrect. Because we
update master_repl_offset at the beginning, and then use it to
update the tail->repl_offset. This would have lead to an assertion
during PSYNC, a test was added to validate that case.
Besides that, the calculation of size was adjusted to fix
tests that failed due to a combination of a very low backlog size,
and some thresholds of that get violated because of the relatively
high overhead of replBufBlock. So now if the backlog size / 16 is too
small, we'll take PROTO_REPLY_CHUNK_BYTES instead.
Co-authored-by: Oran Agra <oran@redislabs.com>
This can happen when a key almost equal or larger than the
client output buffer limit of the replica is written.
Example:
1. DB is empty
2. Backlog size is 1 MB
3. Client out put buffer limit is 2 MB
4. Client writes a 3 MB key
5. The shared replication buffer will have a single node which contains
the key written above, and it exceeds the backlog size.
At this point the client output buffer usage calculation will report the
replica buffer to be 3 MB (or more) even after sending all the data to
the replica.
The primary drops the replica connection for exceeding the limits,
the replica reconnects and successfully executes partial sync but the
primary will drop the connection again because the buffer usage is still
3 MB. This happens over and over.
To mitigate the problem, this fix limits the maximum size of a single
backlog node to be (repl_backlog_size/16). This way a single node can't
exceed the limits of the COB (the COB has to be larger than the
backlog).
It also means that if the backlog has some excessive data it can't trim,
it would be at most about 6% overuse.
other notes:
1. a loop was added in feedReplicationBuffer which caused a massive LOC
change due to indentation, the actual changes are just the `min(max` and the loop.
3. an unrelated change in an existing test to speed up a server termination which took 10 seconds.
Co-authored-by: Oran Agra <oran@redislabs.com>
Work in progress towards implementing a reply schema as part of COMMAND DOCS, see #9845
Since ironing the details of the reply schema of each and every command can take a long time, we
would like to merge this PR when the infrastructure is ready, and let this mature in the unstable branch.
Meanwhile the changes of this PR are internal, they are part of the repo, but do not affect the produced build.
### Background
In #9656 we add a lot of information about Redis commands, but we are missing information about the replies
### Motivation
1. Documentation. This is the primary goal.
2. It should be possible, based on the output of COMMAND, to be able to generate client code in typed
languages. In order to do that, we need Redis to tell us, in detail, what each reply looks like.
3. We would like to build a fuzzer that verifies the reply structure (for now we use the existing
testsuite, see the "Testing" section)
### Schema
The idea is to supply some sort of schema for the various replies of each command.
The schema will describe the conceptual structure of the reply (for generated clients), as defined in RESP3.
Note that the reply structure itself may change, depending on the arguments (e.g. `XINFO STREAM`, with
and without the `FULL` modifier)
We decided to use the standard json-schema (see https://json-schema.org/) as the reply-schema.
Example for `BZPOPMIN`:
```
"reply_schema": {
"oneOf": [
{
"description": "Timeout reached and no elements were popped.",
"type": "null"
},
{
"description": "The keyname, popped member, and its score.",
"type": "array",
"minItems": 3,
"maxItems": 3,
"items": [
{
"description": "Keyname",
"type": "string"
},
{
"description": "Member",
"type": "string"
},
{
"description": "Score",
"type": "number"
}
]
}
]
}
```
#### Notes
1. It is ok that some commands' reply structure depends on the arguments and it's the caller's responsibility
to know which is the relevant one. this comes after looking at other request-reply systems like OpenAPI,
where the reply schema can also be oneOf and the caller is responsible to know which schema is the relevant one.
2. The reply schemas will describe RESP3 replies only. even though RESP3 is structured, we want to use reply
schema for documentation (and possibly to create a fuzzer that validates the replies)
3. For documentation, the description field will include an explanation of the scenario in which the reply is sent,
including any relation to arguments. for example, for `ZRANGE`'s two schemas we will need to state that one
is with `WITHSCORES` and the other is without.
4. For documentation, there will be another optional field "notes" in which we will add a short description of
the representation in RESP2, in case it's not trivial (RESP3's `ZRANGE`'s nested array vs. RESP2's flat
array, for example)
Given the above:
1. We can generate the "return" section of all commands in [redis-doc](https://redis.io/commands/)
(given that "description" and "notes" are comprehensive enough)
2. We can generate a client in a strongly typed language (but the return type could be a conceptual
`union` and the caller needs to know which schema is relevant). see the section below for RESP2 support.
3. We can create a fuzzer for RESP3.
### Limitations (because we are using the standard json-schema)
The problem is that Redis' replies are more diverse than what the json format allows. This means that,
when we convert the reply to a json (in order to validate the schema against it), we lose information (see
the "Testing" section below).
The other option would have been to extend the standard json-schema (and json format) to include stuff
like sets, bulk-strings, error-string, etc. but that would mean also extending the schema-validator - and that
seemed like too much work, so we decided to compromise.
Examples:
1. We cannot tell the difference between an "array" and a "set"
2. We cannot tell the difference between simple-string and bulk-string
3. we cannot verify true uniqueness of items in commands like ZRANGE: json-schema doesn't cover the
case of two identical members with different scores (e.g. `[["m1",6],["m1",7]]`) because `uniqueItems`
compares (member,score) tuples and not just the member name.
### Testing
This commit includes some changes inside Redis in order to verify the schemas (existing and future ones)
are indeed correct (i.e. describe the actual response of Redis).
To do that, we added a debugging feature to Redis that causes it to produce a log of all the commands
it executed and their replies.
For that, Redis needs to be compiled with `-DLOG_REQ_RES` and run with
`--reg-res-logfile <file> --client-default-resp 3` (the testsuite already does that if you run it with
`--log-req-res --force-resp3`)
You should run the testsuite with the above args (and `--dont-clean`) in order to make Redis generate
`.reqres` files (same dir as the `stdout` files) which contain request-response pairs.
These files are later on processed by `./utils/req-res-log-validator.py` which does:
1. Goes over req-res files, generated by redis-servers, spawned by the testsuite (see logreqres.c)
2. For each request-response pair, it validates the response against the request's reply_schema
(obtained from the extended COMMAND DOCS)
5. In order to get good coverage of the Redis commands, and all their different replies, we chose to use
the existing redis test suite, rather than attempt to write a fuzzer.
#### Notes about RESP2
1. We will not be able to use the testing tool to verify RESP2 replies (we are ok with that, it's time to
accept RESP3 as the future RESP)
2. Since the majority of the test suite is using RESP2, and we want the server to reply with RESP3
so that we can validate it, we will need to know how to convert the actual reply to the one expected.
- number and boolean are always strings in RESP2 so the conversion is easy
- objects (maps) are always a flat array in RESP2
- others (nested array in RESP3's `ZRANGE` and others) will need some special per-command
handling (so the client will not be totally auto-generated)
Example for ZRANGE:
```
"reply_schema": {
"anyOf": [
{
"description": "A list of member elements",
"type": "array",
"uniqueItems": true,
"items": {
"type": "string"
}
},
{
"description": "Members and their scores. Returned in case `WITHSCORES` was used.",
"notes": "In RESP2 this is returned as a flat array",
"type": "array",
"uniqueItems": true,
"items": {
"type": "array",
"minItems": 2,
"maxItems": 2,
"items": [
{
"description": "Member",
"type": "string"
},
{
"description": "Score",
"type": "number"
}
]
}
}
]
}
```
### Other changes
1. Some tests that behave differently depending on the RESP are now being tested for both RESP,
regardless of the special log-req-res mode ("Pub/Sub PING" for example)
2. Update the history field of CLIENT LIST
3. Added basic tests for commands that were not covered at all by the testsuite
### TODO
- [x] (maybe a different PR) add a "condition" field to anyOf/oneOf schemas that refers to args. e.g.
when `SET` return NULL, the condition is `arguments.get||arguments.condition`, for `OK` the condition
is `!arguments.get`, and for `string` the condition is `arguments.get` - https://github.com/redis/redis/issues/11896
- [x] (maybe a different PR) also run `runtest-cluster` in the req-res logging mode
- [x] add the new tests to GH actions (i.e. compile with `-DLOG_REQ_RES`, run the tests, and run the validator)
- [x] (maybe a different PR) figure out a way to warn about (sub)schemas that are uncovered by the output
of the tests - https://github.com/redis/redis/issues/11897
- [x] (probably a separate PR) add all missing schemas
- [x] check why "SDOWN is triggered by misconfigured instance replying with errors" fails with --log-req-res
- [x] move the response transformers to their own file (run both regular, cluster, and sentinel tests - need to
fight with the tcl including mechanism a bit)
- [x] issue: module API - https://github.com/redis/redis/issues/11898
- [x] (probably a separate PR): improve schemas: add `required` to `object`s - https://github.com/redis/redis/issues/11899
Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Hanna Fadida <hanna.fadida@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Shaya Potter <shaya@redislabs.com>
* Make it clear that current_client is the root client that was called by
external connection
* add executing_client which is the client that runs the current command
(can be a module or a script)
* Remove script_caller that was used for commands that have CLIENT_SCRIPT
to get the client that called the script. in most cases, that's the current_client,
and in others (when being called from a module), it could be an intermediate
client when we actually want the original one used by the external connection.
bugfixes:
* RM_Call with C flag should log ACL errors with the requested user rather than
the one used by the original client, this also solves a crash when RM_Call is used
with C flag from a detached thread safe context.
* addACLLogEntry would have logged info about the script_caller, but in case the
script was issued by a module command we actually want the current_client. the
exception is when RM_Call is called from a timer event, in which case we don't
have a current_client.
behavior changes:
* client side tracking for scripts now tracks the keys that are read by the script
instead of the keys that are declared by the caller for EVAL
other changes:
* Log both current_client and executing_client in the crash log.
* remove prepareLuaClient and resetLuaClient, being dead code that was forgotten.
* remove scriptTimeSnapshot and snapshot_time and instead add cmd_time_snapshot
that serves all commands and is reset only when execution nesting starts.
* remove code to propagate CLIENT_FORCE_REPL from the executed command
to the script caller since scripts aren't propagated anyway these days and anyway
this flag wouldn't have had an effect since CLIENT_PREVENT_PROP is added by scriptResetRun.
* fix a module GIL violation issue in afterSleep that was introduced in #10300 (unreleased)
If we have integer scores on the sorted set we're not using the fastest way
to reply by calling `d2string` which uses `double2ll` and `ll2string` when it can,
instead of `fpconv_dtoa`.
This results by some 50% performance improvement in certain cases of integer
scores for both RESP2 and RESP3, and no apparent impact on double scores.
Co-authored-by: Oran Agra <oran@redislabs.com>
Failure happens in FreeBSD daily:
```
*** [err]: Test replication with parallel clients writing in different DBs in tests/integration/replication-4.tcl
Expected [::redis::redisHandle2 dbsize] > 0 (context: type eval line 19 cmd {assert {[$master dbsize] > 0}} proc ::test)
```
The test is failing because db 9 has no data (default db), and
according to the log, we can see that db 9 does not have a key:
```
### Starting test Test replication with parallel clients writing in different DBs in tests/integration/replication-4.tcl
3338:S 03 Feb 2023 00:15:18.723 - DB 11: 1 keys (0 volatile) in 4 slots HT.
3338:S 03 Feb 2023 00:15:18.723 - DB 12: 141 keys (0 volatile) in 256 slots HT.
```
We use `wait_for_condition` to ensure that parallel clients have
written data before calling stop_bg_complex_data. At the same time,
`wait_for_condition` is also used to remove the above `after 1000`,
which can save time in most cases.
Test on x86 + TLS fail with this error:
```
*** [err]: Slave is able to detect timeout during handshake in tests/integration/replication.tcl
Replica is not able to detect timeout
```
The replica logs is:
```
### Starting test Slave is able to detect timeout during handshake in tests/integration/replication.tcl
7681:S 05 Jan 2023 00:21:56.635 * Non blocking connect for SYNC fired the event.
7681:S 05 Jan 2023 00:21:56.638 * Master replied to PING, replication can continue...
7681:S 05 Jan 2023 00:21:56.638 * Trying a partial resynchronization (request ef70638885500aad12dd673c68ca1541116a59fe:1).
7681:S 05 Jan 2023 00:22:56.894 # Failed to read response from the server: error:0A000126:SSL routines::unexpected eof while reading
7681:S 05 Jan 2023 00:22:56.894 # Master did not reply to PSYNC, will try later
```
This is another issue that appeared after #11640 was merged. This PR try to fix it.
The idea is to make it stable in `wait_bgsave`, for example, it may wait until the
next psync retry in the following situation: `Master did not reply to PSYNC, will try later`
Other than that, the change will make the test more consistent / predictable since
it'll mean the master is always frozen in the desired state (waiting for repl-diskless-sync-delay
to happen, rather than earlier stages of the handshake).
Test on ARM + TLS often fail with this error:
```
*** [err]: Slave is able to detect timeout during handshake in tests/integration/replication.tcl
Replica is not able to detect timeout
```
https://github.com/redis/redis-extra-ci/actions/runs/3727554226/jobs/6321797837
The replica logs show that in this case the replica got timeout before even getting a response to the PING command (instead of the SYNC command).
it should have shown these:
```
* MASTER <-> REPLICA sync started
* REPLICAOF 127.0.0.1:22112 enabled ....
### Starting test Slave enters handshake in tests/integration/replication.tcl
* Non blocking connect for SYNC fired the event.
```
then:
```
* Master replied to PING, replication can continue...
* Trying a partial resynchronization (request 50da9eff70d774f4e6cb723eb4b091440f215772:1).
```
and then hang for 5 seconds:
```
# Timeout connecting to the MASTER...
* Reconnecting to MASTER 127.0.0.1:21112 after failure
```
but instead it got this (looks like it disconnected too early, and then tried to re-connect):
```
10890:M 19 Dec 2022 01:32:54.794 * Ready to accept connections tls
10890:M 19 Dec 2022 01:32:54.809 - Accepted 127.0.0.1:41047
10890:M 19 Dec 2022 01:32:54.878 - Reading from client: error:0A000126:SSL routines::unexpected eof while reading
10890:M 19 Dec 2022 01:32:54.925 - Accepted 127.0.0.1:39207
10890:S 19 Dec 2022 01:32:55.463 * Before turning into a replica, using my own master parameters to synthesize a cached master: I may be able to synchronize with the new master with just a partial transfer.
10890:S 19 Dec 2022 01:32:55.463 * Connecting to MASTER 127.0.0.1:24126
10890:S 19 Dec 2022 01:32:55.463 * MASTER <-> REPLICA sync started
10890:S 19 Dec 2022 01:32:55.463 * REPLICAOF 127.0.0.1:24126 enabled (user request from 'id=4 addr=127.0.0.1:39207 laddr=127.0.0.1:24125 fd=8 name= age=1 idle=0 flags=N db=9 sub=0 psub=0 ssub=0 multi=-1 qbuf=43 qbuf-free=20431 argv-mem=21 multi-mem=0 rbs=1024 rbp=5 obl=0 oll=0 omem=0 tot-mem=22317 events=r cmd=slaveof user=default redir=-1 resp=2')
### Starting test Slave enters handshake in tests/integration/replication.tcl
10890:S 19 Dec 2022 01:32:55.476 * Non blocking connect for SYNC fired the event.
10890:S 19 Dec 2022 01:33:00.701 # Failed to read response from the server: (null) <- note this!!
10890:S 19 Dec 2022 01:33:00.701 # Master did not respond to command during SYNC handshake
10890:S 19 Dec 2022 01:33:01.002 * Connecting to MASTER 127.0.0.1:24126
10890:S 19 Dec 2022 01:33:01.002 * MASTER <-> REPLICA sync started
### Starting test Slave is able to detect timeout during handshake in tests/integration/replication.tcl
10890:S 19 Dec 2022 01:33:05.497 * Non blocking connect for SYNC fired the event.
10890:S 19 Dec 2022 01:33:05.500 * Master replied to PING, replication can continue...
10890:S 19 Dec 2022 01:33:05.510 * Trying a partial resynchronization (request 947e1956372a0e6c819cfec51c42cc7979b0c221:1).
10890:S 19 Dec 2022 01:34:05.833 # Failed to read response from the server: error:0A000126:SSL routines::unexpected eof while reading
10890:S 19 Dec 2022 01:34:05.833 # Master did not reply to PSYNC, will try later
```
This PR sets enables the 5 seconds timeout at a later stage to try and prevent the early disconnection.
*TL;DR*
---------------------------------------
Following the discussion over the issue [#7551](https://github.com/redis/redis/issues/7551)
We decided to refactor the client blocking code to eliminate some of the code duplications
and to rebuild the infrastructure better for future key blocking cases.
*In this PR*
---------------------------------------
1. reprocess the command once a client becomes unblocked on key (instead of running
custom code for the unblocked path that's different than the one that would have run if
blocking wasn't needed)
2. eliminate some (now) irrelevant code for handling unblocking lists/zsets/streams etc...
3. modify some tests to intercept the error in cases of error on reprocess after unblock (see
details in the notes section below)
4. replace '$' on the client argv with current stream id. Since once we reprocess the stream
XREAD we need to read from the last msg and not wait for new msg in order to prevent
endless block loop.
5. Added statistics to the info "Clients" section to report the:
* `total_blocking_keys` - number of blocking keys
* `total_blocking_keys_on_nokey` - number of blocking keys which have at least 1 client
which would like
to be unblocked on when the key is deleted.
6. Avoid expiring unblocked key during unblock. Previously we used to lookup the unblocked key
which might have been expired during the lookup. Now we lookup the key using NOTOUCH and
NOEXPIRE to avoid deleting it at this point, so propagating commands in blocked.c is no longer needed.
7. deprecated command flags. We decided to remove the CMD_CALL_STATS and CMD_CALL_SLOWLOG
and make an explicit verification in the call() function in order to decide if stats update should take place.
This should simplify the logic and also mitigate existing issues: for example module calls which are
triggered as part of AOF loading might still report stats even though they are called during AOF loading.
*Behavior changes*
---------------------------------------------------
1. As this implementation prevents writing dedicated code handling unblocked streams/lists/zsets,
since we now re-process the command once the client is unblocked some errors will be reported differently.
The old implementation used to issue
``UNBLOCKED the stream key no longer exists``
in the following cases:
- The stream key has been deleted (ie. calling DEL)
- The stream and group existed but the key type was changed by overriding it (ie. with set command)
- The key not longer exists after we swapdb with a db which does not contains this key
- After swapdb when the new db has this key but with different type.
In the new implementation the reported errors will be the same as if the command was processed after effect:
**NOGROUP** - in case key no longer exists, or **WRONGTYPE** in case the key was overridden with a different type.
2. Reprocessing the command means that some checks will be reevaluated once the
client is unblocked.
For example, ACL rules might change since the command originally was executed and
will fail once the client is unblocked.
Another example is OOM condition checks which might enable the command to run and
block but fail the command reprocess once the client is unblocked.
3. One of the changes in this PR is that no command stats are being updated once the
command is blocked (all stats will be updated once the client is unblocked). This implies
that when we have many clients blocked, users will no longer be able to get that information
from the command stats. However the information can still be gathered from the client list.
**Client blocking**
---------------------------------------------------
the blocking on key will still be triggered the same way as it is done today.
in order to block the current client on list of keys, the call to
blockForKeys will still need to be made which will perform the same as it is today:
* add the client to the list of blocked clients on each key
* keep the key with a matching list node (position in the global blocking clients list for that key)
in the client private blocking key dict.
* flag the client with CLIENT_BLOCKED
* update blocking statistics
* register the client on the timeout table
**Key Unblock**
---------------------------------------------------
Unblocking a specific key will be triggered (same as today) by calling signalKeyAsReady.
the implementation in that part will stay the same as today - adding the key to the global readyList.
The reason to maintain the readyList (as apposed to iterating over all clients blocked on the specific key)
is in order to keep the signal operation as short as possible, since it is called during the command processing.
The main change is that instead of going through a dedicated code path that operates the blocked command
we will just call processPendingCommandsAndResetClient.
**ClientUnblock (keys)**
---------------------------------------------------
1. Unblocking clients on keys will be triggered after command is
processed and during the beforeSleep
8. the general schema is:
9. For each key *k* in the readyList:
```
For each client *c* which is blocked on *k*:
in case either:
1. *k* exists AND the *k* type matches the current client blocking type
OR
2. *k* exists and *c* is blocked on module command
OR
3. *k* does not exists and *c* was blocked with the flag
unblock_on_deleted_key
do:
1. remove the client from the list of clients blocked on this key
2. remove the blocking list node from the client blocking key dict
3. remove the client from the timeout list
10. queue the client on the unblocked_clients list
11. *NEW*: call processCommandAndResetClient(c);
```
*NOTE:* for module blocked clients we will still call the moduleUnblockClientByHandle
which will queue the client for processing in moduleUnblockedClients list.
**Process Unblocked clients**
---------------------------------------------------
The process of all unblocked clients is done in the beforeSleep and no change is planned
in that part.
The general schema will be:
For each client *c* in server.unblocked_clients:
* remove client from the server.unblocked_clients
* set back the client readHandler
* continue processing the pending command and input buffer.
*Some notes regarding the new implementation*
---------------------------------------------------
1. Although it was proposed, it is currently difficult to remove the
read handler from the client while it is blocked.
The reason is that a blocked client should be unblocked when it is
disconnected, or we might consume data into void.
2. While this PR mainly keep the current blocking logic as-is, there
might be some future additions to the infrastructure that we would
like to have:
- allow non-preemptive blocking of client - sometimes we can think
that a new kind of blocking can be expected to not be preempt. for
example lets imagine we hold some keys on disk and when a command
needs to process them it will block until the keys are uploaded.
in this case we will want the client to not disconnect or be
unblocked until the process is completed (remove the client read
handler, prevent client timeout, disable unblock via debug command etc...).
- allow generic blocking based on command declared keys - we might
want to add a hook before command processing to check if any of the
declared keys require the command to block. this way it would be
easier to add new kinds of key-based blocking mechanisms.
Co-authored-by: Oran Agra <oran@redislabs.com>
Signed-off-by: Ran Shidlansik <ranshid@amazon.com>
This test sometimes fails:
```
*** [err]: PSYNC2: Partial resync after Master restart using RDB aux fields with expire in tests/integration/psync2-master-restart.tcl
Expected [status ::redis::redisHandle24 sync_partial_ok] == 1 (context: type eval line 49 cmd {assert {[status $replica sync_partial_ok] == 1}} proc ::test)
```
This is because the default repl-timeout value is 10s, sometimes the test
got timeout, then it will do a reconnect, it will incr the sync_partial_ok
counter, and then cause the test to fail.In this fix, we set the repl-timeout
to a very large number to make sure we won't get the timeout.
There is a race in the test:
```
*** [err]: Diskless load swapdb (async_loading): new database is exposed after swapping in tests/integration/replication.tcl
Expected 'myvalue' to be equal to '' (context: type eval line 3 cmd {assert_equal [$replica GET mykey] ""} proc ::test)
```
When doing `$replica GET mykey`, the replica is using the old database.
The reason may be that when doing `master client kill type replica`,
the replica did not yet realize it got disconnected from the master.
So the check of master_link_status fails, and the replica did not
finish the swapdb and the loading.
In that case, i think the solution is to check the sync_full stat on
the master and wait for it to get incremented from the previous value.
i.e. the way to know that we're done with the full sync is not to check
that our state is up (could be up if we check too early), but rather
check that the sync_full counter got incremented.
During the reviewing, we found another race, in Aborted testType,
the `$master config set rdb-key-save-delay 10000` is done after we
already initiated the disconnection, so there's a chance that the replica
will attempt to reconnect before that call, in which case if we fork() before
it, the config will not take effect. Move it to above the disconnection.
Co-authored-by: Oran Agra <oran@redislabs.com>
attach_to_replication_stream already stops pings, but it stops them on
the server we connect to, and in this case it's a replica, and we need
to stop them on the real master.
There is a timing issue in the test, happens with valgrind:
```
*** [err]: diskless fast replicas drop during rdb pipe in tests/integration/replication.tcl
log message of '"*Loading DB in memory*"' not found in ./tests/tmp/server.3580.246/stdout after line: 0 till line: 39
```
The server logs:
```
43465:S 03 Dec 2022 01:26:25.664 * Trying a partial resynchronization (request 15155fa24af0539b70428f9b41f4f7129d774560:1).
43465:S 03 Dec 2022 01:26:35.133 * Full resync from master: 8ddf5a3f7c8ca1061c6b29aa84e7c985c5b29c61:680
```
From the logs, we can see it took almost 10s to get full resync response,
happens with valgrind. it's extremely slow. So i guess it's just an
insufficient wait_for_condition timeout.
Set the time to 15s, and modify other similar places at the same time.
This test sets the master ping interval to 1 hour, in order to avoid
pings in the replicatoin stream incrementing the replication offset,
however, it didn't increase the repl-timeout so on slow machines
where the test took more than 60 seconds, the replicas would drop
and reconnect.
```
*** [err]: PSYNC2: Partial resync after restart using RDB aux fields in tests/integration/psync2.tcl
Replica didn't partial sync
```
The test would detect 4 additional partial syncs where it expects
only one.
In replica, the key expired before master's `INCR` was arrived, so INCR
creates a new key in the replica and the test failed.
```
*** [err]: Replication of an expired key does not delete the expired key in tests/integration/replication-4.tcl
Expected '0' to be equal to '1' (context: type eval line 13 cmd {assert_equal 0 [$slave exists k]} proc ::test)
```
This test is very likely to do a false positive if the `wait_for_ofs_sync`
takes longer than the expiration time, so give it a few more chances.
The test was introduced in #9572.
This payload produces a set with duplicate elements (listpack encoding):
```
restore _key 0 "\x14\x25\x25\x00\x00\x00\x0A\x00\x06\x01\x82\x5F\x35\x03\x04\x01\x82\x5F\x31\x03\x82\x5F\x33\x03\x00\x01\x82\x5F\x39\x03\x82\x5F\x33\x03\x08\x01\x02\x01\xFF\x0B\x00\x31\xBE\x7D\x41\x01\x03\x5B\xEC"
smembers key
1) "6"
2) "_5"
3) "4"
4) "_1"
5) "_3" ---> dup
6) "0"
7) "_9"
8) "_3" ---> dup
9) "8"
10) "2"
```
This kind of sets will cause SDIFF to hang, SDIFF generated a broken
protocol and left the client hung. (Expected ten elements, but only
got nine elements due to the duplication.)
If we set `sanitize-dump-payload` to yes, we will be able to find
the duplicate elements and report "ERR Bad data format".
Discovered and discussed in #11290.
This PR also improve prints when corrupt-dump-fuzzer hangs, it will
print the cmds and the payload, an example like:
```
Testing integration/corrupt-dump-fuzzer
[TIMEOUT]: clients state report follows.
sock6 => (SPAWNED SERVER) pid:28884
Killing still running Redis server 28884
commands caused test to hang:
SDIFF __key
payload that caused test to hang: "\x14\balabala"
```
Co-authored-by: Oran Agra <oran@redislabs.com>
The following example will create an empty set (listpack encoding):
```
> RESTORE key 0
"\x14\x25\x25\x00\x00\x00\x00\x00\x02\x01\x82\x5F\x37\x03\x06\x01\x82\x5F\x35\x03\x82\x5F\x33\x03\x00\x01\x82\x5F\x31\x03\x82\x5F\x39\x03\x04\xA9\x08\x01\xFF\x0B\x00\xA3\x26\x49\xB4\x86\xB0\x0F\x41"
OK
> SCARD key
(integer) 0
> SRANDMEMBER key
Error: Server closed the connection
```
In the spirit of #9297, skip empty set when loading RDB_TYPE_SET_LISTPACK.
Introduced in #11290
Improve memory efficiency of list keys
## Description of the feature
The new listpack encoding uses the old `list-max-listpack-size` config
to perform the conversion, which we can think it of as a node inside a
quicklist, but without 80 bytes overhead (internal fragmentation included)
of quicklist and quicklistNode structs.
For example, a list key with 5 items of 10 chars each, now takes 128 bytes
instead of 208 it used to take.
## Conversion rules
* Convert listpack to quicklist
When the listpack length or size reaches the `list-max-listpack-size` limit,
it will be converted to a quicklist.
* Convert quicklist to listpack
When a quicklist has only one node, and its length or size is reduced to half
of the `list-max-listpack-size` limit, it will be converted to a listpack.
This is done to avoid frequent conversions when we add or remove at the bounding size or length.
## Interface changes
1. add list entry param to listTypeSetIteratorDirection
When list encoding is listpack, `listTypeIterator->lpi` points to the next entry of current entry,
so when changing the direction, we need to use the current node (listTypeEntry->p) to
update `listTypeIterator->lpi` to the next node in the reverse direction.
## Benchmark
### Listpack VS Quicklist with one node
* LPUSH - roughly 0.3% improvement
* LRANGE - roughly 13% improvement
### Both are quicklist
* LRANGE - roughly 3% improvement
* LRANGE without pipeline - roughly 3% improvement
From the benchmark, as we can see from the results
1. When list is quicklist encoding, LRANGE improves performance by <5%.
2. When list is listpack encoding, LRANGE improves performance by ~13%,
the main enhancement is brought by `addListListpackRangeReply()`.
## Memory usage
1M lists(key:0~key:1000000) with 5 items of 10 chars ("hellohello") each.
shows memory usage down by 35.49%, from 214MB to 138MB.
## Note
1. Add conversion callback to support doing some work before conversion
Since the quicklist iterator decompresses the current node when it is released, we can
no longer decompress the quicklist after we convert the list.
Fix a few issues with the recent #11463
* use exitFromChild instead of exit
* test should ignore defunct process since that's what we expect to
happen for thees child processes when the parent dies.
* fix typo
Co-authored-by: Binbin <binloveplay1314@qq.com>
During a diskless sync, if the master main process crashes, the child would
have hung in `write`. This fix closes the read fd on the child side, so that if the
parent crashes, the child will get a write error and exit.
This change also fixes disk-based replication, BGSAVE and AOFRW.
In that case the child wouldn't have been hang, it would have just kept
running until done which may be pointless.
There is a certain degree of risk here. in case there's a BGSAVE child that could
maybe succeed and the parent dies for some reason, the old code would have let
the child keep running and maybe succeed and avoid data loss.
On the other hand, if the parent is restarted, it would have loaded an old rdb file
(or none), and then the child could reach the end and rename the rdb file (data
conflicting with what the parent has), or also have a race with another BGSAVE
child that the new parent started.
Note that i removed a comment saying a write error will be ignored in the child
and handled by the parent (this comment was very old and i don't think relevant).
All commands / use cases that heavily rely on double to a string representation conversion,
(e.g. meaning take a double-precision floating-point number like 1.5 and return a string like "1.5" ),
could benefit from a performance boost by swapping snprintf(buf,len,"%.17g",value) by the
equivalent [fpconv_dtoa](https://github.com/night-shift/fpconv) or any other algorithm that ensures
100% coverage of conversion.
This is a well-studied topic and Projects like MongoDB. RedPanda, PyTorch leverage libraries
( fmtlib ) that use the optimized double to string conversion underneath.
The positive impact can be substantial. This PR uses the grisu2 approach ( grisu explained on
https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf section 5 ).
test suite changes:
Despite being compatible, in some cases it produces a different result from printf, and some tests
had to be adjusted.
one case is that `%.17g` (which means %e or %f which ever is shorter), chose to use `5000000000`
instead of 5e+9, which sounds like a bug?
In other cases, we changed TCL to compare numbers instead of strings to ignore minor rounding
issues (`expr 0.8 == 0.79999999999999999`)
Fix `Test replication with lazy expire` test to not timeout the wait command.
This fix will allow the test to pass on slow environments and when running with valgrind.
The PR reverts the changes made on #10969.
The reason for revert was trigger because of occasional test failure
that started after the PR was merged.
The issue is that if there is a lazy expire during the command invocation,
the `del` command is added to the replication stream after the command
placeholder. So the logical order on the primary is:
* Delete the key (lazy expiration)
* Command invocation
But the replication stream gets it the other way around:
* Command invocation (because the command is written into the placeholder)
* Delete the key (lazy expiration)
So if the command write to the key that was just lazy expired we will get
inconsistency between primary and replica.
One solution we considered is to add another lazy expire replication stream
and write all the lazy expire there. Then when replicating, we will replicate the
lazy expire replication stream first. This will solve this specific test failure but
we realize that the issues does not ends here and the more we dig the more
problems we find.One of the example we thought about (that can actually
crashes Redis) is as follow:
* User perform SINTERSTORE
* When Redis tries to fetch the second input key it triggers lazy expire
* The lazy expire trigger a module logic that deletes the first input key
* Now Redis hold the robj of the first input key that was actually freed
We believe we took the wrong approach and we will come up with another
PR that solve the problem differently, for now we revert the changes so we
will not have the tests failure.
Notice that not the entire code was revert, some parts of the PR are changes
that we would like to keep. The changes that **was** reverted are:
* Saving a placeholder for replication at the beginning of the command (`call` function)
* Order of the replication stream on active expire and eviction (we will decide how
to handle it correctly on follow up PR)
* `Spop` changes are no longer needed (because we reverted the placeholder code)
Changes that **was not** reverted:
* On expire/eviction, wrap the `del` and the notification effect in a multi exec.
* `PropagateNow` function can still accept a special dbid, -1, indicating not to replicate select.
* Keep optimisation for reusing the `alsoPropagate` array instead of allocating it each time.
Tests:
* All tests was kept and only few tests was modify to work correctly with the changes
* Test was added to verify that the revert fixes the issues.
This is the history of aof-race related changes:
1. added in 3aa4b00970
2. disabled in dcdfd005a0
3. enabled in 5c63922691
4. disabled in 53a2af3941
This PR refreshes the aof-race test, re-enable it.
Closes#10971
The kill above is sometimes successful and sometimes already too late.
The PING in pysnc wrong offset test got rejected by bgsaveerr because
lastbgsave_status is C_ERR.
In theory, using diskless can avoid PING being affected, because when
the replica is dropped, we will kill the child with SIGUSR1, and this
will not affect lastbgsave_status.
Anyway, this kill is not particularly needed here, dropping the kill
is the best one, since we do have the waitForBgsave, so just let it
take care of the bgsave. No need for fast termination.
The corrupt dump fuzzer uncovered a valgrind warning saying:
```
==76370== Argument 'size' of function malloc has a fishy (possibly negative) value: -3744781444216323815
```
This allocation would have failed (returning NULL) and being handled properly by redis (even before this change), but we also want to silence the valgrind warnings (which are checking that casting to ssize_t produces a non-negative value).
The solution i opted for is to explicitly fail these allocations (returning NULL), before even reaching `malloc` (which would have failed and return NULL too).
The implication is that we will not be able to support a single allocation of more than 2GB on a 32bit system (which i don't think is a realistic scenario).
i.e. i do think we could be facing cases were redis consumes more than 2gb on a 32bit system, but not in a single allocation.
The byproduct of this, is that i dropped the overflow assertions, since these will now lead to the same OOM panic we have for failed allocations.
The new test added in #10891 can fail with a different error.
see comment in networking.c saying
```c
/* That's a best effort error message, don't check write errors.
* Note that for TLS connections, no handshake was done yet so nothing
* is written and the connection will just drop. */
```
my maxclients config:
```
redis-cli config get maxclients
1) "maxclients"
2) "4064"
```
Before this bug was fixed, creating 4065 clients appeared to be successful, but only 4064 were actually created```
```
./redis-benchmark -c 4065 -I
Creating 4065 idle connections and waiting forever (Ctrl+C when done)
cients: 4065
```
now :
```
./redis-benchmark -c 4065 -I
Creating 4065 idle connections and waiting forever (Ctrl+C when done)
Error from server: ERR max number of clients reached
./redis-benchmark -c 4064 -I
Creating 4064 idle connections and waiting forever (Ctrl+C when done)
clients: 4064
```
The test calls `ldd` on `redis-server` in order to find out whether the binary
was linked against `libmusl`; However, `ldd` returns a value different from `0`
when statically linking the binaries agains libc-musl, because `redis-server` is
not a dynamic executable (as given by the exception thrown by the failing test),
and `make test` terminates with an error::
$ ldd src/redis-server
not a dynamic executable
$ echo $?
1
This commit fixes the test by ignoring such failures.
Co-authored-by: Yossi Gottlieb <yossigo@gmail.com>
This change fixes failing `integration/logging.tcl` test in Gentoo with
musl libc, where `ldd` returns
```
libc.so => /lib/ld-musl-x86_64.so.1 (0x7f9d5f171000)
```
unlike Alpine's
```
libc.musl-x86_64.so.1 => /lib/ld-musl-x86_64.so.1 (0x7f82cfa16000)
```
The solution is to extend matching pattern introduced in #8532.
* Fix broken protocol when redis can't persist to RDB (general commands, not
modules), excessive newline. regression of #10372 (7.0 RC3)
* Fix broken protocol when Redis can't persist to AOF (modules and
scripts), missing newline.
* Fix bug in OOM check of EVAL scripts called from RM_Call.
set the cached OOM state for scripts before executing module commands too,
so that it can serve scripts that are executed by modules.
i.e. in the past EVAL executed by RM_Call could have either falsely
fail or falsely succeeded because of a wrong cached OOM state flag.
* Fix bugs with RM_Yield:
1. SHUTDOWN should only accept the NOSAVE mode
2. Avoid eviction during yield command processing.
3. Avoid processing master client commands while yielding from another client
* Add new two more checks to RM_Call script mode.
1. READONLY You can't write against a read only replica
2. MASTERDOWN Link with MASTER is down and `replica-serve-stale-data` is set to `no`
* Add new RM_Call flag to let redis automatically refuse `deny-oom` commands
while over the memory limit.
* Add tests to cover various errors from Scripts, Modules, Modules
calling scripts, and Modules calling commands in script mode.
Add tests:
* Looks like the MISCONF error was completely uncovered by the tests,
add tests for it, including from scripts, and modules
* Add tests for NOREPLICAS from scripts
* Add tests for the various errors in module RM_Call, including RM_Call that
calls EVAL, and RM_call in "eval mode". that includes:
NOREPLICAS, READONLY, MASTERDOWN, MISCONF
## FLUSHALL
We used to restore the dirty counter after `rdbSave` zeroed it if we enable save.
Otherwise FLUSHALL will not be replicated nor put into the AOF.
And then we do increment it again below.
Without that extra dirty++, when db was already empty, FLUSHALL
will not be replicated nor put into the AOF.
We now gonna replace all that dirty counter magic with a call
to forceCommandPropagation (REPL and AOF), instead of all the
messing around with the dirty counter.
Added tests to cover three part (dirty counter, REPL, AOF).
One benefit other than cleaner code is that the `rdb_changes_since_last_save` is correct in this case.
## FLUSHDB
FLUSHDB was not replicated nor put into the AOF when db was already empty.
Unlike DEL on a non-existing key, FLUSHDB always does something, and that's to call the module hook.
So basically FLUSHDB is never a NOP, and thus it should always be propagated.
Not doing that, could mean that if a module does something in that hook, and wants to
avoid issues of that hook being missing on the replica if the db is empty, it'll need to do complicated things.
So now FLUSHDB add call forceCommandPropagation, we will always propagate FLUSHDB.
Always propagating FLUSHDB seems like a safe approach that shouldn't have any drawbacks (other than looking odd)
This was mentioned in #8972
## Test section:
We actually found it while solving a race condition in the BGSAVE test (other.tcl).
It was found in extra_ci Daily Arm64 (test-libc-malloc).
```
[exception]: Executing test client: ERR Background save already in progress.
ERR Background save already in progress
```
It look like `r flushdb` trigger (schedule) a bgsave right after `waitForBgsave r` and before `r save`.
Changing flushdb to flushall, FLUSHALL will do a foreground save and then set the dirty counter to 0.
Changes:
- When AOF is enabled **after** startup, the data accumulated during `AOF_WAIT_REWRITE`
will only be stored in a temp INCR AOF file. Only after the first AOFRW is successful, we will
add it to manifest file.
Before this fix, the manifest referred to the temp file which could cause a restart during that
time to load it without it's base.
- Add `aof_rewrites_consecutive_failures` info field for aofrw limiting implementation.
Now we can guarantee that these behaviors of MP-AOF are the same as before (past redis releases):
- When AOF is enabled after startup, the data accumulated during `AOF_WAIT_REWRITE` will only
be stored in a visible place. Only after the first AOFRW is successful, we will add it to manifest file.
- When disable AOF, we did not delete the AOF file in the past so there's no need to change that
behavior now (yet).
- When toggling AOF off and then on (could be as part of a full-sync), a crash or restart before the
first rewrite is completed, would result with the previous version being loaded (might not be right thing,
but that's what we always had).
* Till now, replicas that were unable to persist, would still execute the commands
they got from the master, now they'll panic by default, and we add a new
`replica-ignore-disk-errors` config to change that.
* Till now, when a command failed on a replica or AOF-loading, it only logged a
warning and a stat, we add a new `propagation-error-behavior` config to allow
panicking in that state (may become the default one day)
Note that commands that fail on the replica can either indicate a bug that could
cause data inconsistency between the replica and the master, or they could be
in some cases (specifically in previous versions), a result of a command (e.g. EVAL)
that failed on the master, but still had to be propagated to fail on the replica as well.
## Move library meta data to be part of the library payload.
Following the discussion on https://github.com/redis/redis/issues/10429 and the intention to add (in the future) library versioning support, we believe that the entire library metadata (like name and engine) should be part of the library payload and not provided by the `FUNCTION LOAD` command. The reasoning behind this is that the programmer who developed the library should be the one who set those values (name, engine, and in the future also version). **It is not the responsibility of the admin who load the library into the database.**
The PR moves all the library metadata (engine and function name) to be part of the library payload. The metadata needs to be provided on the first line of the payload using the shebang format (`#!<engine> name=<name>`), example:
```lua
#!lua name=test
redis.register_function('foo', function() return 1 end)
```
The above script will run on the Lua engine and will create a library called `test`.
## API Changes (compare to 7.0 rc2)
* `FUNCTION LOAD` command was change and now it simply gets the library payload and extract the engine and name from the payload. In addition, the command will now return the function name which can later be used on `FUNCTION DELETE` and `FUNCTION LIST`.
* The description field was completely removed from`FUNCTION LOAD`, and `FUNCTION LIST`
## Breaking Changes (compare to 7.0 rc2)
* Library description was removed (we can re-add it in the future either as part of the shebang line or an additional line).
* Loading an AOF file that was generated by either 7.0 rc1 or 7.0 rc2 will fail because the old command syntax is invalid.
## Notes
* Loading an RDB file that was generated by rc1 / rc2 **is** supported, Redis will automatically add the shebang to the libraries payloads (we can probably delete that code after 7.0.3 or so since there's no need to keep supporting upgrades from an RC build).
Normally, `redis-cli` escapes non-printable data received from Redis, using a custom scheme (which is also used to handle quoted input). When using `--json` this is not desired as it is not compatible with RFC 7159, which specifies JSON strings are assumed to be Unicode and how they should be escaped.
This commit changes `--json` to follow RFC 7159, which means that properly encoded Unicode strings in Redis will result with a valid Unicode JSON.
However, this introduces a new problem with `--json` and data that is not valid Unicode (e.g., random binary data, text that follows other encoding, etc.). To address this, we add `--quoted-json` which produces JSON strings that follow the original redis-cli quoting scheme.
For example, a value that consists of only null (0x00) bytes will show up as:
* `"\u0000\u0000\u0000"` when using `--json`
* `"\\x00\\x00\\x00"` when using `--quoted-json`
Adds the ability to track the lag of a consumer group (CG), that is, the number
of entries yet-to-be-delivered from the stream.
The proposed constant-time solution is in the spirit of "best-effort."
Partially addresses #8737.
## Description of approach
We add a new "entries_added" property to the stream. This starts at 0 for a new
stream and is incremented by 1 with every `XADD`. It is essentially an all-time
counter of the entries added to the stream.
Given the stream's length and this counter value, we can trivially find the logical
"entries_added" counter of the first ID if and only if the stream is contiguous.
A fragmented stream contains one or more tombstones generated by `XDEL`s.
The new "xdel_max_id" stream property tracks the latest tombstone.
The CG also tracks its last delivered ID's as an "entries_read" counter and
increments it independently when delivering new messages, unless the this
read counter is invalid (-1 means invalid offset). When the CG's counter is
available, the reported lag is the difference between added and read counters.
Lastly, this also adds a "first_id" field to the stream structure in order to make
looking it up cheaper in most cases.
## Limitations
There are two cases in which the mechanism isn't able to track the lag.
In these cases, `XINFO` replies with `null` in the "lag" field.
The first case is when a CG is created with an arbitrary last delivered ID,
that isn't "0-0", nor the first or the last entries of the stream. In this case,
it is impossible to obtain a valid read counter (short of an O(N) operation).
The second case is when there are one or more tombstones fragmenting
the stream's entries range.
In both cases, given enough time and assuming that the consumers are
active (reading and lacking) and advancing, the CG should be able to
catch up with the tip of the stream and report zero lag.
Once that's achieved, lag tracking would resume as normal (until the
next tombstone is set).
## API changes
* `XGROUP CREATE` added with the optional named argument `[ENTRIESREAD entries-read]`
for explicitly specifying the new CG's counter.
* `XGROUP SETID` added with an optional positional argument `[ENTRIESREAD entries-read]`
for specifying the CG's counter.
* `XINFO` reports the maximal tombstone ID, the recorded first entry ID, and total
number of entries added to the stream.
* `XINFO` reports the current lag and logical read counter of CGs.
* `XSETID` is an internal command that's used in replication/aof. It has been added with
the optional positional arguments `[ENTRIESADDED entries-added] [MAXDELETEDID max-deleted-entry-id]`
for propagating the CG's offset and maximal tombstone ID of the stream.
## The generic unsolved problem
The current stream implementation doesn't provide an efficient way to obtain the
approximate/exact size of a range of entries. While it could've been nice to have
that ability (#5813) in general, let alone specifically in the context of CGs, the risk
and complexities involved in such implementation are in all likelihood prohibitive.
## A refactoring note
The `streamGetEdgeID` has been refactored to accommodate both the existing seek
of any entry as well as seeking non-deleted entries (the addition of the `skip_tombstones`
argument). Furthermore, this refactoring also migrated the seek logic to use the
`streamIterator` (rather than `raxIterator`) that was, in turn, extended with the
`skip_tombstones` Boolean struct field to control the emission of these.
Co-authored-by: Guy Benoish <guy.benoish@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Make sure the status return from loading multiple AOF files reflects the overall
result, not just the one of the last file.
When one of the AOF files succeeded to load, but the last AOF file
was empty, the loadAppendOnlyFiles will return AOF_EMPTY.
This commit changes this behavior, and return AOF_OK in that case.
This can happen for example, when loading old AOF file, and no more commands processed,
the manifest file will include base AOF file with data, and empty incr AOF file.
Co-authored-by: chenyang8094 <chenyang8094@users.noreply.github.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Modifications of this PR:
1. Support the verification of `Multi Part AOF`, while still maintaining support for the
old-style `AOF/RDB-preamble`. `redis-check-aof` will automatically choose which
mode to use according to the incoming file format.
`Usage: redis-check-aof [--fix|--truncate-to-timestamp $timestamp] <AOF/manifest>`
2. Refactor part of the code to make it easier to understand
3. Currently only supports truncate (`--fix` or `--truncate-to-timestamp`) the last AOF
file (may be `BASE` or `INCR`)
The reasons for 3 above:
- for `--fix`: Only the last AOF may be truncated, this is guaranteed by redis
- for `--truncate-to-timestamp`: Normally, we only have `BASE` + `INCR` files
at most, and `BASE` cannot be truncated(It only contains a timestamp annotation
at the beginning of the file), so only `INCR` can be truncated. If we have a
`BASE+INCR1+INCR2` file (meaning we have an interrupted AOFRW), Only `INCR2`
files can be truncated at this time. If we still insist on truncate `INCR1`, we need to
manually delete `INCR2` and update the manifest file, then re-run `redis-check-aof`
- If we want to support truncate any file, we need to add very complicated code to support
the atomic modification of multiple file deletion and update manifest, I think this is unnecessary
In order to make sure no more commands processed, we wait that
the 'load handlers' will disconncet.
The test by mistake waited on the (last) slave instead of the master.
Added regression tests for #10020 / #10081 / #10243.
The above PRs fixed some crashes due to an asserting,
see function `clientHasPendingReplies` (introduced in #9166).
This commit added some tests to cover the above scenario.
These tests will all fail in #9166, althought fixed not,
there is value in adding these tests to cover and verify
the changes. And it also can cover #8868 (verify the logs).
Other changes:
1. Reduces the wait time in `waitForBgsave` and `waitForBgrewriteaof`
from 1s to 50ms, which should reduce the time for some tests.
2. Improve the test infra to print context when `assert_match` fails.
3. Improve the test infra to print `$error` when `assert_error` fails.
```
Expected an error matching 'ERR*' but got 'OK' (context: type eval line 4 cmd {assert_error "ERR*" {r set a b}} proc ::test)
```
Add check enough good slaves for write command when evaluating scripts.
This check is made before the script is executed, if we have function flags, and per redis command if we don't.
Co-authored-by: Phuc. Vo Trong <phucvt@vng.com.vn>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Meir Shpilraien (Spielrein) <meir@redis.com>
This PR attempts to solve two problems that happen sometime in valgrind:
`ERR Background save already in progress`
and
`not bgsave not aborted`
the test used to populate the database with DEBUG, which didn't
increment the dirty counter, so couldn't trigger an automatic bgsave.
then it used a manual bgsave, and aborted it (when it got aborted it
populated the dirty counter), and then it tried to do another bgsave.
that other bgsave could have failed if the automatic one already
started.
Failed on a non-valgrind run. on this line:
```
assert_equal 0 [$slave exists k]
```
the condition in `keyIsExpired` is `now > when`.
so if the test is really fast, maybe it can get to EXISTS exactly 1000 milliseconds after the
expiration was set, and the key isn't yet gone)
* Refactor EVAL timeout test
* since the test used r config set appendonly yes which generates a rewrite, it missed it's purpose
* Fix the bug that start_server returns before redis starts ready, which affects when multiple tests share the same dir.
* Elapsed time tracking no loner needed
Co-authored-by: Oran Agra <oran@redislabs.com>
This extends the previous fix (#10049) to address any form of
non-printable or whitespace character (including newlines, quotes,
non-printables, etc.)
Also, removes the limitation on appenddirname, to align with the way
filenames are handled elsewhere in Redis.
1. enable diskless replication by default
2. add a new config named repl-diskless-sync-max-replicas that enables
replication to start before the full repl-diskless-sync-delay was
reached.
3. put replica online sooner on the master (see below)
4. test suite uses repl-diskless-sync-delay of 0 to be faster
5. a few tests that use multiple replica on a pre-populated master, are
now using the new repl-diskless-sync-max-replicas
6. fix possible timing issues in a few cluster tests (see below)
put replica online sooner on the master
----------------------------------------------------
there were two tests that failed because they needed for the master to
realize that the replica is online, but the test code was actually only
waiting for the replica to realize it's online, and in diskless it could
have been before the master realized it.
changes include two things:
1. the tests wait on the right thing
2. issues in the master, putting the replica online in two steps.
the master used to put the replica as online in 2 steps. the first
step was to mark it as online, and the second step was to enable the
write event (only after getting ACK), but in fact the first step didn't
contains some of the tasks to put it online (like updating good slave
count, and sending the module event). this meant that if a test was
waiting to see that the replica is online form the point of view of the
master, and then confirm that the module got an event, or that the
master has enough good replicas, it could fail due to timing issues.
so now the full effect of putting the replica online, happens at once,
and only the part about enabling the writes is delayed till the ACK.
fix cluster tests
--------------------
I added some code to wait for the replica to sync and avoid race
conditions.
later realized the sentinel and cluster tests where using the original 5
seconds delay, so changed it to 0.
this means the other changes are probably not needed, but i suppose
they're still better (avoid race conditions)
# Redis Functions Flags
Following the discussion on #10025 Added Functions Flags support.
The PR is divided to 2 sections:
* Add named argument support to `redis.register_function` API.
* Add support for function flags
## `redis.register_function` named argument support
The first part of the PR adds support for named argument on `redis.register_function`, example:
```
redis.register_function{
function_name='f1',
callback=function()
return 'hello'
end,
description='some desc'
}
```
The positional arguments is also kept, which means that it still possible to write:
```
redis.register_function('f1', function() return 'hello' end)
```
But notice that it is no longer possible to pass the optional description argument on the positional
argument version. Positional argument was change to allow passing only the mandatory arguments
(function name and callback). To pass more arguments the user must use the named argument version.
As with positional arguments, the `function_name` and `callback` is mandatory and an error will be
raise if those are missing. Also, an error will be raise if an unknown argument name is given or the
arguments type is wrong.
Tests was added to verify the new syntax.
## Functions Flags
The second part of the PR is adding functions flags support.
Flags are given to Redis when the engine calls `functionLibCreateFunction`, supported flags are:
* `no-writes` - indicating the function perform no writes which means that it is OK to run it on:
* read-only replica
* Using FCALL_RO
* If disk error detected
It will not be possible to run a function in those situations unless the function turns on the `no-writes` flag
* `allow-oom` - indicate that its OK to run the function even if Redis is in OOM state, if the function will
not turn on this flag it will not be possible to run it if OOM reached (even if the function declares `no-writes`
and even if `fcall_ro` is used). If this flag is set, any command will be allow on OOM (even those that is
marked with CMD_DENYOOM). The assumption is that this flag is for advance users that knows its
meaning and understand what they are doing, and Redis trust them to not increase the memory usage.
(e.g. it could be an INCR or a modification on an existing key, or a DEL command)
* `allow-state` - indicate that its OK to run the function on stale replica, in this case we will also make
sure the function is only perform `stale` commands and raise an error if not.
* `no-cluster` - indicate to disallow running the function if cluster is enabled.
Default behaviure of functions (if no flags is given):
1. Allow functions to read and write
2. Do not run functions on OOM
3. Do not run functions on stale replica
4. Allow functions on cluster
### Lua API for functions flags
On Lua engine, it is possible to give functions flags as `flags` named argument:
```
redis.register_function{function_name='f1', callback=function() return 1 end, flags={'no-writes', 'allow-oom'}, description='description'}
```
The function flags argument must be a Lua table that contains all the requested flags, The following
will result in an error:
* Unknown flag
* Wrong flag type
Default behaviour is the same as if no flags are used.
Tests were added to verify all flags functionality
## Additional changes
* mark FCALL and FCALL_RO with CMD_STALE flag (unlike EVAL), so that they can run if the function was
registered with the `allow-stale` flag.
* Verify `CMD_STALE` on `scriptCall` (`redis.call`), so it will not be possible to call commands from script while
stale unless the command is marked with the `CMD_STALE` flags. so that even if the function is allowed while
stale we do not allow it to bypass the `CMD_STALE` flag of commands.
* Flags section was added to `FUNCTION LIST` command to provide the set of flags for each function:
```
> FUNCTION list withcode
1) 1) "library_name"
2) "test"
3) "engine"
4) "LUA"
5) "description"
6) (nil)
7) "functions"
8) 1) 1) "name"
2) "f1"
3) "description"
4) (nil)
5) "flags"
6) (empty array)
9) "library_code"
10) "redis.register_function{function_name='f1', callback=function() return 1 end}"
```
* Added API to get Redis version from within a script, The redis version can be provided using:
1. `redis.REDIS_VERSION` - string representation of the redis version in the format of MAJOR.MINOR.PATH
2. `redis.REDIS_VERSION_NUM` - number representation of the redis version in the format of `0x00MMmmpp`
(`MM` - major, `mm` - minor, `pp` - patch). The number version can be used to check if version is greater or less
another version. The string version can be used to return to the user or print as logs.
This new API is provided to eval scripts and functions, it also possible to use this API during functions loading phase.
Force create a BASE file (use a foreground `rewriteAppendOnlyFile`) when redis starts from an
empty data set and `appendonly` is yes.
The reasoning is that normally, after redis is running for some time, and the AOF has gone though
a few rewrites, there's always a base rdb file. and the scenario where the base file is missing, is
kinda rare (happens only at empty startup), so this change normalizes it.
But more importantly, there are or could be some complex modules that are started with some
configuration, when they create persistence they write that configuration to RDB AUX fields, so
that can can always know with which configuration the persistence file they're loading was
created (could be critical). there is (was) one scenario in which they could load their persisted data,
and that configuration was missing, and this change fixes it.
Add a new module event: REDISMODULE_SUBEVENT_PERSISTENCE_SYNC_AOF_START, similar to
REDISMODULE_SUBEVENT_PERSISTENCE_AOF_START which is async.
Co-authored-by: Oran Agra <oran@redislabs.com>
# Redis Function Libraries
This PR implements Redis Functions Libraries as describe on: https://github.com/redis/redis/issues/9906.
Libraries purpose is to provide a better code sharing between functions by allowing to create multiple
functions in a single command. Functions that were created together can safely share code between
each other without worrying about compatibility issues and versioning.
Creating a new library is done using 'FUNCTION LOAD' command (full API is described below)
This PR introduces a new struct called libraryInfo, libraryInfo holds information about a library:
* name - name of the library
* engine - engine used to create the library
* code - library code
* description - library description
* functions - the functions exposed by the library
When Redis gets the `FUNCTION LOAD` command it creates a new empty libraryInfo.
Redis passes the `CODE` to the relevant engine alongside the empty libraryInfo.
As a result, the engine will create one or more functions by calling 'libraryCreateFunction'.
The new funcion will be added to the newly created libraryInfo. So far Everything is happening
locally on the libraryInfo so it is easy to abort the operation (in case of an error) by simply
freeing the libraryInfo. After the library info is fully constructed we start the joining phase by
which we will join the new library to the other libraries currently exist on Redis.
The joining phase make sure there is no function collision and add the library to the
librariesCtx (renamed from functionCtx). LibrariesCtx is used all around the code in the exact
same way as functionCtx was used (with respect to RDB loading, replicatio, ...).
The only difference is that apart from function dictionary (maps function name to functionInfo
object), the librariesCtx contains also a libraries dictionary that maps library name to libraryInfo object.
## New API
### FUNCTION LOAD
`FUNCTION LOAD <ENGINE> <LIBRARY NAME> [REPLACE] [DESCRIPTION <DESCRIPTION>] <CODE>`
Create a new library with the given parameters:
* ENGINE - REPLACE Engine name to use to create the library.
* LIBRARY NAME - The new library name.
* REPLACE - If the library already exists, replace it.
* DESCRIPTION - Library description.
* CODE - Library code.
Return "OK" on success, or error on the following cases:
* Library name already taken and REPLACE was not used
* Name collision with another existing library (even if replace was uses)
* Library registration failed by the engine (usually compilation error)
## Changed API
### FUNCTION LIST
`FUNCTION LIST [LIBRARYNAME <LIBRARY NAME PATTERN>] [WITHCODE]`
Command was modified to also allow getting libraries code (so `FUNCTION INFO` command is no longer
needed and removed). In addition the command gets an option argument, `LIBRARYNAME` allows you to
only get libraries that match the given `LIBRARYNAME` pattern. By default, it returns all libraries.
### INFO MEMORY
Added number of libraries to `INFO MEMORY`
### Commands flags
`DENYOOM` flag was set on `FUNCTION LOAD` and `FUNCTION RESTORE`. We consider those commands
as commands that add new data to the dateset (functions are data) and so we want to disallows
to run those commands on OOM.
## Removed API
* FUNCTION CREATE - Decided on https://github.com/redis/redis/issues/9906
* FUNCTION INFO - Decided on https://github.com/redis/redis/issues/9899
## Lua engine changes
When the Lua engine gets the code given on `FUNCTION LOAD` command, it immediately runs it, we call
this run the loading run. Loading run is not a usual script run, it is not possible to invoke any
Redis command from within the load run.
Instead there is a new API provided by `library` object. The new API's:
* `redis.log` - behave the same as `redis.log`
* `redis.register_function` - register a new function to the library
The loading run purpose is to register functions using the new `redis.register_function` API.
Any attempt to use any other API will result in an error. In addition, the load run is has a time
limit of 500ms, error is raise on timeout and the entire operation is aborted.
### `redis.register_function`
`redis.register_function(<function_name>, <callback>, [<description>])`
This new API allows users to register a new function that will be linked to the newly created library.
This API can only be called during the load run (see definition above). Any attempt to use it outside
of the load run will result in an error.
The parameters pass to the API are:
* function_name - Function name (must be a Lua string)
* callback - Lua function object that will be called when the function is invokes using fcall/fcall_ro
* description - Function description, optional (must be a Lua string).
### Example
The following example creates a library called `lib` with 2 functions, `f1` and `f1`, returns 1 and 2 respectively:
```
local function f1(keys, args)
return 1
end
local function f2(keys, args)
return 2
end
redis.register_function('f1', f1)
redis.register_function('f2', f2)
```
Notice: Unlike `eval`, functions inside a library get the KEYS and ARGV as arguments to the
functions and not as global.
### Technical Details
On the load run we only want the user to be able to call a white list on API's. This way, in
the future, if new API's will be added, the new API's will not be available to the load run
unless specifically added to this white list. We put the while list on the `library` object and
make sure the `library` object is only available to the load run by using [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv) API. This API allows us to set
the `globals` of a function (and all the function it creates). Before starting the load run we
create a new fresh Lua table (call it `g`) that only contains the `library` API (we make sure
to set global protection on this table just like the general global protection already exists
today), then we use [lua_setfenv](https://www.lua.org/manual/5.1/manual.html#lua_setfenv)
to set `g` as the global table of the load run. After the load run finished we update `g`
metatable and set `__index` and `__newindex` functions to be `_G` (Lua default globals),
we also pop out the `library` object as we do not need it anymore.
This way, any function that was created on the load run (and will be invoke using `fcall`) will
see the default globals as it expected to see them and will not have the `library` API anymore.
An important outcome of this new approach is that now we can achieve a distinct global table
for each library (it is not yet like that but it is very easy to achieve it now). In the future we can
decide to remove global protection because global on different libraries will not collide or we
can chose to give different API to different libraries base on some configuration or input.
Notice that this technique was meant to prevent errors and was not meant to prevent malicious
user from exploit it. For example, the load run can still save the `library` object on some local
variable and then using in `fcall` context. To prevent such a malicious use, the C code also make
sure it is running in the right context and if not raise an error.
Following #10038.
This PR introduces two changes.
1. Show the elapsed time of a single test in the test output, in order to have a more
detailed understanding of the changes in test run time.
2. Speedup two tests related to `key-load-delay` configuration.
other tests do not seem to be affected by #10003.
Implement Multi-Part AOF mechanism to avoid overheads during AOFRW.
Introducing a folder with multiple AOF files tracked by a manifest file.
The main issues with the the original AOFRW mechanism are:
* buffering of commands that are processed during rewrite (consuming a lot of RAM)
* freezes of the main process when the AOFRW completes to drain the remaining part of the buffer and fsync it.
* double disk IO for the data that arrives during AOFRW (had to be written to both the old and new AOF files)
The main modifications of this PR:
1. Remove the AOF rewrite buffer and related code.
2. Divide the AOF into multiple files, they are classified as two types, one is the the `BASE` type,
it represents the full amount of data (Maybe AOF or RDB format) after each AOFRW, there is only
one `BASE` file at most. The second is `INCR` type, may have more than one. They represent the
incremental commands since the last AOFRW.
3. Use a AOF manifest file to record and manage these AOF files mentioned above.
4. The original configuration of `appendfilename` will be the base part of the new file name, for example:
`appendonly.aof.1.base.rdb` and `appendonly.aof.2.incr.aof`
5. Add manifest-related TCL tests, and modified some existing tests that depend on the `appendfilename`
6. Remove the `aof_rewrite_buffer_length` field in info.
7. Add `aof-disable-auto-gc` configuration. By default we're automatically deleting HISTORY type AOFs.
It also gives users the opportunity to preserve the history AOFs. just for testing use now.
8. Add AOFRW limiting measure. When the AOFRW failures reaches the threshold (3 times now),
we will delay the execution of the next AOFRW by 1 minute. If the next AOFRW also fails, it will be
delayed by 2 minutes. The next is 4, 8, 16, the maximum delay is 60 minutes (1 hour). During the limit
period, we can still use the 'bgrewriteaof' command to execute AOFRW immediately.
9. Support upgrade (load) data from old version redis.
10. Add `appenddirname` configuration, as the directory name of the append only files. All AOF files and
manifest file will be placed in this directory.
11. Only the last AOF file (BASE or INCR) can be truncated. Otherwise redis will exit even if
`aof-load-truncated` is enabled.
Co-authored-by: Oran Agra <oran@redislabs.com>
This commit adds DUMP RESTORES tests for the -x and -X options.
I wanted to add it in #9980 which introduce the -X option, but
back then i failed due to some errors (related to redis-cli call).
To avoid data loss, this commit adds a grace period for lagging replicas to
catch up the replication offset.
Done:
* Wait for replicas when shutdown is triggered by SIGTERM and SIGINT.
* Wait for replicas when shutdown is triggered by the SHUTDOWN command. A new
blocked client type BLOCKED_SHUTDOWN is introduced, allowing multiple clients
to call SHUTDOWN in parallel.
Note that they don't expect a response unless an error happens and shutdown is aborted.
* Log warning for each replica lagging behind when finishing shutdown.
* CLIENT_PAUSE_WRITE while waiting for replicas.
* Configurable grace period 'shutdown-timeout' in seconds (default 10).
* New flags for the SHUTDOWN command:
- NOW disables the grace period for lagging replicas.
- FORCE ignores errors writing the RDB or AOF files which would normally
prevent a shutdown.
- ABORT cancels ongoing shutdown. Can't be combined with other flags.
* New field in the output of the INFO command: 'shutdown_in_milliseconds'. The
value is the remaining maximum time to wait for lagging replicas before
finishing the shutdown. This field is present in the Server section **only**
during shutdown.
Not directly related:
* When shutting down, if there is an AOF saving child, it is killed **even** if AOF
is disabled. This can happen if BGREWRITEAOF is used when AOF is off.
* Client pause now has end time and type (WRITE or ALL) per purpose. The
different pause purposes are *CLIENT PAUSE command*, *failover* and
*shutdown*. If clients are unpaused for one purpose, it doesn't affect client
pause for other purposes. For example, the CLIENT UNPAUSE command doesn't
affect client pause initiated by the failover or shutdown procedures. A completed
failover or a failed shutdown doesn't unpause clients paused by the CLIENT
PAUSE command.
Notes:
* DEBUG RESTART doesn't wait for replicas.
* We already have a warning logged when a replica disconnects. This means that
if any replica connection is lost during the shutdown, it is either logged as
disconnected or as lagging at the time of exit.
Co-authored-by: Oran Agra <oran@redislabs.com>
This is needed in order to ease the deployment of functions for ephemeral cases, where user
needs to spin up a server with functions pre-loaded.
#### Details:
* Added `--functions-rdb` option to _redis-cli_.
* Functions only rdb via `REPLCONF rdb-filter-only functions`. This is a placeholder for a space
separated inclusion filter for the RDB. In the future can be `REPLCONF rdb-filter-only
"functions db:3 key-patten:user*"` and a complementing `rdb-filter-exclude` `REPLCONF`
can also be added.
* Handle "slave requirements" specification to RDB saving code so we can use the same RDB
when different slaves express the same requirements (like functions-only) and not share the
RDB when their requirements differ. This is currently just a flags `int`, but can be extended to
a more complex structure with various filter fields.
* make sure to support filters only in diskless replication mode (not to override the persistence file),
we do that by forcing diskless (even if disabled by config)
other changes:
* some refactoring in rdb.c (extract portion of a big function to a sub-function)
* rdb_key_save_delay used in AOFRW too
* sendChildInfo takes the number of updated keys (incremental, rather than absolute)
Co-authored-by: Oran Agra <oran@redislabs.com>
This pr is mainly to solve the problem that redis process cannot be exited normally, due to changes in #10003.
When a test uses the `key-load-delay` config to delay loading, but does not reset it at the end of the test, will lead to server wait for the loading to reach the event
loop (once in 2mb) before actually shutting down.
There are two changes in this commit:
1. Add -X option to redis-cli.
Currently `-x` can only be used to provide the last argument,
so you can do `redis-cli dump keyname > key.dump`,
and then do `redis-cli -x restore keyname 0 < key.dump`.
But what if you want to add the replace argument (which comes last?).
oran suggested adding such usage:
`redis-cli -X <tag> restore keyname <tag> replace < key.dump`
i.e. you're able to provide a string in the arguments that's gonna be
substituted with the content from stdin.
Note that the tag name should not conflict with others non-replaced args.
And the -x and -X options are conflicting.
Some usages:
```
[root]# echo mypasswd | src/redis-cli -X passwd_tag mset username myname password passwd_tag OK
[root]# echo username > username.txt
[root]# head -c -1 username.txt | src/redis-cli -X name_tag mget name_tag password
1) "myname"
2) "mypasswd\n"
```
2. Handle the combination of both `-x` and `--cluster` or `-X` and `--cluster`
Extend the broadcast option to receive the last arg or <tag> arg from the stdin.
Now we can use `redis-cli -x --cluster call <host>:<port> cmd`,
or `redis-cli -X <tag> --cluster call <host>:<port> cmd <tag>`.
(support part of #9899)
issue started failing after #9878 was merged (made an exiting test more sensitive)
looks like #9982 didn't help, tested this one and it seems to work better.
this commit does two things:
1. reduce the extra delay i added earlier and instead add more keys, the effect no duration
of replication is the same, but the intervals in which the server is responsive to the tcl client is higher.
2. improve the test infra to print context when assert_error fails.
## background
Till now CONFIG SET was blocked during loading.
(In the not so distant past, GET was disallowed too)
We recently (not released yet) added an async-loading mode, see #9323,
and during that time it'll serve CONFIG SET and any other command.
And now we realized (#9770) that some configs, and commands are dangerous
during async-loading.
## changes
* Allow most CONFIG SET during loading (both on async-loading and normal loading)
* Allow CONFIG REWRITE and CONFIG RESETSTAT during loading
* Block a few config during loading (`appendonly`, `repl-diskless-load`, and `dir`)
* Block a few commands during loading (list below)
## the blocked commands:
* SAVE - obviously we don't wanna start a foregreound save during loading 8-)
* BGSAVE - we don't mind to schedule one, but we don't wanna fork now
* BGREWRITEAOF - we don't mind to schedule one, but we don't wanna fork now
* MODULE - we obviously don't wanna unload a module during replication / rdb loading
(MODULE HELP and MODULE LIST are not blocked)
* SYNC / PSYNC - we're in the middle of RDB loading from master, must not allow sync
requests now.
* REPLICAOF / SLAVEOF - we're in the middle of replicating, maybe it makes sense to let
the user abort it, but he couldn't do that so far, i don't wanna take any risk of bugs due to odd state.
* CLUSTER - only allow [HELP, SLOTS, NODES, INFO, MYID, LINKS, KEYSLOT, COUNTKEYSINSLOT,
GETKEYSINSLOT, RESET, REPLICAS, COUNT_FAILURE_REPORTS], for others, preserve the status quo
## other fixes
* processEventsWhileBlocked had an issue when being nested, this could happen with a busy script
during async loading (new), but also in a busy script during AOF loading (old). this lead to a crash in
the scenario described in #6988
# Background
The main goal of this PR is to remove relevant logics on Lua script verbatim replication,
only keeping effects replication logic, which has been set as default since Redis 5.0.
As a result, Lua in Redis 7.0 would be acting the same as Redis 6.0 with default
configuration from users' point of view.
There are lots of reasons to remove verbatim replication.
Antirez has listed some of the benefits in Issue #5292:
>1. No longer need to explain to users side effects into scripts.
They can do whatever they want.
>2. No need for a cache about scripts that we sent or not to the slaves.
>3. No need to sort the output of certain commands inside scripts
(SMEMBERS and others): this both simplifies and gains speed.
>4. No need to store scripts inside the RDB file in order to startup correctly.
>5. No problems about evicting keys during the script execution.
When looking back at Redis 5.0, antirez and core team decided to set the config
`lua-replicate-commands yes` by default instead of removing verbatim replication
directly, in case some bad situations happened. 3 years later now before Redis 7.0,
it's time to remove it formally.
# Changes
- configuration for lua-replicate-commands removed
- created config file stub for backward compatibility
- Replication script cache removed
- this is useless under script effects replication
- relevant statistics also removed
- script persistence in RDB files is also removed
- Propagation of SCRIPT LOAD and SCRIPT FLUSH to replica / AOF removed
- Deterministic execution logic in scripts removed (i.e. don't run write commands
after random ones, and sorting output of commands with random order)
- the flags indicating which commands have non-deterministic results are kept as hints to clients.
- `redis.replicate_commands()` & `redis.set_repl()` changed
- now `redis.replicate_commands()` does nothing and return an 1
- ...and then `redis.set_repl()` can be issued before `redis.replicate_commands()` now
- Relevant TCL cases adjusted
- DEBUG lua-always-replicate-commands removed
# Other changes
- Fix a recent bug comparing CLIENT_ID_AOF to original_client->flags instead of id. (introduced in #9780)
Co-authored-by: Oran Agra <oran@redislabs.com>
- add needs:debug flag for some tests
- disable "save" in external tests (speedup?)
- use debug_digest proc instead of debug command directly so it can be skipped
- use OBJECT ENCODING instead of DEBUG OBJECT to get encoding
- add a proc for OBJECT REFCOUNT so it can be skipped
- move a bunch of tests in latency_monitor tests to happen later so that latency monitor has some values in it
- add missing close_replication_stream calls
- make sure to close the temp client if DEBUG LOG fails
When rdb creates a consumer without determining whether it exists in advance,
it may return NULL and crash if it encounters corrupt data with duplicate consumers.
A test failure was reported in Daily CI.
`Crash report generated on SIGABRT` with FreeBSD.
```
*** [err]: Crash report generated on SIGABRT in tests/integration/logging.tcl
Expected [string match *crashed by signal* ### Starting...(logs) in tests/integration/logging.tcl]
```
It look like `tail -1000` was executed too early, before it
printed out all the crash logs. We can give it a few more
chances by using `wait_for_log_messages`.
Other changes:
1. In `Server is able to generate a stack trace on selected systems`,
use `wait_for_log_messages`to reduce the lines of code. And if it
fails, there are more detailed logs that can be printed.
2. In `Crash report generated on DEBUG SEGFAULT`, we also use
`wait_for_log_messages` to avoid possible timing issues.
Redis function unit is located inside functions.c
and contains Redis Function implementation:
1. FUNCTION commands:
* FUNCTION CREATE
* FCALL
* FCALL_RO
* FUNCTION DELETE
* FUNCTION KILL
* FUNCTION INFO
2. Register engine
In addition, this commit introduce the first engine
that uses the Redis Function capabilities, the
Lua engine.
Writable replicas now no longer use the values of expired keys. Expired keys are
deleted when lookupKeyWrite() is used, even on a writable replica. Previously,
writable replicas could use the value of an expired key in write commands such
as INCR, SUNIONSTORE, etc..
This commit also sorts out the mess around the functions lookupKeyRead() and
lookupKeyWrite() so they now indicate what we intend to do with the key and
are not affected by the command calling them.
Multi-key commands like SUNIONSTORE, ZUNIONSTORE, COPY and SORT with the
store option now use lookupKeyRead() for the keys they're reading from (which will
not allow reading from logically expired keys).
This commit also fixes a bug where PFCOUNT could return a value of an
expired key.
Test modules commands have their readonly and write flags updated to correctly
reflect their lookups for reading or writing. Modules are not required to
correctly reflect this in their command flags, but this change is made for
consistency since the tests serve as usage examples.
Fixes#6842. Fixes#7475.
Part three of implementing #8702, following #8887 and #9366 .
## Description of the feature
1. Replace the ziplist container of quicklist with listpack.
2. Convert existing quicklist ziplists on RDB loading time. an O(n) operation.
## Interface changes
1. New `list-max-listpack-size` config is an alias for `list-max-ziplist-size`.
2. Replace `debug ziplist` command with `debug listpack`.
## Internal changes
1. Add `lpMerge` to merge two listpacks . (same as `ziplistMerge`)
2. Add `lpRepr` to print info of listpack which is used in debugCommand and `quicklistRepr`. (same as `ziplistRepr`)
3. Replace `QUICKLIST_NODE_CONTAINER_ZIPLIST` with `QUICKLIST_NODE_CONTAINER_PACKED`(following #9357 ).
It represent that a quicklistNode is a packed node, as opposed to a plain node.
4. Remove `createZiplistObject` method, which is never used.
5. Calculate listpack entry size using overhead overestimation in `quicklistAllowInsert`.
We prefer an overestimation, which would at worse lead to a few bytes below the lowest limit of 4k.
## Improvements
1. Calling `lpShrinkToFit` after converting Ziplist to listpack, which was missed at #9366.
2. Optimize `quicklistAppendPlainNode` to avoid memcpy data.
## Bugfix
1. Fix crash in `quicklistRepr` when ziplist is compressed, introduced from #9366.
## Test
1. Add unittest for `lpMerge`.
2. Modify the old quicklist ziplist corrupt dump test.
Co-authored-by: Oran Agra <oran@redislabs.com>
In #9323, when `repl-diskless-load` is enabled and set to `swapdb`,
if the master replication ID hasn't changed, we can load data-set
asynchronously, and serving read commands during the full resync.
In `diskless loading short read` test, after a loading successfully,
we will wait for the loading to stop and continue the for loop.
After the introduction of `async_loading`, we also need to check it.
Otherwise the next loop will start too soon, may trigger a timing issue.
Issue found by corrupt-dump-fuzzer test with ASAN.
The problem was that lpSkip and lpGetWithSize could read the next listpack entry without validating that it's in range.
Similarly even the memcmp in lpFind could do that and possibly crash on segfault and now they'll crash on assert first.
The naive fix of using lpAssertValidEntry every time, resulted in 30% degradation in the lpFind benchmark of the unit test.
The final fix with the condition at the bottom has no performance implications.
TCL8.5 can't handle cases where part of the string is escaped and part of it isn't,
if there's a single char that needs escaping, we need to escape the whole string.
Leak found by the corrupt-dump-fuzzer when using GCC ASAN, which seems
to falsely report leaks on pointers kept only on the stack when calling exit.
Instead we now use _exit on panic / assert to skip these leak checks.
Additionally, check for sanitizer warnings in the corrupt-dump-fuzzer between iterations,
so that when something is found we know which test to relate it too (and it prints reproduction command list)
LCS can allocate immense amount of memory (sizes of two inputs multiplied by each other).
In the past this caused some possible security issues due to overflows, which we solved
and also added use of `trymalloc` to return "Insufficient memory" instead of OOM panic zmalloc.
But in case overcommit is enabled, it could be that we won't get the OOM panic, and zmalloc
will succeed, and then we can get OOM killed by the kernel.
The solution here is to prevent LCS from allocating transient memory that's bigger than
`proto-max-bulk-len` config.
This config is not directly related to transient memory, but using a hard coded value ad well as
introducing a specific config seems wrong.
This comes to solve an error in the corrupt-dump-fuzzer test that started in the daily CI see #9799
- Added sanitizer support. `address`, `undefined` and `thread` sanitizers are available.
- To build Redis with desired sanitizer : `make SANITIZER=undefined`
- There were some sanitizer findings, cleaned up codebase
- Added tests with address and undefined behavior sanitizers to daily CI.
- Added tests with address sanitizer to the per-PR CI (smoke out mem leaks sooner).
Basically, there are three types of issues :
**1- Unaligned load/store** : Most probably, this issue may cause a crash on a platform that
does not support unaligned access. Redis does unaligned access only on supported platforms.
**2- Signed integer overflow.** Although, signed overflow issue can be problematic time to time
and change how compiler generates code, current findings mostly about signed shift or simple
addition overflow. For most platforms Redis can be compiled for, this wouldn't cause any issue
as far as I can tell (checked generated code on godbolt.org).
**3 -Minor leak** (redis-cli), **use-after-free**(just before calling exit());
UB means nothing guaranteed and risky to reason about program behavior but I don't think any
of the fixes here worth backporting. As sanitizers are now part of the CI, preventing new issues
will be the real benefit.
First, avoid using --accurate on the freebsd CI, we only care about
systematic issues there due to being different platform, but not
accuracy
Secondly, when looking at the test which timed out it seems silly and
outdated:
- it used KEYS to attempt to trigger lazy expiry, but KEYS doesn't do
that anymore.
- it used some hard coded sleeps rather than waiting for things to
happen and exiting ASAP
In both tests, "diskless loading short read" and "diskless loading short read with module",
the timeout of waiting for the replica to respond to a short read and log it, is too short.
Also, add --dump-logs in runtest-moduleapi for valgrind runs.
For diskless replication in swapdb mode, considering we already spend replica memory
having a backup of current db to restore in case of failure, we can have the following benefits
by instead swapping database only in case we succeeded in transferring db from master:
- Avoid `LOADING` response during failed and successful synchronization for cases where the
replica is already up and running with data.
- Faster total time of diskless replication, because now we're moving from Transfer + Flush + Load
time to Transfer + Load only. Flushing the tempDb is done asynchronously after swapping.
- This could be implemented also for disk replication with similar benefits if consumers are willing
to spend the extra memory usage.
General notes:
- The concept of `backupDb` becomes `tempDb` for clarity.
- Async loading mode will only kick in if the replica is syncing from a master that has the same
repl-id the one it had before. i.e. the data it's getting belongs to a different time of the same timeline.
- New property in INFO: `async_loading` to differentiate from the blocking loading
- Slot to Key mapping is now a field of `redisDb` as it's more natural to access it from both server.db
and the tempDb that is passed around.
- Because this is affecting replicas only, we assume that if they are not readonly and write commands
during replication, they are lost after SYNC same way as before, but we're still denying CONFIG SET
here anyways to avoid complications.
Considerations for review:
- We have many cases where server.loading flag is used and even though I tried my best, there may
be cases where async_loading should be checked as well and cases where it shouldn't (would require
very good understanding of whole code)
- Several places that had different behavior depending on the loading flag where actually meant to just
handle commands coming from the AOF client differently than ones coming from real clients, changed
to check CLIENT_ID_AOF instead.
**Additional for Release Notes**
- Bugfix - server.dirty was not incremented for any kind of diskless replication, as effect it wouldn't
contribute on triggering next database SAVE
- New flag for RM_GetContextFlags module API: REDISMODULE_CTX_FLAGS_ASYNC_LOADING
- Deprecated RedisModuleEvent_ReplBackup. Starting from Redis 7.0, we don't fire this event.
Instead, we have the new RedisModuleEvent_ReplAsyncLoad holding 3 sub-events: STARTED,
ABORTED and COMPLETED.
- New module flag REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD for RedisModule_SetModuleOptions
to allow modules to declare they support the diskless replication with async loading (when absent, we fall
back to disk-based loading).
Co-authored-by: Eduardo Semprebon <edus@saxobank.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
When repl-diskless-load is enabled, the connection is set to the blocking state.
The connection may be interrupted by a signal during a system call.
This would have resulted in a disconnection and possibly a reconnection loop.
Co-authored-by: Oran Agra <oran@redislabs.com>
Redis lists are stored in quicklist, which is currently a linked list of ziplists.
Ziplists are limited to storing elements no larger than 4GB, so when bigger
items are added they're getting truncated.
This PR changes quicklists so that they're capable of storing large items
in quicklist nodes that are plain string buffers rather than ziplist.
As part of the PR there were few other changes in redis:
1. new DEBUG sub-commands:
- QUICKLIST-PACKED-THRESHOLD - set the threshold of for the node type to
be plan or ziplist. default (1GB)
- QUICKLIST <key> - Shows low level info about the quicklist encoding of <key>
2. rdb format change:
- A new type was added - RDB_TYPE_LIST_QUICKLIST_2 .
- container type (packed / plain) was added to the beginning of the rdb object
(before the actual node list).
3. testing:
- Tests that requires over 100MB will be by default skipped. a new flag was
added to 'runtest' to run the large memory tests (not used by default)
Co-authored-by: sundb <sundbcn@gmail.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
So it looks like sampling set loglines [count_log_lines -2] was
executed too late, and the replication managed to complete before that.
```
*** [err]: diskless no replicas drop during rdb pipe in tests/integration/replication.tcl
log message of '"*Diskless rdb transfer, done reading from pipe, 2 replicas still up*"' not found in ./tests/tmp/server.6124.69/stdout after line: 52 till line: 52
```
Changes:
1. when we search the master log file, we start to search from before we sent the REPLICAOF
command, to prevent a race in which the replication completed before we sampled the log line count.
2. we don't need to sample the replica loglines sine it's a fresh resplica that's just been started, so the message
we're looking for is the first occurrence in the log, we can start search from 0.
Co-authored-by: Oran Agra <oran@redislabs.com>
Test failed on freebsd:
```
*** [err]: Make the old master a replica of the new one and check conditions in tests/integration/psync2-pingoff.tcl
Expected '162' to be equal to '176' (context: type eval line 18 cmd {assert_equal [status $R(0) master_repl_offset] [status $R(1) master_repl_offset]} proc ::test)
```
There are two possible race conditions in the test.
1. The code waits for sync_full to increment, and assumes that means the
master did the fork. But in fact there are cases the master will increment
that sync_full counter (after replica asks for sync), but will see that
there's already a fork running and will delay the fork creation.
In this case the INCR will be executed before the fork happens, so it'll
not be in the command stream. Solve that by waiting for `master_link_status: up`
on the replica before the INCR.
2. The repl-ping-replica-period is still high (1 second), so there's a chance the
master will send an additional PING between the two calls to INFO (the line that
fails is the one that samples INFO from both servers). So there's a chance one of
them will have an incremented offset due to PING and the other won't have it yet.
In theory we can wait for the repl_offset to match, but then we risk facing a
situation where that race will hide an offset mis-match. so instead, i think we
should just change repl-ping-replica-period to prevent further pings from being pushed.
Co-authored-by: Oran Agra <oran@redislabs.com>
Add timestamp annotation in AOF, one part of #9325.
Enabled with the new `aof-timestamp-enabled` config option.
Timestamp annotation format is "#TS:${timestamp}\r\n"."
TS" is short of timestamp and this method could save extra bytes in AOF.
We can use timestamp annotation for some special functions.
- know the executing time of commands
- restore data to a specific point-in-time (by using redis-check-rdb to truncate the file)
## Background
For redis master, one replica uses one copy of replication buffer, that is a big waste of memory,
more replicas more waste, and allocate/free memory for every reply list also cost much.
If we set client-output-buffer-limit small and write traffic is heavy, master may disconnect with
replicas and can't finish synchronization with replica. If we set client-output-buffer-limit big,
master may be OOM when there are many replicas that separately keep much memory.
Because replication buffers of different replica client are the same, one simple idea is that
all replicas only use one replication buffer, that will effectively save memory.
Since replication backlog content is the same as replicas' output buffer, now we
can discard replication backlog memory and use global shared replication buffer
to implement replication backlog mechanism.
## Implementation
I create one global "replication buffer" which contains content of replication stream.
The structure of "replication buffer" is similar to the reply list that exists in every client.
But the node of list is `replBufBlock`, which has `id, repl_offset, refcount` fields.
```c
/* Replication buffer blocks is the list of replBufBlock.
*
* +--------------+ +--------------+ +--------------+
* | refcount = 1 | ... | refcount = 0 | ... | refcount = 2 |
* +--------------+ +--------------+ +--------------+
* | / \
* | / \
* | / \
* Repl Backlog Replia_A Replia_B
*
* Each replica or replication backlog increments only the refcount of the
* 'ref_repl_buf_node' which it points to. So when replica walks to the next
* node, it should first increase the next node's refcount, and when we trim
* the replication buffer nodes, we remove node always from the head node which
* refcount is 0. If the refcount of the head node is not 0, we must stop
* trimming and never iterate the next node. */
/* Similar with 'clientReplyBlock', it is used for shared buffers between
* all replica clients and replication backlog. */
typedef struct replBufBlock {
int refcount; /* Number of replicas or repl backlog using. */
long long id; /* The unique incremental number. */
long long repl_offset; /* Start replication offset of the block. */
size_t size, used;
char buf[];
} replBufBlock;
```
So now when we feed replication stream into replication backlog and all replicas, we only need
to feed stream into replication buffer `feedReplicationBuffer`. In this function, we set some fields of
replication backlog and replicas to references of the global replication buffer blocks. And we also
need to check replicas' output buffer limit to free if exceeding `client-output-buffer-limit`, and trim
replication backlog if exceeding `repl-backlog-size`.
When sending reply to replicas, we also need to iterate replication buffer blocks and send its
content, when totally sending one block for replica, we decrease current node count and
increase the next current node count, and then free the block which reference is 0 from the
head of replication buffer blocks.
Since now we use linked list to manage replication backlog, it may cost much time for iterating
all linked list nodes to find corresponding replication buffer node. So we create a rax tree to
store some nodes for index, but to avoid rax tree occupying too much memory, i record
one per 64 nodes for index.
Currently, to make partial resynchronization as possible as much, we always let replication
backlog as the last reference of replication buffer blocks, backlog size may exceeds our setting
if slow replicas that reference vast replication buffer blocks, and this method doesn't increase
memory usage since they share replication buffer. To avoid freezing server for freeing unreferenced
replication buffer blocks when we need to trim backlog for exceeding backlog size setting,
we trim backlog incrementally (free 64 blocks per call now), and make it faster in
`beforeSleep` (free 640 blocks).
### Other changes
- `mem_total_replication_buffers`: we add this field in INFO command, it means the total
memory of replication buffers used.
- `mem_clients_slaves`: now even replica is slow to replicate, and its output buffer memory
is not 0, but it still may be 0, since replication backlog and replicas share one global replication
buffer, only if replication buffer memory is more than the repl backlog setting size, we consider
the excess as replicas' memory. Otherwise, we think replication buffer memory is the consumption
of repl backlog.
- Key eviction
Since all replicas and replication backlog share global replication buffer, we think only the
part of exceeding backlog size the extra separate consumption of replicas.
Because we trim backlog incrementally in the background, backlog size may exceeds our
setting if slow replicas that reference vast replication buffer blocks disconnect.
To avoid massive eviction loop, we don't count the delayed freed replication backlog into
used memory even if there are no replicas, i.e. we also regard this memory as replicas's memory.
- `client-output-buffer-limit` check for replica clients
It doesn't make sense to set the replica clients output buffer limit lower than the repl-backlog-size
config (partial sync will succeed and then replica will get disconnected). Such a configuration is
ignored (the size of repl-backlog-size will be used). This doesn't have memory consumption
implications since the replica client will share the backlog buffers memory.
- Drop replication backlog after loading data if needed
We always create replication backlog if server is a master, we need it because we put DELs in
it when loading expired keys in RDB, but if RDB doesn't have replication info or there is no rdb,
it is not possible to support partial resynchronization, to avoid extra memory of replication backlog,
we drop it.
- Multi IO threads
Since all replicas and replication backlog use global replication buffer, if I/O threads are enabled,
to guarantee data accessing thread safe, we must let main thread handle sending the output buffer
to all replicas. But before, other IO threads could handle sending output buffer of all replicas.
## Other optimizations
This solution resolve some other problem:
- When replicas disconnect with master since of out of output buffer limit, releasing the output
buffer of replicas may freeze server if we set big `client-output-buffer-limit` for replicas, but now,
it doesn't cause freezing.
- This implementation may mitigate reply list copy cost time(also freezes server) when one replication
has huge reply buffer and another replica can copy buffer for full synchronization. now, we just copy
reference info, it is very light.
- If we set replication backlog size big, it also may cost much time to copy replication backlog into
replica's output buffer. But this commit eliminates this problem.
- Resizing replication backlog size doesn't empty current replication backlog content.
in the past few days i've seen two failures in the valgrind daily test.
*** [err]: slave fails full sync and diskless load swapdb recovers it in tests/integration/replication.tcl
Replica didn't get into loading mode
can't reproduce it, but i'm hoping it's just too slow (to start loading within 5 seconds)
Since we measure the COW size in this test by changing some keys and reading
the reported COW size, we need to ensure that the "dismiss mechanism" (#8974)
will not free memory and reduce the COW size.
For that, this commit changes the size of the keys to 512B (less than a page).
and because some keys may fall into the same page, we are modifying ten keys
on each iteration and check for at least 50% change in the COW size.
This is similar to the recent addition of LMPOP/BLMPOP (#9373), but zset.
Syntax for the new ZMPOP command:
`ZMPOP numkeys [<key> ...] MIN|MAX [COUNT count]`
Syntax for the new BZMPOP command:
`BZMPOP timeout numkeys [<key> ...] MIN|MAX [COUNT count]`
Some background:
- ZPOPMIN/ZPOPMAX take only one key, and can return multiple elements.
- BZPOPMIN/BZPOPMAX take multiple keys, but return only one element from just one key.
- ZMPOP/BZMPOP can take multiple keys, and can return multiple elements from just one key.
Note that ZMPOP/BZMPOP can take multiple keys, it eventually operates on just on key.
And it will propagate as ZPOPMIN or ZPOPMAX with the COUNT option.
As new commands, if we can not pop any elements, the response like:
- ZMPOP: Return a NIL in both RESP2 and RESP3, unlike ZPOPMIN/ZPOPMAX return emptyarray.
- BZMPOP: Return a NIL in both RESP2 and RESP3 when timeout is reached, like BZPOPMIN/BZPOPMAX.
For the normal response is nested arrays in RESP2 and RESP3:
```
ZMPOP/BZMPOP
1) keyname
2) 1) 1) member1
2) score1
2) 1) member2
2) score2
In RESP2:
1) "myzset"
2) 1) 1) "three"
2) "3"
2) 1) "two"
2) "2"
In RESP3:
1) "myzset"
2) 1) 1) "three"
2) (double) 3
2) 1) "two"
2) (double) 2
```