If HGETEX command deletes the only field due to lazy expiry, Redis
currently sends `del` KSN (Keyspace Notification) first, followed by
`hexpired` KSN. The order should be reversed, `hexpired` should be sent
first and `del` later.
Additonal changes: More test coverage for HGETDEL KSN
---------
Co-authored-by: hristosko <hristosko.chaushev@redis.com>
This PR adds three new hash commands: HGETDEL, HGETEX and HSETEX. These
commands enable user to do multiple operations in one step atomically
e.g. set a hash field and update its TTL with a single command.
Previously, it was only possible to do it by calling hset and hexpire
commands subsequently.
- **HGETDEL command**
```
HGETDEL <key> FIELDS <numfields> field [field ...]
```
**Description**
Get and delete the value of one or more fields of a given hash key
**Reply**
Array reply: list of the value associated with each field or nil if the
field doesn’t exist.
- **HGETEX command**
```
HGETEX <key>
[EX seconds | PX milliseconds | EXAT unix-time-seconds | PXAT
unix-time-milliseconds | PERSIST]
FIELDS <numfields> field [field ...]
```
**Description**
Get the value of one or more fields of a given hash key, and optionally
set their expiration
**Options:**
EX seconds: Set the specified expiration time, in seconds.
PX milliseconds: Set the specified expiration time, in milliseconds.
EXAT timestamp-seconds: Set the specified Unix time at which the field
will expire, in seconds.
PXAT timestamp-milliseconds: Set the specified Unix time at which the
field will expire, in milliseconds.
PERSIST: Remove the time to live associated with the field.
**Reply**
Array reply: list of the value associated with each field or nil if the
field doesn’t exist.
- **HSETEX command**
```
HSETEX <key>
[FNX | FXX]
[EX seconds | PX milliseconds | EXAT unix-time-seconds | PXAT
unix-time-milliseconds | KEEPTTL]
FIELDS <numfields> field value [field value...]
```
**Description**
Set the value of one or more fields of a given hash key, and optionally
set their expiration
**Options:**
FNX: Only set the fields if all do not already exist.
FXX: Only set the fields if all already exist.
EX seconds: Set the specified expiration time, in seconds.
PX milliseconds: Set the specified expiration time, in milliseconds.
EXAT timestamp-seconds: Set the specified Unix time at which the field
will expire, in seconds.
PXAT timestamp-milliseconds: Set the specified Unix time at which the
field will expire, in milliseconds.
KEEPTTL: Retain the time to live associated with the field.
Note: If no option is provided, any associated expiration time will be
discarded similar to how SET command behaves.
**Reply**
Integer reply: 0 if no fields were set
Integer reply: 1 if all the fields were set
## Introduction
Redis introduced IO Thread in 6.0, allowing IO threads to handle client
request reading, command parsing and reply writing, thereby improving
performance. The current IO thread implementation has a few drawbacks.
- The main thread is blocked during IO thread read/write operations and
must wait for all IO threads to complete their current tasks before it
can continue execution. In other words, the entire process is
synchronous. This prevents the efficient utilization of multi-core CPUs
for parallel processing.
- When the number of clients and requests increases moderately, it
causes all IO threads to reach full CPU utilization due to the busy wait
mechanism used by the IO threads. This makes it challenging for us to
determine which part of Redis has reached its bottleneck.
- When IO threads are enabled with TLS and io-threads-do-reads, a
disconnection of a connection with pending data may result in it being
assigned to multiple IO threads simultaneously. This can cause race
conditions and trigger assertion failures. Related issue:
redis#12540
Therefore, we designed an asynchronous IO threads solution. The IO
threads adopt an event-driven model, with the main thread dedicated to
command processing, meanwhile, the IO threads handle client read and
write operations in parallel.
## Implementation
### Overall
As before, we did not change the fact that all client commands must be
executed on the main thread, because Redis was originally designed to be
single-threaded, and processing commands in a multi-threaded manner
would inevitably introduce numerous race and synchronization issues. But
now each IO thread has independent event loop, therefore, IO threads can
use a multiplexing approach to handle client read and write operations,
eliminating the CPU overhead caused by busy-waiting.
the execution process can be briefly described as follows:
the main thread assigns clients to IO threads after accepting
connections, IO threads will notify the main thread when clients
finish reading and parsing queries, then the main thread processes
queries from IO threads and generates replies, IO threads handle
writing reply to clients after receiving clients list from main thread,
and then continue to handle client read and write events.
### Each IO thread has independent event loop
We now assign each IO thread its own event loop. This approach
eliminates the need for the main thread to perform the costly
`epoll_wait` operation for handling connections (except for specific
ones). Instead, the main thread processes requests from the IO threads
and hands them back once completed, fully offloading read and write
events to the IO threads.
Additionally, all TLS operations, including handling pending data, have
been moved entirely to the IO threads. This resolves the issue where
io-threads-do-reads could not be used with TLS.
### Event-notified client queue
To facilitate communication between the IO threads and the main thread,
we designed an event-notified client queue. Each IO thread and the main
thread have two such queues to store clients waiting to be processed.
These queues are also integrated with the event loop to enable handling.
We use pthread_mutex to ensure the safety of queue operations, as well
as data visibility and ordering, and race conditions are minimized, as
each IO thread and the main thread operate on independent queues,
avoiding thread suspension due to lock contention. And we implemented an
event notifier based on `eventfd` or `pipe` to support event-driven
handling.
### Thread safety
Since the main thread and IO threads can execute in parallel, we must
handle data race issues carefully.
**client->flags**
The primary tasks of IO threads are reading and writing, i.e.
`readQueryFromClient` and `writeToClient`. However, IO threads and the
main thread may concurrently modify or access `client->flags`, leading
to potential race conditions. To address this, we introduced an io-flags
variable to record operations performed by IO threads, thereby avoiding
race conditions on `client->flags`.
**Pause IO thread**
In the main thread, we may want to operate data of IO threads, maybe
uninstall event handler, access or operate query/output buffer or resize
event loop, we need a clean and safe context to do that. We pause IO
thread in `IOThreadBeforeSleep`, do some jobs and then resume it. To
avoid thread suspended, we use busy waiting to confirm the target
status. Besides we use atomic variable to make sure memory visibility
and ordering. We introduce these functions to pause/resume IO Threads as
below.
```
pauseIOThread, resumeIOThread
pauseAllIOThreads, resumeAllIOThreads
pauseIOThreadsRange, resumeIOThreadsRange
```
Testing has shown that `pauseIOThread` is highly efficient, allowing the
main thread to execute nearly 200,000 operations per second during
stress tests. Similarly, `pauseAllIOThreads` with 8 IO threads can
handle up to nearly 56,000 operations per second. But operations
performed between pausing and resuming IO threads must be quick;
otherwise, they could cause the IO threads to reach full CPU
utilization.
**freeClient and freeClientAsync**
The main thread may need to terminate a client currently running on an
IO thread, for example, due to ACL rule changes, reaching the output
buffer limit, or evicting a client. In such cases, we need to pause the
IO thread to safely operate on the client.
**maxclients and maxmemory-clients updating**
When adjusting `maxclients`, we need to resize the event loop for all IO
threads. Similarly, when modifying `maxmemory-clients`, we need to
traverse all clients to calculate their memory usage. To ensure safe
operations, we pause all IO threads during these adjustments.
**Client info reading**
The main thread may need to read a client’s fields to generate a
descriptive string, such as for the `CLIENT LIST` command or logging
purposes. In such cases, we need to pause the IO thread handling that
client. If information for all clients needs to be displayed, all IO
threads must be paused.
**Tracking redirect**
Redis supports the tracking feature and can even send invalidation
messages to a connection with a specified ID. But the target client may
be running on IO thread, directly manipulating the client’s output
buffer is not thread-safe, and the IO thread may not be aware that the
client requires a response. In such cases, we pause the IO thread
handling the client, modify the output buffer, and install a write event
handler to ensure proper handling.
**clientsCron**
In the `clientsCron` function, the main thread needs to traverse all
clients to perform operations such as timeout checks, verifying whether
they have reached the soft output buffer limit, resizing the
output/query buffer, or updating memory usage. To safely operate on a
client, the IO thread handling that client must be paused.
If we were to pause the IO thread for each client individually, the
efficiency would be very low. Conversely, pausing all IO threads
simultaneously would be costly, especially when there are many IO
threads, as clientsCron is invoked relatively frequently.
To address this, we adopted a batched approach for pausing IO threads.
At most, 8 IO threads are paused at a time. The operations mentioned
above are only performed on clients running in the paused IO threads,
significantly reducing overhead while maintaining safety.
### Observability
In the current design, the main thread always assigns clients to the IO
thread with the least clients. To clearly observe the number of clients
handled by each IO thread, we added the new section in INFO output. The
`INFO THREADS` section can show the client count for each IO thread.
```
# Threads
io_thread_0:clients=0
io_thread_1:clients=2
io_thread_2:clients=2
```
Additionally, in the `CLIENT LIST` output, we also added a field to
indicate the thread to which each client is assigned.
`id=244 addr=127.0.0.1:41870 laddr=127.0.0.1:6379 ... resp=2 lib-name=
lib-ver= io-thread=1`
## Trade-off
### Special Clients
For certain special types of clients, keeping them running on IO threads
would result in severe race issues that are difficult to resolve.
Therefore, we chose not to offload these clients to the IO threads.
For replica, monitor, subscribe, and tracking clients, main thread may
directly write them a reply when conditions are met. Race issues are
difficult to resolve, so we have them processed in the main thread. This
includes the Lua debug clients as well, since we may operate connection
directly.
For blocking client, after the IO thread reads and parses a command and
hands it over to the main thread, if the client is identified as a
blocking type, it will be remained in the main thread. Once the blocking
operation completes and the reply is generated, the client is
transferred back to the IO thread to send the reply and wait for event
triggers.
### Clients Eviction
To support client eviction, it is necessary to update each client’s
memory usage promptly during operations such as read, write, or command
execution. However, when a client operates on an IO thread, it is not
feasible to update the memory usage immediately due to the risk of data
races. As a result, memory usage can only be updated either in the main
thread while processing commands or in the `ClientsCron` periodically.
The downside of this approach is that updates might experience a delay
of up to one second, which could impact the precision of memory
management for eviction.
To avoid incorrectly evicting clients. We adopted a best-effort
compensation solution, when we decide to eviction a client, we update
its memory usage again before evicting, if the memory used by the client
does not decrease or memory usage bucket is not changed, then we will
evict it, otherwise, not evict it.
However, we have not completely solved this problem. Due to the delay in
memory usage updates, it may lead us to make incorrect decisions about
the need to evict clients.
### Defragment
In the majority of cases we do NOT use the data from argv directly in
the db.
1. key names
We store a copy that we allocate in the main thread, see `sdsdup()` in
`dbAdd()`.
2. hash key and value
We store key as hfield and store value as sds, see `hfieldNew()` and
`sdsdup()` in `hashTypeSet()`.
3. other datatypes
They don't even use SDS, so there is no reference issues.
But in some cases client the data from argv may be retain by the main
thread.
As a result, during fragmentation cleanup, we need to move allocations
from the IO thread’s arena to the main thread’s arena. We always
allocate new memory in the main thread’s arena, but the memory released
by IO threads may not yet have been reclaimed. This ultimately causes
the fragmentation rate to be higher compared to creating and allocating
entirely within a single thread.
The following cases below will lead to memory allocated by the IO thread
being kept by the main thread.
1. string related command: `append`, `getset`, `mset` and `set`.
If `tryObjectEncoding()` does not change argv, we will keep it directly
in the main thread, see the code in `tryObjectEncoding()`(specifically
`trimStringObjectIfNeeded()`)
2. block related command.
the key names will be kept in `c->db->blocking_keys`.
3. watch command
the key names will be kept in `c->db->watched_keys`.
4. [s]subscribe command
channel name will be kept in `serverPubSubChannels`.
5. script load command
script will be kept in `server.lua_scripts`.
7. some module API: `RM_RetainString`, `RM_HoldString`
Those issues will be handled in other PRs.
## Testing
### Functional Testing
The commit with enabling IO Threads has passed all TCL tests, but we did
some changes:
**Client query buffer**: In the original code, when using a reusable
query buffer, ownership of the query buffer would be released after the
command was processed. However, with IO threads enabled, the client
transitions from an IO thread to the main thread for processing. This
causes the ownership release to occur earlier than the command
execution. As a result, when IO threads are enabled, the client's
information will never indicate that a shared query buffer is in use.
Therefore, we skip the corresponding query buffer tests in this case.
**Defragment**: Add a new defragmentation test to verify the effect of
io threads on defragmentation.
**Command delay**: For deferred clients in TCL tests, due to clients
being assigned to different threads for execution, delays may occur. To
address this, we introduced conditional waiting: the process proceeds to
the next step only when the `client list` contains the corresponding
commands.
### Sanitizer Testing
The commit passed all TCL tests and reported no errors when compiled
with the `fsanitizer=thread` and `fsanitizer=address` options enabled.
But we made the following modifications: we suppressed the sanitizer
warnings for clients with watched keys when updating `client->flags`, we
think IO threads read `client->flags`, but never modify it or read the
`CLIENT_DIRTY_CAS` bit, main thread just only modifies this bit, so
there is no actual data race.
## Others
### IO thread number
In the new multi-threaded design, the main thread is primarily focused
on command processing to improve performance. Typically, the main thread
does not handle regular client I/O operations but is responsible for
clients such as replication and tracking clients. To avoid breaking
changes, we still consider the main thread as the first IO thread.
When the io-threads configuration is set to a low value (e.g., 2),
performance does not show a significant improvement compared to a
single-threaded setup for simple commands (such as SET or GET), as the
main thread does not consume much CPU for these simple operations. This
results in underutilized multi-core capacity. However, for more complex
commands, having a low number of IO threads may still be beneficial.
Therefore, it’s important to adjust the `io-threads` based on your own
performance tests.
Additionally, you can clearly monitor the CPU utilization of the main
thread and IO threads using `top -H -p $redis_pid`. This allows you to
easily identify where the bottleneck is. If the IO thread is the
bottleneck, increasing the `io-threads` will improve performance. If the
main thread is the bottleneck, the overall performance can only be
scaled by increasing the number of shards or replicas.
---------
Co-authored-by: debing.sun <debing.sun@redis.com>
Co-authored-by: oranagra <oran@redislabs.com>
When the hash field expired, we will send a new `hexpired` notification.
It mainly includes the following three cases:
1. When field expired by active expiration.
2. When field expired by lazy expiration.
3. When the user uses the `h(p)expire(at)` command, the user will also
get a `hexpired` notification if the field expires during the command.
## Improvement
1. Now if more than one field expires in the hmget command, we will only
send a `hexpired` notification.
2. When a field with TTL is deleted by commands like hdel without
updating the global DS, active expire will not send a notification.
---------
Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Moti Cohen <moti.cohen@redis.com>
In the old test, we give the `hexpire` a very short expire time, which
caused the filed to be deleted by the time `hpersist` command was
executed. As a result, the `hpersist` command won't be able to give a
`hpersist` notification, leading to test stuck.
fail CI:
https://github.com/redis/redis/actions/runs/9342175887/job/25709886471
When a connection that's subscribe to a channel emits PUBLISH inside MULTI-EXEC,
the push notification messes up the EXEC response.
e.g. MULTI, PING, PUSH foo bar, PING, EXEC
the EXEC's response will contain: PONG, {message foo bar}, 1. and the second PONG
will be delivered outside the EXEC's response.
Additionally, this PR changes the order of responses in case of a plain PUBLISH (when
the current client also subscribed to it), by delivering the push after the command's
response instead of before it.
This also affects modules calling RM_PublishMessage in a similar way, so that we don't
run the risk of getting that push mixed together with the module command's response.
This bug seems to be there forever, CLIENT REPLY OFF|SKIP will
mark the client with CLIENT_REPLY_OFF or CLIENT_REPLY_SKIP flags.
With these flags, prepareClientToWrite called by addReply* will
return C_ERR directly. So the client can't receive the Pub/Sub
messages and any other push notifications, e.g client side tracking.
In this PR, we adding a CLIENT_PUSHING flag, disables the reply
silencing flags. When adding push replies, set the flag, after the reply,
clear the flag. Then add the flag check in prepareClientToWrite.
Fixes#11874
Note, the SUBSCRIBE command response is a bit awkward,
see https://github.com/redis/redis-doc/pull/2327
Co-authored-by: Oran Agra <oran@redislabs.com>
Work in progress towards implementing a reply schema as part of COMMAND DOCS, see #9845
Since ironing the details of the reply schema of each and every command can take a long time, we
would like to merge this PR when the infrastructure is ready, and let this mature in the unstable branch.
Meanwhile the changes of this PR are internal, they are part of the repo, but do not affect the produced build.
### Background
In #9656 we add a lot of information about Redis commands, but we are missing information about the replies
### Motivation
1. Documentation. This is the primary goal.
2. It should be possible, based on the output of COMMAND, to be able to generate client code in typed
languages. In order to do that, we need Redis to tell us, in detail, what each reply looks like.
3. We would like to build a fuzzer that verifies the reply structure (for now we use the existing
testsuite, see the "Testing" section)
### Schema
The idea is to supply some sort of schema for the various replies of each command.
The schema will describe the conceptual structure of the reply (for generated clients), as defined in RESP3.
Note that the reply structure itself may change, depending on the arguments (e.g. `XINFO STREAM`, with
and without the `FULL` modifier)
We decided to use the standard json-schema (see https://json-schema.org/) as the reply-schema.
Example for `BZPOPMIN`:
```
"reply_schema": {
"oneOf": [
{
"description": "Timeout reached and no elements were popped.",
"type": "null"
},
{
"description": "The keyname, popped member, and its score.",
"type": "array",
"minItems": 3,
"maxItems": 3,
"items": [
{
"description": "Keyname",
"type": "string"
},
{
"description": "Member",
"type": "string"
},
{
"description": "Score",
"type": "number"
}
]
}
]
}
```
#### Notes
1. It is ok that some commands' reply structure depends on the arguments and it's the caller's responsibility
to know which is the relevant one. this comes after looking at other request-reply systems like OpenAPI,
where the reply schema can also be oneOf and the caller is responsible to know which schema is the relevant one.
2. The reply schemas will describe RESP3 replies only. even though RESP3 is structured, we want to use reply
schema for documentation (and possibly to create a fuzzer that validates the replies)
3. For documentation, the description field will include an explanation of the scenario in which the reply is sent,
including any relation to arguments. for example, for `ZRANGE`'s two schemas we will need to state that one
is with `WITHSCORES` and the other is without.
4. For documentation, there will be another optional field "notes" in which we will add a short description of
the representation in RESP2, in case it's not trivial (RESP3's `ZRANGE`'s nested array vs. RESP2's flat
array, for example)
Given the above:
1. We can generate the "return" section of all commands in [redis-doc](https://redis.io/commands/)
(given that "description" and "notes" are comprehensive enough)
2. We can generate a client in a strongly typed language (but the return type could be a conceptual
`union` and the caller needs to know which schema is relevant). see the section below for RESP2 support.
3. We can create a fuzzer for RESP3.
### Limitations (because we are using the standard json-schema)
The problem is that Redis' replies are more diverse than what the json format allows. This means that,
when we convert the reply to a json (in order to validate the schema against it), we lose information (see
the "Testing" section below).
The other option would have been to extend the standard json-schema (and json format) to include stuff
like sets, bulk-strings, error-string, etc. but that would mean also extending the schema-validator - and that
seemed like too much work, so we decided to compromise.
Examples:
1. We cannot tell the difference between an "array" and a "set"
2. We cannot tell the difference between simple-string and bulk-string
3. we cannot verify true uniqueness of items in commands like ZRANGE: json-schema doesn't cover the
case of two identical members with different scores (e.g. `[["m1",6],["m1",7]]`) because `uniqueItems`
compares (member,score) tuples and not just the member name.
### Testing
This commit includes some changes inside Redis in order to verify the schemas (existing and future ones)
are indeed correct (i.e. describe the actual response of Redis).
To do that, we added a debugging feature to Redis that causes it to produce a log of all the commands
it executed and their replies.
For that, Redis needs to be compiled with `-DLOG_REQ_RES` and run with
`--reg-res-logfile <file> --client-default-resp 3` (the testsuite already does that if you run it with
`--log-req-res --force-resp3`)
You should run the testsuite with the above args (and `--dont-clean`) in order to make Redis generate
`.reqres` files (same dir as the `stdout` files) which contain request-response pairs.
These files are later on processed by `./utils/req-res-log-validator.py` which does:
1. Goes over req-res files, generated by redis-servers, spawned by the testsuite (see logreqres.c)
2. For each request-response pair, it validates the response against the request's reply_schema
(obtained from the extended COMMAND DOCS)
5. In order to get good coverage of the Redis commands, and all their different replies, we chose to use
the existing redis test suite, rather than attempt to write a fuzzer.
#### Notes about RESP2
1. We will not be able to use the testing tool to verify RESP2 replies (we are ok with that, it's time to
accept RESP3 as the future RESP)
2. Since the majority of the test suite is using RESP2, and we want the server to reply with RESP3
so that we can validate it, we will need to know how to convert the actual reply to the one expected.
- number and boolean are always strings in RESP2 so the conversion is easy
- objects (maps) are always a flat array in RESP2
- others (nested array in RESP3's `ZRANGE` and others) will need some special per-command
handling (so the client will not be totally auto-generated)
Example for ZRANGE:
```
"reply_schema": {
"anyOf": [
{
"description": "A list of member elements",
"type": "array",
"uniqueItems": true,
"items": {
"type": "string"
}
},
{
"description": "Members and their scores. Returned in case `WITHSCORES` was used.",
"notes": "In RESP2 this is returned as a flat array",
"type": "array",
"uniqueItems": true,
"items": {
"type": "array",
"minItems": 2,
"maxItems": 2,
"items": [
{
"description": "Member",
"type": "string"
},
{
"description": "Score",
"type": "number"
}
]
}
}
]
}
```
### Other changes
1. Some tests that behave differently depending on the RESP are now being tested for both RESP,
regardless of the special log-req-res mode ("Pub/Sub PING" for example)
2. Update the history field of CLIENT LIST
3. Added basic tests for commands that were not covered at all by the testsuite
### TODO
- [x] (maybe a different PR) add a "condition" field to anyOf/oneOf schemas that refers to args. e.g.
when `SET` return NULL, the condition is `arguments.get||arguments.condition`, for `OK` the condition
is `!arguments.get`, and for `string` the condition is `arguments.get` - https://github.com/redis/redis/issues/11896
- [x] (maybe a different PR) also run `runtest-cluster` in the req-res logging mode
- [x] add the new tests to GH actions (i.e. compile with `-DLOG_REQ_RES`, run the tests, and run the validator)
- [x] (maybe a different PR) figure out a way to warn about (sub)schemas that are uncovered by the output
of the tests - https://github.com/redis/redis/issues/11897
- [x] (probably a separate PR) add all missing schemas
- [x] check why "SDOWN is triggered by misconfigured instance replying with errors" fails with --log-req-res
- [x] move the response transformers to their own file (run both regular, cluster, and sentinel tests - need to
fight with the tcl including mechanism a bit)
- [x] issue: module API - https://github.com/redis/redis/issues/11898
- [x] (probably a separate PR): improve schemas: add `required` to `object`s - https://github.com/redis/redis/issues/11899
Co-authored-by: Ozan Tezcan <ozantezcan@gmail.com>
Co-authored-by: Hanna Fadida <hanna.fadida@redislabs.com>
Co-authored-by: Oran Agra <oran@redislabs.com>
Co-authored-by: Shaya Potter <shaya@redislabs.com>
Add an optional keyspace event when new keys are added to the db.
This is useful for applications where clients need to be aware of the redis keyspace.
Such an application can SCAN once at startup and then listen for "new" events (plus
others associated with DEL, RENAME, etc).
Two issues:
1. In many tests we simply forgot to close the connections we created, which doesn't matter for normal tests where the server is killed, but creates a leak on external server tests.
2. When calling `start_server` on external test we create a fresh connection instead of really starting a new server, but never clean it at the end.
Fixes:
- When a consumer is created as a side effect, redis didn't issue a keyspace notification,
nor incremented the server.dirty (affects periodic snapshots).
this was a bug in XREADGROUP, XCLAIM, and XAUTOCLAIM.
- When attempting to delete a non-existent consumer, don't issue a keyspace notification
and don't increment server.dirty
this was a bug in XGROUP DELCONSUMER
Other changes:
- Changed streamLookupConsumer() to always only do lookup consumer (never do implicit creation),
Its last seen time is updated unless the SLC_NO_REFRESH flag is specified.
- Added streamCreateConsumer() to create a new consumer. When the creation is successful,
it will notify and dirty++ unless the SCC_NO_NOTIFY or SCC_NO_DIRTIFY flags is specified.
- Changed streamDelConsumer() to always only do delete consumer.
- Added keyspace notifications tests about stream events.
This commit revives the improves the ability to run the test suite against
external servers, instead of launching and managing `redis-server` processes as
part of the test fixture.
This capability existed in the past, using the `--host` and `--port` options.
However, it was quite limited and mostly useful when running a specific tests.
Attempting to run larger chunks of the test suite experienced many issues:
* Many tests depend on being able to start and control `redis-server` themselves,
and there's no clear distinction between external server compatible and other
tests.
* Cluster mode is not supported (resulting with `CROSSSLOT` errors).
This PR cleans up many things and makes it possible to run the entire test suite
against an external server. It also provides more fine grained controls to
handle cases where the external server supports a subset of the Redis commands,
limited number of databases, cluster mode, etc.
The tests directory now contains a `README.md` file that describes how this
works.
This commit also includes additional cleanups and fixes:
* Tests can now be tagged.
* Tag-based selection is now unified across `start_server`, `tags` and `test`.
* More information is provided about skipped or ignored tests.
* Repeated patterns in tests have been extracted to common procedures, both at a
global level and on a per-test file basis.
* Cleaned up some cases where test setup was based on a previous test executing
(a major anti-pattern that repeats itself in many places).
* Cleaned up some cases where test teardown was not part of a test (in the
future we should have dedicated teardown code that executes even when tests
fail).
* Fixed some tests that were flaky running on external servers.
Adding a new type mask for key space notification, REDISMODULE_NOTIFY_MODULE, to enable unique notifications from commands on REDISMODULE_KEYTYPE_MODULE type keys (which is currently unsupported).
Modules can subscribe to a module key keyspace notification by RM_SubscribeToKeyspaceEvents,
and clients by notify-keyspace-events of redis.conf or via the CONFIG SET, with the characters 'd' or 'A'
(REDISMODULE_NOTIFY_MODULE type mask is part of the '**A**ll' notation for key space notifications).
Refactor: move some pubsub test infra from pubsub.tcl to util.tcl to be re-used by other tests.
This adds basic coverage to IO threads by running the cluster and few selected Redis test suite tests with the IO threads enabled.
Also provides some necessary additional improvements to the test suite:
* Add --config to sentinel/cluster tests for arbitrary configuration.
* Fix --tags whitelisting which was broken.
* Add a `network` tag to some tests that are more network intensive. This is work in progress and more tests should be properly tagged in the future.
Also adds test for numsub — due to tcl being tcl,
it doesn't capture the "numberness" of the fix,
but now we at least have one test case for numsub.
Closes#1561
UNSUBSCRIBE and PUNSUBSCRIBE commands are designed to mass-unsubscribe
the client respectively all the channels and patters if called without
arguments.
However when these functions are called without arguments, but there are
no channels or patters we are subscribed to, the old behavior was to
don't reply at all.
This behavior is broken, as every command should always reply.
Also it is possible that we are no longer subscribed to a channels but we
are subscribed to patters or the other way around, and the client should
be notified with the correct number of subscriptions.
Also it is not pretty that sometimes we did not receive a reply at all
in a redis-cli session from these commands, blocking redis-cli trying
to read the reply.
This fixes issue #714.