redis/tests/vadd_cas.py

99 lines
3.6 KiB
Python

from test import TestCase, generate_random_vector
import threading
import struct
import math
import time
import random
from typing import List, Dict
class ConcurrentCASTest(TestCase):
def getname(self):
return "Concurrent VADD with CAS"
def estimated_runtime(self):
return 1.5
def worker(self, vectors: List[List[float]], start_idx: int, end_idx: int,
dim: int, results: Dict[str, bool]):
"""Worker thread that adds a subset of vectors using VADD CAS"""
for i in range(start_idx, end_idx):
vec = vectors[i]
name = f"{self.test_key}:item:{i}"
vec_bytes = struct.pack(f'{dim}f', *vec)
# Try to add the vector with CAS
try:
result = self.redis.execute_command('VADD', self.test_key, 'FP32',
vec_bytes, name, 'CAS')
results[name] = (result == 1) # Store if it was actually added
except Exception as e:
results[name] = False
print(f"Error adding {name}: {e}")
def verify_vector_similarity(self, vec1: List[float], vec2: List[float]) -> float:
"""Calculate cosine similarity between two vectors"""
dot_product = sum(a*b for a,b in zip(vec1, vec2))
norm1 = math.sqrt(sum(x*x for x in vec1))
norm2 = math.sqrt(sum(x*x for x in vec2))
return dot_product / (norm1 * norm2) if norm1 > 0 and norm2 > 0 else 0
def test(self):
# Test parameters
dim = 128
total_vectors = 5000
num_threads = 8
vectors_per_thread = total_vectors // num_threads
# Generate all vectors upfront
random.seed(42) # For reproducibility
vectors = [generate_random_vector(dim) for _ in range(total_vectors)]
# Prepare threads and results dictionary
threads = []
results = {} # Will store success/failure for each vector
# Launch threads
for i in range(num_threads):
start_idx = i * vectors_per_thread
end_idx = start_idx + vectors_per_thread if i < num_threads-1 else total_vectors
thread = threading.Thread(target=self.worker,
args=(vectors, start_idx, end_idx, dim, results))
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
# Verify cardinality
card = self.redis.execute_command('VCARD', self.test_key)
assert card == total_vectors, \
f"Expected {total_vectors} elements, but found {card}"
# Verify each vector
num_verified = 0
for i in range(total_vectors):
name = f"{self.test_key}:item:{i}"
# Verify the item was successfully added
assert results[name], f"Vector {name} was not successfully added"
# Get the stored vector
stored_vec_raw = self.redis.execute_command('VEMB', self.test_key, name)
stored_vec = [float(x) for x in stored_vec_raw]
# Verify vector dimensions
assert len(stored_vec) == dim, \
f"Stored vector dimension mismatch for {name}: {len(stored_vec)} != {dim}"
# Calculate similarity with original vector
similarity = self.verify_vector_similarity(vectors[i], stored_vec)
assert similarity > 0.99, \
f"Low similarity ({similarity}) for {name}"
num_verified += 1
# Final verification
assert num_verified == total_vectors, \
f"Only verified {num_verified} out of {total_vectors} vectors"