redis/src/defrag.c

1734 lines
66 KiB
C

/*
* Active memory defragmentation
* Try to find key / value allocations that need to be re-allocated in order
* to reduce external fragmentation.
* We do that by scanning the keyspace and for each pointer we have, we can try to
* ask the allocator if moving it to a new address will help reduce fragmentation.
*
* Copyright (c) 2020-Present, Redis Ltd.
* All rights reserved.
*
* Copyright (c) 2024-present, Valkey contributors.
* All rights reserved.
*
* Licensed under your choice of (a) the Redis Source Available License 2.0
* (RSALv2); or (b) the Server Side Public License v1 (SSPLv1); or (c) the
* GNU Affero General Public License v3 (AGPLv3).
*
* Portions of this file are available under BSD3 terms; see REDISCONTRIBUTIONS for more information.
*/
#include "server.h"
#include <stddef.h>
#include <math.h>
#ifdef HAVE_DEFRAG
#define DEFRAG_CYCLE_US 500 /* Standard duration of defrag cycle (in microseconds) */
typedef enum { DEFRAG_NOT_DONE = 0,
DEFRAG_DONE = 1 } doneStatus;
/*
* Defragmentation is performed in stages. Each stage is serviced by a stage function
* (defragStageFn). The stage function is passed a context (void*) to defrag. The contents of that
* context are unique to the particular stage - and may even be NULL for some stage functions. The
* same stage function can be used multiple times (for different stages) each having a different
* context.
*
* Parameters:
* endtime - This is the monotonic time that the function should end and return. This ensures
* a bounded latency due to defrag.
* ctx - A pointer to context which is unique to the stage function.
*
* Returns:
* - DEFRAG_DONE if the stage is complete
* - DEFRAG_NOT_DONE if there is more work to do
*/
typedef doneStatus (*defragStageFn)(void *ctx, monotime endtime);
/* Function pointer type for freeing context in defragmentation stages. */
typedef void (*defragStageContextFreeFn)(void *ctx);
typedef struct {
defragStageFn stage_fn; /* The function to be invoked for the stage */
defragStageContextFreeFn ctx_free_fn; /* Function to free the context */
void *ctx; /* Context, unique to the stage function */
} StageDescriptor;
/* Globals needed for the main defrag processing logic.
* Doesn't include variables specific to a stage or type of data. */
struct DefragContext {
monotime start_cycle; /* Time of beginning of defrag cycle */
long long start_defrag_hits; /* server.stat_active_defrag_hits captured at beginning of cycle */
long long start_defrag_misses; /* server.stat_active_defrag_misses captured at beginning of cycle */
float start_frag_pct; /* Fragmention percent of beginning of defrag cycle */
float decay_rate; /* Defrag speed decay rate */
list *remaining_stages; /* List of stages which remain to be processed */
listNode *current_stage; /* The list node of stage that's currently being processed */
long long timeproc_id; /* Eventloop ID of the timerproc (or AE_DELETED_EVENT_ID) */
monotime timeproc_end_time; /* Ending time of previous timerproc execution */
long timeproc_overage_us; /* A correction value if over target CPU percent */
};
static struct DefragContext defrag = {0, 0, 0, 0, 1.0f};
/* There are a number of stages which process a kvstore. To simplify this, a stage helper function
* `defragStageKvstoreHelper()` is defined. This function aids in iterating over the kvstore. It
* uses these definitions.
*/
/* State of the kvstore helper. The context passed to the kvstore helper MUST BEGIN
* with a kvstoreIterState (or be passed as NULL). */
#define KVS_SLOT_DEFRAG_LUT -2
#define KVS_SLOT_UNASSIGNED -1
typedef struct {
kvstore *kvs;
int slot;
unsigned long cursor;
} kvstoreIterState;
#define INIT_KVSTORE_STATE(kvs) ((kvstoreIterState){(kvs), KVS_SLOT_DEFRAG_LUT, 0})
/* The kvstore helper uses this function to perform tasks before continuing the iteration. For the
* main dictionary, large items are set aside and processed by this function before continuing with
* iteration over the kvstore.
* endtime - This is the monotonic time that the function should end and return.
* ctx - Context for functions invoked by the helper. If provided in the call to
* `defragStageKvstoreHelper()`, the `kvstoreIterState` portion (at the beginning)
* will be updated with the current kvstore iteration status.
*
* Returns:
* - DEFRAG_DONE if the pre-continue work is complete
* - DEFRAG_NOT_DONE if there is more work to do
*/
typedef doneStatus (*kvstoreHelperPreContinueFn)(void *ctx, monotime endtime);
typedef struct {
kvstoreIterState kvstate;
int dbid;
/* When scanning a main kvstore, large elements are queued for later handling rather than
* causing a large latency spike while processing a hash table bucket. This list is only used
* for stage: "defragStageDbKeys". It will only contain values for the current kvstore being
* defragged.
* Note that this is a list of key names. It's possible that the key may be deleted or modified
* before "later" and we will search by key name to find the entry when we defrag the item later. */
list *defrag_later;
unsigned long defrag_later_cursor;
} defragKeysCtx;
static_assert(offsetof(defragKeysCtx, kvstate) == 0, "defragStageKvstoreHelper requires this");
/* Context for hexpires */
typedef struct {
int dbid;
ebuckets hexpires;
unsigned long cursor;
} defragHExpiresCtx;
/* Context for pubsub kvstores */
typedef dict *(*getClientChannelsFn)(client *);
typedef struct {
kvstoreIterState kvstate;
getClientChannelsFn getPubSubChannels;
} defragPubSubCtx;
static_assert(offsetof(defragPubSubCtx, kvstate) == 0, "defragStageKvstoreHelper requires this");
typedef struct {
sds module_name;
unsigned long cursor;
} defragModuleCtx;
/* this method was added to jemalloc in order to help us understand which
* pointers are worthwhile moving and which aren't */
int je_get_defrag_hint(void* ptr);
/* Defrag helper for generic allocations.
*
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
void* activeDefragAlloc(void *ptr) {
size_t size;
void *newptr;
if(!je_get_defrag_hint(ptr)) {
server.stat_active_defrag_misses++;
return NULL;
}
/* move this allocation to a new allocation.
* make sure not to use the thread cache. so that we don't get back the same
* pointers we try to free */
size = zmalloc_usable_size(ptr);
newptr = zmalloc_no_tcache(size);
memcpy(newptr, ptr, size);
zfree_no_tcache(ptr);
server.stat_active_defrag_hits++;
return newptr;
}
/* Raw memory allocation for defrag, avoid using tcache. */
void *activeDefragAllocRaw(size_t size) {
return zmalloc_no_tcache(size);
}
/* Raw memory free for defrag, avoid using tcache. */
void activeDefragFreeRaw(void *ptr) {
zfree_no_tcache(ptr);
server.stat_active_defrag_hits++;
}
/*Defrag helper for sds strings
*
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
sds activeDefragSds(sds sdsptr) {
void* ptr = sdsAllocPtr(sdsptr);
void* newptr = activeDefragAlloc(ptr);
if (newptr) {
size_t offset = sdsptr - (char*)ptr;
sdsptr = (char*)newptr + offset;
return sdsptr;
}
return NULL;
}
/* Defrag helper for hfield strings
*
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
hfield activeDefragHfield(hfield hf) {
void *ptr = hfieldGetAllocPtr(hf);
void *newptr = activeDefragAlloc(ptr);
if (newptr) {
size_t offset = hf - (char*)ptr;
hf = (char*)newptr + offset;
return hf;
}
return NULL;
}
/* Defrag helper for hfield strings and update the reference in the dict.
*
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
void *activeDefragHfieldAndUpdateRef(void *ptr, void *privdata) {
dict *d = privdata;
hfield newhf = activeDefragHfield(ptr);
if (newhf) {
/* We can't search in dict for that key after we've released
* the pointer it holds, since it won't be able to do the string
* compare, but we can find the entry using key hash and pointer. */
dictEntryLink link;
dictUseStoredKeyApi(d, 1);
link = dictFindLink(d, newhf, NULL);
dictUseStoredKeyApi(d, 0);
serverAssert(link);
dictSetKeyAtLink(d, newhf, &link, 0);
}
return newhf;
}
/* Defrag helper for robj and/or string objects with expected refcount.
*
* Like activeDefragStringOb, but it requires the caller to pass in the expected
* reference count. In some cases, the caller needs to update a robj whose
* reference count is not 1, in these cases, the caller must explicitly pass
* in the reference count, otherwise defragmentation will not be performed.
* Note that the caller is responsible for updating any other references to the robj. */
robj *activeDefragStringObEx(robj* ob, int expected_refcount) {
robj *ret = NULL;
if (ob->refcount!=expected_refcount)
return NULL;
/* try to defrag robj (only if not an EMBSTR type (handled below). */
if (ob->type!=OBJ_STRING || ob->encoding!=OBJ_ENCODING_EMBSTR) {
if ((ret = activeDefragAlloc(ob))) {
ob = ret;
}
}
/* try to defrag string object */
if (ob->type == OBJ_STRING) {
if(ob->encoding==OBJ_ENCODING_RAW) {
sds newsds = activeDefragSds((sds)ob->ptr);
if (newsds) {
ob->ptr = newsds;
}
} else if (ob->encoding==OBJ_ENCODING_EMBSTR) {
/* The sds is embedded in the object allocation, calculate the
* offset and update the pointer in the new allocation. */
long ofs = (intptr_t)ob->ptr - (intptr_t)ob;
if ((ret = activeDefragAlloc(ob))) {
ret->ptr = (void*)((intptr_t)ret + ofs);
}
} else if (ob->encoding!=OBJ_ENCODING_INT) {
serverPanic("Unknown string encoding");
}
}
return ret;
}
/* Defrag helper for robj and/or string objects
*
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
robj *activeDefragStringOb(robj* ob) {
return activeDefragStringObEx(ob, 1);
}
/* Defrag helper for lua scripts
*
* returns NULL in case the allocation wasn't moved.
* when it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
luaScript *activeDefragLuaScript(luaScript *script) {
luaScript *ret = NULL;
/* try to defrag script struct */
if ((ret = activeDefragAlloc(script))) {
script = ret;
}
/* try to defrag actual script object */
robj *ob = activeDefragStringOb(script->body);
if (ob) script->body = ob;
return ret;
}
/* Defrag helper for dict main allocations (dict struct, and hash tables).
* Receives a pointer to the dict* and return a new dict* when the dict
* struct itself was moved.
*
* Returns NULL in case the allocation wasn't moved.
* When it returns a non-null value, the old pointer was already released
* and should NOT be accessed. */
dict *dictDefragTables(dict *d) {
dict *ret = NULL;
dictEntry **newtable;
/* handle the dict struct */
if ((ret = activeDefragAlloc(d)))
d = ret;
/* handle the first hash table */
if (!d->ht_table[0]) return ret; /* created but unused */
newtable = activeDefragAlloc(d->ht_table[0]);
if (newtable)
d->ht_table[0] = newtable;
/* handle the second hash table */
if (d->ht_table[1]) {
newtable = activeDefragAlloc(d->ht_table[1]);
if (newtable)
d->ht_table[1] = newtable;
}
return ret;
}
/* Internal function used by zslDefrag */
void zslUpdateNode(zskiplist *zsl, zskiplistNode *oldnode, zskiplistNode *newnode, zskiplistNode **update) {
int i;
for (i = 0; i < zsl->level; i++) {
if (update[i]->level[i].forward == oldnode)
update[i]->level[i].forward = newnode;
}
serverAssert(zsl->header!=oldnode);
if (newnode->level[0].forward) {
serverAssert(newnode->level[0].forward->backward==oldnode);
newnode->level[0].forward->backward = newnode;
} else {
serverAssert(zsl->tail==oldnode);
zsl->tail = newnode;
}
}
/* Defrag helper for sorted set.
* Update the robj pointer, defrag the skiplist struct and return the new score
* reference. We may not access oldele pointer (not even the pointer stored in
* the skiplist), as it was already freed. Newele may be null, in which case we
* only need to defrag the skiplist, but not update the obj pointer.
* When return value is non-NULL, it is the score reference that must be updated
* in the dict record. */
double *zslDefrag(zskiplist *zsl, double score, sds oldele, sds newele) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x, *newx;
int i;
sds ele = newele? newele: oldele;
/* find the skiplist node referring to the object that was moved,
* and all pointers that need to be updated if we'll end up moving the skiplist node. */
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
x->level[i].forward->ele != oldele && /* make sure not to access the
->obj pointer if it matches
oldele */
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
x = x->level[i].forward;
update[i] = x;
}
/* update the robj pointer inside the skip list record. */
x = x->level[0].forward;
serverAssert(x && score == x->score && x->ele==oldele);
if (newele)
x->ele = newele;
/* try to defrag the skiplist record itself */
newx = activeDefragAlloc(x);
if (newx) {
zslUpdateNode(zsl, x, newx, update);
return &newx->score;
}
return NULL;
}
/* Defrag helper for sorted set.
* Defrag a single dict entry key name, and corresponding skiplist struct */
void activeDefragZsetEntry(zset *zs, dictEntry *de) {
sds newsds;
double* newscore;
sds sdsele = dictGetKey(de);
if ((newsds = activeDefragSds(sdsele)))
dictSetKey(zs->dict, de, newsds);
newscore = zslDefrag(zs->zsl, *(double*)dictGetVal(de), sdsele, newsds);
if (newscore) {
dictSetVal(zs->dict, de, newscore);
}
}
#define DEFRAG_SDS_DICT_NO_VAL 0
#define DEFRAG_SDS_DICT_VAL_IS_SDS 1
#define DEFRAG_SDS_DICT_VAL_IS_STROB 2
#define DEFRAG_SDS_DICT_VAL_VOID_PTR 3
#define DEFRAG_SDS_DICT_VAL_LUA_SCRIPT 4
void activeDefragSdsDictCallback(void *privdata, const dictEntry *de, dictEntryLink plink) {
UNUSED(plink);
UNUSED(privdata);
UNUSED(de);
}
void activeDefragHfieldDictCallback(void *privdata, const dictEntry *de, dictEntryLink plink) {
UNUSED(plink);
dict *d = privdata;
hfield newhf = NULL, hf = dictGetKey(de);
if (hfieldGetExpireTime(hf) == EB_EXPIRE_TIME_INVALID) {
/* If the hfield does not have TTL, we directly defrag it. */
if ((newhf = activeDefragHfield(hf)))
dictSetKey(d, (dictEntry *)de, newhf);
} else {
/* Skip fields with TTL here, they will be defragmented later during
* the hash expiry ebuckets defragmentation phase. */
}
if (newhf) dictSetKey(d, (dictEntry *) de, newhf);
}
/* Defrag a dict with sds key and optional value (either ptr, sds or robj string) */
void activeDefragSdsDict(dict* d, int val_type) {
unsigned long cursor = 0;
dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = (dictDefragAllocFunction *)activeDefragSds,
.defragVal = (val_type == DEFRAG_SDS_DICT_VAL_IS_SDS ? (dictDefragAllocFunction *)activeDefragSds :
val_type == DEFRAG_SDS_DICT_VAL_IS_STROB ? (dictDefragAllocFunction *)activeDefragStringOb :
val_type == DEFRAG_SDS_DICT_VAL_VOID_PTR ? (dictDefragAllocFunction *)activeDefragAlloc :
val_type == DEFRAG_SDS_DICT_VAL_LUA_SCRIPT ? (dictDefragAllocFunction *)activeDefragLuaScript :
NULL)
};
do {
cursor = dictScanDefrag(d, cursor, activeDefragSdsDictCallback,
&defragfns, NULL);
} while (cursor != 0);
}
/* Defrag a dict with hfield key and sds value. */
void activeDefragHfieldDict(dict *d) {
unsigned long cursor = 0;
dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = NULL, /* Will be defragmented in activeDefragHfieldDictCallback. */
.defragVal = (dictDefragAllocFunction *)activeDefragSds
};
do {
cursor = dictScanDefrag(d, cursor, activeDefragHfieldDictCallback,
&defragfns, d);
} while (cursor != 0);
/* Continue with defragmentation of hash fields that have with TTL.
* During the dictionary defragmentaion above, we skipped fields with TTL,
* Now we continue to defrag those fields by using the expiry buckets. */
if (d->type == &mstrHashDictTypeWithHFE) {
cursor = 0;
ebDefragFunctions eb_defragfns = {
.defragAlloc = activeDefragAlloc,
.defragItem = activeDefragHfieldAndUpdateRef
};
ebuckets *eb = hashTypeGetDictMetaHFE(d);
while (ebScanDefrag(eb, &hashFieldExpireBucketsType, &cursor, &eb_defragfns, d)) {}
}
}
/* Defrag a list of ptr, sds or robj string values */
void activeDefragQuickListNode(quicklist *ql, quicklistNode **node_ref) {
quicklistNode *newnode, *node = *node_ref;
unsigned char *newzl;
if ((newnode = activeDefragAlloc(node))) {
if (newnode->prev)
newnode->prev->next = newnode;
else
ql->head = newnode;
if (newnode->next)
newnode->next->prev = newnode;
else
ql->tail = newnode;
*node_ref = node = newnode;
}
if ((newzl = activeDefragAlloc(node->entry)))
node->entry = newzl;
}
void activeDefragQuickListNodes(quicklist *ql) {
quicklistNode *node = ql->head;
while (node) {
activeDefragQuickListNode(ql, &node);
node = node->next;
}
}
/* when the value has lots of elements, we want to handle it later and not as
* part of the main dictionary scan. this is needed in order to prevent latency
* spikes when handling large items */
void defragLater(defragKeysCtx *ctx, kvobj *kv) {
if (!ctx->defrag_later) {
ctx->defrag_later = listCreate();
listSetFreeMethod(ctx->defrag_later, sdsfreegeneric);
ctx->defrag_later_cursor = 0;
}
sds key = sdsdup(kvobjGetKey(kv));
listAddNodeTail(ctx->defrag_later, key);
}
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
long scanLaterList(robj *ob, unsigned long *cursor, monotime endtime) {
quicklist *ql = ob->ptr;
quicklistNode *node;
long iterations = 0;
int bookmark_failed = 0;
serverAssert(ob->type == OBJ_LIST && ob->encoding == OBJ_ENCODING_QUICKLIST);
if (*cursor == 0) {
/* if cursor is 0, we start new iteration */
node = ql->head;
} else {
node = quicklistBookmarkFind(ql, "_AD");
if (!node) {
/* if the bookmark was deleted, it means we reached the end. */
*cursor = 0;
return 0;
}
node = node->next;
}
(*cursor)++;
while (node) {
activeDefragQuickListNode(ql, &node);
server.stat_active_defrag_scanned++;
if (++iterations > 128 && !bookmark_failed) {
if (getMonotonicUs() > endtime) {
if (!quicklistBookmarkCreate(&ql, "_AD", node)) {
bookmark_failed = 1;
} else {
ob->ptr = ql; /* bookmark creation may have re-allocated the quicklist */
return 1;
}
}
iterations = 0;
}
node = node->next;
}
quicklistBookmarkDelete(ql, "_AD");
*cursor = 0;
return bookmark_failed? 1: 0;
}
typedef struct {
zset *zs;
} scanLaterZsetData;
void scanLaterZsetCallback(void *privdata, const dictEntry *_de, dictEntryLink plink) {
UNUSED(plink);
dictEntry *de = (dictEntry*)_de;
scanLaterZsetData *data = privdata;
activeDefragZsetEntry(data->zs, de);
server.stat_active_defrag_scanned++;
}
void scanLaterZset(robj *ob, unsigned long *cursor) {
serverAssert(ob->type == OBJ_ZSET && ob->encoding == OBJ_ENCODING_SKIPLIST);
zset *zs = (zset*)ob->ptr;
dict *d = zs->dict;
scanLaterZsetData data = {zs};
dictDefragFunctions defragfns = {.defragAlloc = activeDefragAlloc};
*cursor = dictScanDefrag(d, *cursor, scanLaterZsetCallback, &defragfns, &data);
}
/* Used as scan callback when all the work is done in the dictDefragFunctions. */
void scanCallbackCountScanned(void *privdata, const dictEntry *de, dictEntryLink plink) {
UNUSED(plink);
UNUSED(privdata);
UNUSED(de);
server.stat_active_defrag_scanned++;
}
void scanLaterSet(robj *ob, unsigned long *cursor) {
serverAssert(ob->type == OBJ_SET && ob->encoding == OBJ_ENCODING_HT);
dict *d = ob->ptr;
dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = (dictDefragAllocFunction *)activeDefragSds
};
*cursor = dictScanDefrag(d, *cursor, scanCallbackCountScanned, &defragfns, NULL);
}
void scanLaterHash(robj *ob, unsigned long *cursor) {
serverAssert(ob->type == OBJ_HASH && ob->encoding == OBJ_ENCODING_HT);
dict *d = ob->ptr;
typedef enum {
HASH_DEFRAG_NONE = 0,
HASH_DEFRAG_DICT = 1,
HASH_DEFRAG_EBUCKETS = 2
} hashDefragPhase;
static hashDefragPhase defrag_phase = HASH_DEFRAG_NONE;
/* Start a new hash defrag. */
if (!*cursor || defrag_phase == HASH_DEFRAG_NONE)
defrag_phase = HASH_DEFRAG_DICT;
/* Defrag hash dictionary but skip TTL fields. */
if (defrag_phase == HASH_DEFRAG_DICT) {
dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = NULL, /* Will be defragmented in activeDefragHfieldDictCallback. */
.defragVal = (dictDefragAllocFunction *)activeDefragSds
};
*cursor = dictScanDefrag(d, *cursor, activeDefragHfieldDictCallback, &defragfns, d);
/* Move to next phase. */
if (!*cursor) defrag_phase = HASH_DEFRAG_EBUCKETS;
}
/* Defrag ebuckets and TTL fields. */
if (defrag_phase == HASH_DEFRAG_EBUCKETS) {
if (d->type == &mstrHashDictTypeWithHFE) {
ebDefragFunctions eb_defragfns = {
.defragAlloc = activeDefragAlloc,
.defragItem = activeDefragHfieldAndUpdateRef
};
ebuckets *eb = hashTypeGetDictMetaHFE(d);
ebScanDefrag(eb, &hashFieldExpireBucketsType, cursor, &eb_defragfns, d);
} else {
/* Finish defragmentation if this dict doesn't have expired fields. */
*cursor = 0;
}
if (!*cursor) defrag_phase = HASH_DEFRAG_NONE;
}
}
void defragQuicklist(defragKeysCtx *ctx, kvobj *kv) {
quicklist *ql = kv->ptr, *newql;
serverAssert(kv->type == OBJ_LIST && kv->encoding == OBJ_ENCODING_QUICKLIST);
if ((newql = activeDefragAlloc(ql)))
kv->ptr = ql = newql;
if (ql->len > server.active_defrag_max_scan_fields)
defragLater(ctx, kv);
else
activeDefragQuickListNodes(ql);
}
void defragZsetSkiplist(defragKeysCtx *ctx, kvobj *ob) {
zset *zs = (zset*)ob->ptr;
zset *newzs;
zskiplist *newzsl;
dict *newdict;
dictEntry *de;
struct zskiplistNode *newheader;
serverAssert(ob->type == OBJ_ZSET && ob->encoding == OBJ_ENCODING_SKIPLIST);
if ((newzs = activeDefragAlloc(zs)))
ob->ptr = zs = newzs;
if ((newzsl = activeDefragAlloc(zs->zsl)))
zs->zsl = newzsl;
if ((newheader = activeDefragAlloc(zs->zsl->header)))
zs->zsl->header = newheader;
if (dictSize(zs->dict) > server.active_defrag_max_scan_fields)
defragLater(ctx, ob);
else {
dictIterator *di = dictGetIterator(zs->dict);
while((de = dictNext(di)) != NULL) {
activeDefragZsetEntry(zs, de);
}
dictReleaseIterator(di);
}
/* defrag the dict struct and tables */
if ((newdict = dictDefragTables(zs->dict)))
zs->dict = newdict;
}
void defragHash(defragKeysCtx *ctx, kvobj *ob) {
dict *d, *newd;
serverAssert(ob->type == OBJ_HASH && ob->encoding == OBJ_ENCODING_HT);
d = ob->ptr;
if (dictSize(d) > server.active_defrag_max_scan_fields)
defragLater(ctx, ob);
else
activeDefragHfieldDict(d);
/* defrag the dict struct and tables */
if ((newd = dictDefragTables(ob->ptr)))
ob->ptr = newd;
}
void defragSet(defragKeysCtx *ctx, kvobj *ob) {
dict *d, *newd;
serverAssert(ob->type == OBJ_SET && ob->encoding == OBJ_ENCODING_HT);
d = ob->ptr;
if (dictSize(d) > server.active_defrag_max_scan_fields)
defragLater(ctx, ob);
else
activeDefragSdsDict(d, DEFRAG_SDS_DICT_NO_VAL);
/* defrag the dict struct and tables */
if ((newd = dictDefragTables(ob->ptr)))
ob->ptr = newd;
}
/* Defrag callback for radix tree iterator, called for each node,
* used in order to defrag the nodes allocations. */
int defragRaxNode(raxNode **noderef, void *privdata) {
UNUSED(privdata);
raxNode *newnode = activeDefragAlloc(*noderef);
if (newnode) {
*noderef = newnode;
return 1;
}
return 0;
}
/* returns 0 if no more work needs to be been done, and 1 if time is up and more work is needed. */
int scanLaterStreamListpacks(robj *ob, unsigned long *cursor, monotime endtime) {
static unsigned char next[sizeof(streamID)];
raxIterator ri;
long iterations = 0;
serverAssert(ob->type == OBJ_STREAM && ob->encoding == OBJ_ENCODING_STREAM);
stream *s = ob->ptr;
raxStart(&ri,s->rax);
if (*cursor == 0) {
/* if cursor is 0, we start new iteration */
defragRaxNode(&s->rax->head, NULL);
/* assign the iterator node callback before the seek, so that the
* initial nodes that are processed till the first item are covered */
ri.node_cb = defragRaxNode;
raxSeek(&ri,"^",NULL,0);
} else {
/* if cursor is non-zero, we seek to the static 'next'.
* Since node_cb is set after seek operation, any node traversed during seek wouldn't
* be defragmented. To prevent this, we advance to next node before exiting previous
* run, ensuring it gets defragmented instead of being skipped during current seek. */
if (!raxSeek(&ri,">=", next, sizeof(next))) {
*cursor = 0;
raxStop(&ri);
return 0;
}
/* assign the iterator node callback after the seek, so that the
* initial nodes that are processed till now aren't covered */
ri.node_cb = defragRaxNode;
}
(*cursor)++;
while (raxNext(&ri)) {
void *newdata = activeDefragAlloc(ri.data);
if (newdata)
raxSetData(ri.node, ri.data=newdata);
server.stat_active_defrag_scanned++;
if (++iterations > 128) {
if (getMonotonicUs() > endtime) {
/* Move to next node. */
if (!raxNext(&ri)) {
/* If we reached the end, we can stop */
*cursor = 0;
raxStop(&ri);
return 0;
}
serverAssert(ri.key_len==sizeof(next));
memcpy(next,ri.key,ri.key_len);
raxStop(&ri);
return 1;
}
iterations = 0;
}
}
raxStop(&ri);
*cursor = 0;
return 0;
}
/* optional callback used defrag each rax element (not including the element pointer itself) */
typedef void *(raxDefragFunction)(raxIterator *ri, void *privdata);
/* defrag radix tree including:
* 1) rax struct
* 2) rax nodes
* 3) rax entry data (only if defrag_data is specified)
* 4) call a callback per element, and allow the callback to return a new pointer for the element */
void defragRadixTree(rax **raxref, int defrag_data, raxDefragFunction *element_cb, void *element_cb_data) {
raxIterator ri;
rax* rax;
if ((rax = activeDefragAlloc(*raxref)))
*raxref = rax;
rax = *raxref;
raxStart(&ri,rax);
ri.node_cb = defragRaxNode;
defragRaxNode(&rax->head, NULL);
raxSeek(&ri,"^",NULL,0);
while (raxNext(&ri)) {
void *newdata = NULL;
if (element_cb)
newdata = element_cb(&ri, element_cb_data);
if (defrag_data && !newdata)
newdata = activeDefragAlloc(ri.data);
if (newdata)
raxSetData(ri.node, ri.data=newdata);
}
raxStop(&ri);
}
typedef struct {
streamCG *cg;
streamConsumer *c;
} PendingEntryContext;
void* defragStreamConsumerPendingEntry(raxIterator *ri, void *privdata) {
PendingEntryContext *ctx = privdata;
streamNACK *nack = ri->data, *newnack;
nack->consumer = ctx->c; /* update nack pointer to consumer */
newnack = activeDefragAlloc(nack);
if (newnack) {
/* update consumer group pointer to the nack */
void *prev;
raxInsert(ctx->cg->pel, ri->key, ri->key_len, newnack, &prev);
serverAssert(prev==nack);
}
return newnack;
}
void* defragStreamConsumer(raxIterator *ri, void *privdata) {
streamConsumer *c = ri->data;
streamCG *cg = privdata;
void *newc = activeDefragAlloc(c);
if (newc) {
c = newc;
}
sds newsds = activeDefragSds(c->name);
if (newsds)
c->name = newsds;
if (c->pel) {
PendingEntryContext pel_ctx = {cg, c};
defragRadixTree(&c->pel, 0, defragStreamConsumerPendingEntry, &pel_ctx);
}
return newc; /* returns NULL if c was not defragged */
}
void* defragStreamConsumerGroup(raxIterator *ri, void *privdata) {
streamCG *cg = ri->data;
UNUSED(privdata);
if (cg->consumers)
defragRadixTree(&cg->consumers, 0, defragStreamConsumer, cg);
if (cg->pel)
defragRadixTree(&cg->pel, 0, NULL, NULL);
return NULL;
}
void defragStream(defragKeysCtx *ctx, kvobj *ob) {
serverAssert(ob->type == OBJ_STREAM && ob->encoding == OBJ_ENCODING_STREAM);
stream *s = ob->ptr, *news;
/* handle the main struct */
if ((news = activeDefragAlloc(s)))
ob->ptr = s = news;
if (raxSize(s->rax) > server.active_defrag_max_scan_fields) {
rax *newrax = activeDefragAlloc(s->rax);
if (newrax)
s->rax = newrax;
defragLater(ctx, ob);
} else
defragRadixTree(&s->rax, 1, NULL, NULL);
if (s->cgroups)
defragRadixTree(&s->cgroups, 1, defragStreamConsumerGroup, NULL);
}
/* Defrag a module key. This is either done immediately or scheduled
* for later. Returns then number of pointers defragged.
*/
void defragModule(defragKeysCtx *ctx, redisDb *db, kvobj *kv) {
serverAssert(kv->type == OBJ_MODULE);
robj keyobj;
initStaticStringObject(keyobj, kvobjGetKey(kv));
if (!moduleDefragValue(&keyobj, kv, db->id))
defragLater(ctx, kv);
}
/* for each key we scan in the main dict, this function will attempt to defrag
* all the various pointers it has. */
void defragKey(defragKeysCtx *ctx, dictEntry *de, dictEntryLink link) {
UNUSED(link);
dictEntryLink exlink = NULL;
kvobj *kvnew, *ob = dictGetKV(de);
redisDb *db = &server.db[ctx->dbid];
int slot = ctx->kvstate.slot;
unsigned char *newzl;
long long expire = kvobjGetExpire(ob);
/* We can't search in db->expires for that KV after we've released
* the pointer it holds, since it won't be able to do the string
* compare. Search it before, if needed. */
if (expire != -1) {
exlink = kvstoreDictFindLink(db->expires, slot, kvobjGetKey(ob), NULL);
serverAssert(exlink != NULL);
}
/* Try to defrag robj and/or string value. For hash objects with HFEs,
* defer defragmentation until processing db's hexpires. */
if (!(ob->type == OBJ_HASH && hashTypeGetMinExpire(ob, 0) != EB_EXPIRE_TIME_INVALID)) {
/* If the dict doesn't have metadata, we directly defrag it. */
kvnew = activeDefragStringOb(ob);
if (kvnew) {
kvstoreDictSetAtLink(db->keys, slot, kvnew, &link, 0);
if (expire != -1)
kvstoreDictSetAtLink(db->expires, slot, kvnew, &exlink, 0);
ob = kvnew;
}
}
if (ob->type == OBJ_STRING) {
/* Already handled in activeDefragStringOb. */
} else if (ob->type == OBJ_LIST) {
if (ob->encoding == OBJ_ENCODING_QUICKLIST) {
defragQuicklist(ctx, ob);
} else if (ob->encoding == OBJ_ENCODING_LISTPACK) {
if ((newzl = activeDefragAlloc(ob->ptr)))
ob->ptr = newzl;
} else {
serverPanic("Unknown list encoding");
}
} else if (ob->type == OBJ_SET) {
if (ob->encoding == OBJ_ENCODING_HT) {
defragSet(ctx, ob);
} else if (ob->encoding == OBJ_ENCODING_INTSET ||
ob->encoding == OBJ_ENCODING_LISTPACK)
{
void *newptr, *ptr = ob->ptr;
if ((newptr = activeDefragAlloc(ptr)))
ob->ptr = newptr;
} else {
serverPanic("Unknown set encoding");
}
} else if (ob->type == OBJ_ZSET) {
if (ob->encoding == OBJ_ENCODING_LISTPACK) {
if ((newzl = activeDefragAlloc(ob->ptr)))
ob->ptr = newzl;
} else if (ob->encoding == OBJ_ENCODING_SKIPLIST) {
defragZsetSkiplist(ctx, ob);
} else {
serverPanic("Unknown sorted set encoding");
}
} else if (ob->type == OBJ_HASH) {
if (ob->encoding == OBJ_ENCODING_LISTPACK) {
if ((newzl = activeDefragAlloc(ob->ptr)))
ob->ptr = newzl;
} else if (ob->encoding == OBJ_ENCODING_LISTPACK_EX) {
listpackEx *newlpt, *lpt = (listpackEx*)ob->ptr;
if ((newlpt = activeDefragAlloc(lpt)))
ob->ptr = lpt = newlpt;
if ((newzl = activeDefragAlloc(lpt->lp)))
lpt->lp = newzl;
} else if (ob->encoding == OBJ_ENCODING_HT) {
defragHash(ctx, ob);
} else {
serverPanic("Unknown hash encoding");
}
} else if (ob->type == OBJ_STREAM) {
defragStream(ctx, ob);
} else if (ob->type == OBJ_MODULE) {
defragModule(ctx,db, ob);
} else {
serverPanic("Unknown object type");
}
}
/* Defrag scan callback for the main db dictionary. */
static void dbKeysScanCallback(void *privdata, const dictEntry *de, dictEntryLink plink) {
long long hits_before = server.stat_active_defrag_hits;
defragKey((defragKeysCtx *)privdata, (dictEntry *)de, plink);
if (server.stat_active_defrag_hits != hits_before)
server.stat_active_defrag_key_hits++;
else
server.stat_active_defrag_key_misses++;
server.stat_active_defrag_scanned++;
}
/* Utility function to get the fragmentation ratio from jemalloc.
* It is critical to do that by comparing only heap maps that belong to
* jemalloc, and skip ones the jemalloc keeps as spare. Since we use this
* fragmentation ratio in order to decide if a defrag action should be taken
* or not, a false detection can cause the defragmenter to waste a lot of CPU
* without the possibility of getting any results. */
float getAllocatorFragmentation(size_t *out_frag_bytes) {
size_t resident, active, allocated, frag_smallbins_bytes;
zmalloc_get_allocator_info(1, &allocated, &active, &resident, NULL, NULL, &frag_smallbins_bytes);
if (server.lua_arena != UINT_MAX) {
size_t lua_resident, lua_active, lua_allocated, lua_frag_smallbins_bytes;
zmalloc_get_allocator_info_by_arena(server.lua_arena, 0, &lua_allocated, &lua_active, &lua_resident, &lua_frag_smallbins_bytes);
resident -= lua_resident;
active -= lua_active;
allocated -= lua_allocated;
frag_smallbins_bytes -= lua_frag_smallbins_bytes;
}
/* Calculate the fragmentation ratio as the proportion of wasted memory in small
* bins (which are defraggable) relative to the total allocated memory (including large bins).
* This is because otherwise, if most of the memory usage is large bins, we may show high percentage,
* despite the fact it's not a lot of memory for the user. */
float frag_pct = (float)frag_smallbins_bytes / allocated * 100;
float rss_pct = ((float)resident / allocated)*100 - 100;
size_t rss_bytes = resident - allocated;
if(out_frag_bytes)
*out_frag_bytes = frag_smallbins_bytes;
serverLog(LL_DEBUG,
"allocated=%zu, active=%zu, resident=%zu, frag=%.2f%% (%.2f%% rss), frag_bytes=%zu (%zu rss)",
allocated, active, resident, frag_pct, rss_pct, frag_smallbins_bytes, rss_bytes);
return frag_pct;
}
/* Defrag scan callback for the pubsub dictionary. */
void defragPubsubScanCallback(void *privdata, const dictEntry *de, dictEntryLink plink) {
UNUSED(plink);
defragPubSubCtx *ctx = privdata;
kvstore *pubsub_channels = ctx->kvstate.kvs;
robj *newchannel, *channel = dictGetKey(de);
dict *newclients, *clients = dictGetVal(de);
/* Try to defrag the channel name. */
serverAssert(channel->refcount == (int)dictSize(clients) + 1);
newchannel = activeDefragStringObEx(channel, dictSize(clients) + 1);
if (newchannel) {
kvstoreDictSetKey(pubsub_channels, ctx->kvstate.slot, (dictEntry*)de, newchannel);
/* The channel name is shared by the client's pubsub(shard) and server's
* pubsub(shard), after defraging the channel name, we need to update
* the reference in the clients' dictionary. */
dictIterator *di = dictGetIterator(clients);
dictEntry *clientde;
while((clientde = dictNext(di)) != NULL) {
client *c = dictGetKey(clientde);
dict *client_channels = ctx->getPubSubChannels(c);
dictEntry *pubsub_channel = dictFind(client_channels, newchannel);
serverAssert(pubsub_channel);
dictSetKey(ctx->getPubSubChannels(c), pubsub_channel, newchannel);
}
dictReleaseIterator(di);
}
/* Try to defrag the dictionary of clients that is stored as the value part. */
if ((newclients = dictDefragTables(clients)))
kvstoreDictSetVal(pubsub_channels, ctx->kvstate.slot, (dictEntry *)de, newclients);
server.stat_active_defrag_scanned++;
}
/* returns 0 more work may or may not be needed (see non-zero cursor),
* and 1 if time is up and more work is needed. */
int defragLaterItem(kvobj *ob, unsigned long *cursor, monotime endtime, int dbid) {
if (ob) {
if (ob->type == OBJ_LIST && ob->encoding == OBJ_ENCODING_QUICKLIST) {
return scanLaterList(ob, cursor, endtime);
} else if (ob->type == OBJ_SET && ob->encoding == OBJ_ENCODING_HT) {
scanLaterSet(ob, cursor);
} else if (ob->type == OBJ_ZSET && ob->encoding == OBJ_ENCODING_SKIPLIST) {
scanLaterZset(ob, cursor);
} else if (ob->type == OBJ_HASH && ob->encoding == OBJ_ENCODING_HT) {
scanLaterHash(ob, cursor);
} else if (ob->type == OBJ_STREAM && ob->encoding == OBJ_ENCODING_STREAM) {
return scanLaterStreamListpacks(ob, cursor, endtime);
} else if (ob->type == OBJ_MODULE) {
robj keyobj;
initStaticStringObject(keyobj, kvobjGetKey(ob));
return moduleLateDefrag(&keyobj, ob, cursor, endtime, dbid);
} else {
*cursor = 0; /* object type/encoding may have changed since we schedule it for later */
}
} else {
*cursor = 0; /* object may have been deleted already */
}
return 0;
}
static int defragIsRunning(void) {
return (defrag.timeproc_id > 0);
}
/* A kvstoreHelperPreContinueFn */
static doneStatus defragLaterStep(void *ctx, monotime endtime) {
defragKeysCtx *defrag_keys_ctx = ctx;
unsigned int iterations = 0;
unsigned long long prev_defragged = server.stat_active_defrag_hits;
unsigned long long prev_scanned = server.stat_active_defrag_scanned;
while (defrag_keys_ctx->defrag_later && listLength(defrag_keys_ctx->defrag_later) > 0) {
listNode *head = listFirst(defrag_keys_ctx->defrag_later);
sds key = head->value;
dictEntry *de = kvstoreDictFind(defrag_keys_ctx->kvstate.kvs, defrag_keys_ctx->kvstate.slot, key);
kvobj *kv = de ? dictGetKV(de) : NULL;
long long key_defragged = server.stat_active_defrag_hits;
int timeout = (defragLaterItem(kv, &defrag_keys_ctx->defrag_later_cursor, endtime, defrag_keys_ctx->dbid) == 1);
if (key_defragged != server.stat_active_defrag_hits) {
server.stat_active_defrag_key_hits++;
} else {
server.stat_active_defrag_key_misses++;
}
if (timeout) break;
if (defrag_keys_ctx->defrag_later_cursor == 0) {
/* the item is finished, move on */
listDelNode(defrag_keys_ctx->defrag_later, head);
}
if (++iterations > 16 || server.stat_active_defrag_hits - prev_defragged > 512 ||
server.stat_active_defrag_scanned - prev_scanned > 64) {
if (getMonotonicUs() > endtime) break;
iterations = 0;
prev_defragged = server.stat_active_defrag_hits;
prev_scanned = server.stat_active_defrag_scanned;
}
}
return (!defrag_keys_ctx->defrag_later || listLength(defrag_keys_ctx->defrag_later) == 0) ? DEFRAG_DONE : DEFRAG_NOT_DONE;
}
#define INTERPOLATE(x, x1, x2, y1, y2) ( (y1) + ((x)-(x1)) * ((y2)-(y1)) / ((x2)-(x1)) )
#define LIMIT(y, min, max) ((y)<(min)? min: ((y)>(max)? max: (y)))
/* decide if defrag is needed, and at what CPU effort to invest in it */
void computeDefragCycles(void) {
size_t frag_bytes;
float frag_pct = getAllocatorFragmentation(&frag_bytes);
/* If we're not already running, and below the threshold, exit. */
if (!server.active_defrag_running) {
if(frag_pct < server.active_defrag_threshold_lower || frag_bytes < server.active_defrag_ignore_bytes)
return;
}
/* Calculate the adaptive aggressiveness of the defrag based on the current
* fragmentation and configurations. */
int cpu_pct = INTERPOLATE(frag_pct,
server.active_defrag_threshold_lower,
server.active_defrag_threshold_upper,
server.active_defrag_cycle_min,
server.active_defrag_cycle_max);
cpu_pct *= defrag.decay_rate;
cpu_pct = LIMIT(cpu_pct,
server.active_defrag_cycle_min,
server.active_defrag_cycle_max);
/* Normally we allow increasing the aggressiveness during a scan, but don't
* reduce it, since we should not lower the aggressiveness when fragmentation
* drops. But when a configuration is made, we should reconsider it. */
if (cpu_pct > server.active_defrag_running ||
server.active_defrag_configuration_changed)
{
server.active_defrag_configuration_changed = 0;
if (defragIsRunning()) {
serverLog(LL_VERBOSE, "Changing active defrag CPU, frag=%.0f%%, frag_bytes=%zu, cpu=%d%%",
frag_pct, frag_bytes, cpu_pct);
} else {
serverLog(LL_VERBOSE,
"Starting active defrag, frag=%.0f%%, frag_bytes=%zu, cpu=%d%%",
frag_pct, frag_bytes, cpu_pct);
}
server.active_defrag_running = cpu_pct;
}
}
/* This helper function handles most of the work for iterating over a kvstore. 'privdata', if
* provided, MUST begin with 'kvstoreIterState' and this part is automatically updated by this
* function during the iteration. */
static doneStatus defragStageKvstoreHelper(monotime endtime,
void *ctx,
dictScanFunction scan_fn,
kvstoreHelperPreContinueFn precontinue_fn,
dictDefragFunctions *defragfns)
{
unsigned int iterations = 0;
unsigned long long prev_defragged = server.stat_active_defrag_hits;
unsigned long long prev_scanned = server.stat_active_defrag_scanned;
kvstoreIterState *state = (kvstoreIterState*)ctx;
if (state->slot == KVS_SLOT_DEFRAG_LUT) {
/* Before we start scanning the kvstore, handle the main structures */
do {
state->cursor = kvstoreDictLUTDefrag(state->kvs, state->cursor, dictDefragTables);
if (getMonotonicUs() >= endtime) return DEFRAG_NOT_DONE;
} while (state->cursor != 0);
state->slot = KVS_SLOT_UNASSIGNED;
}
while (1) {
if (++iterations > 16 || server.stat_active_defrag_hits - prev_defragged > 512 || server.stat_active_defrag_scanned - prev_scanned > 64) {
if (getMonotonicUs() >= endtime) break;
iterations = 0;
prev_defragged = server.stat_active_defrag_hits;
prev_scanned = server.stat_active_defrag_scanned;
}
if (precontinue_fn) {
if (precontinue_fn(ctx, endtime) == DEFRAG_NOT_DONE) return DEFRAG_NOT_DONE;
}
if (!state->cursor) {
/* If there's no cursor, we're ready to begin a new kvstore slot. */
if (state->slot == KVS_SLOT_UNASSIGNED) {
state->slot = kvstoreGetFirstNonEmptyDictIndex(state->kvs);
} else {
state->slot = kvstoreGetNextNonEmptyDictIndex(state->kvs, state->slot);
}
if (state->slot == KVS_SLOT_UNASSIGNED) return DEFRAG_DONE;
}
/* Whatever privdata's actual type, this function requires that it begins with kvstoreIterState. */
state->cursor = kvstoreDictScanDefrag(state->kvs, state->slot, state->cursor,
scan_fn, defragfns, ctx);
}
return DEFRAG_NOT_DONE;
}
static doneStatus defragStageDbKeys(void *ctx, monotime endtime) {
defragKeysCtx *defrag_keys_ctx = ctx;
redisDb *db = &server.db[defrag_keys_ctx->dbid];
if (db->keys != defrag_keys_ctx->kvstate.kvs) {
/* There has been a change of the kvs (flushdb, swapdb, etc.). Just complete the stage. */
return DEFRAG_DONE;
}
/* Note: for DB keys, we use the start/finish callback to fix an expires table entry if
* the main DB entry has been moved. */
static dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = NULL, /* Handled by dbKeysScanCallback */
.defragVal = NULL, /* Handled by dbKeysScanCallback */
};
return defragStageKvstoreHelper(endtime, ctx,
dbKeysScanCallback, defragLaterStep, &defragfns);
}
static doneStatus defragStageExpiresKvstore(void *ctx, monotime endtime) {
defragKeysCtx *defrag_keys_ctx = ctx;
redisDb *db = &server.db[defrag_keys_ctx->dbid];
if (db->keys != defrag_keys_ctx->kvstate.kvs) {
/* There has been a change of the kvs (flushdb, swapdb, etc.). Just complete the stage. */
return DEFRAG_DONE;
}
static dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = NULL, /* Not needed for expires (just a ref) */
.defragVal = NULL, /* Not needed for expires (no value) */
};
return defragStageKvstoreHelper(endtime, ctx,
scanCallbackCountScanned, NULL, &defragfns);
}
/* Defragment hash object with HFE and update its reference in the DB keys. */
void *activeDefragHExpiresOB(void *ptr, void *privdata) {
redisDb *db = privdata;
dictEntryLink link, exlink = NULL;
kvobj *kvobj = ptr;
sds keystr = kvobjGetKey(kvobj);
unsigned int slot = calculateKeySlot(keystr);
serverAssert(kvobj->type == OBJ_HASH);
long long expire = kvobjGetExpire(kvobj);
/* We can't search in db->expires for that KV after we've released
* the pointer it holds, since it won't be able to do the string
* compare. Search it before, if needed. */
if (expire != -1) {
exlink = kvstoreDictFindLink(db->expires, slot, kvobjGetKey(kvobj), NULL);
serverAssert(exlink != NULL);
}
if ((kvobj = activeDefragAlloc(kvobj))) {
/* Update its reference in the DB keys. */
link = kvstoreDictFindLink(db->keys, slot, keystr, NULL);
serverAssert(link != NULL);
kvstoreDictSetAtLink(db->keys, slot, kvobj, &link, 0);
if (expire != -1)
kvstoreDictSetAtLink(db->expires, slot, kvobj, &exlink, 0);
}
return kvobj;
}
static doneStatus defragStageHExpires(void *ctx, monotime endtime) {
unsigned int iterations = 0;
defragHExpiresCtx *defrag_hexpires_ctx = ctx;
redisDb *db = &server.db[defrag_hexpires_ctx->dbid];
if (db->hexpires != defrag_hexpires_ctx->hexpires) {
/* There has been a change of the kvs (flushdb, swapdb, etc.). Just complete the stage. */
return DEFRAG_DONE;
}
ebDefragFunctions eb_defragfns = {
.defragAlloc = activeDefragAlloc,
.defragItem = activeDefragHExpiresOB
};
while (1) {
if (!ebScanDefrag(&db->hexpires, &hashExpireBucketsType, &defrag_hexpires_ctx->cursor, &eb_defragfns, db))
return DEFRAG_DONE;
if (++iterations > 16) {
if (getMonotonicUs() >= endtime) break;
iterations = 0;
}
}
return DEFRAG_NOT_DONE;
}
static doneStatus defragStagePubsubKvstore(void *ctx, monotime endtime) {
static dictDefragFunctions defragfns = {
.defragAlloc = activeDefragAlloc,
.defragKey = NULL, /* Handled by defragPubsubScanCallback */
.defragVal = NULL, /* Not needed for expires (no value) */
};
return defragStageKvstoreHelper(endtime, ctx,
defragPubsubScanCallback, NULL, &defragfns);
}
static doneStatus defragLuaScripts(void *ctx, monotime endtime) {
UNUSED(endtime);
UNUSED(ctx);
activeDefragSdsDict(evalScriptsDict(), DEFRAG_SDS_DICT_VAL_LUA_SCRIPT);
return DEFRAG_DONE;
}
/* Handles defragmentation of module global data. This is a stage function
* that gets called periodically during the active defragmentation process. */
static doneStatus defragModuleGlobals(void *ctx, monotime endtime) {
defragModuleCtx *defrag_module_ctx = ctx;
RedisModule *module = moduleGetHandleByName(defrag_module_ctx->module_name);
if (!module) {
/* Module has been unloaded, nothing to defrag. */
return DEFRAG_DONE;
}
/* Interval shouldn't exceed 1 hour */
serverAssert(!endtime || llabs((long long)endtime - (long long)getMonotonicUs()) < 60*60*1000*1000LL);
/* Call appropriate version of module's defrag callback:
* 1. Version 2 (defrag_cb_2): Supports incremental defrag and returns whether more work is needed
* 2. Version 1 (defrag_cb): Legacy version, performs all work in one call.
* Note: V1 doesn't support incremental defragmentation, may block for longer periods. */
RedisModuleDefragCtx defrag_ctx = { endtime, &defrag_module_ctx->cursor, NULL, -1, -1, -1 };
if (module->defrag_cb_2) {
return module->defrag_cb_2(&defrag_ctx) ? DEFRAG_NOT_DONE : DEFRAG_DONE;
} else if (module->defrag_cb) {
module->defrag_cb(&defrag_ctx);
return DEFRAG_DONE;
} else {
redis_unreachable();
}
}
static void freeDefragKeysContext(void *ctx) {
defragKeysCtx *defrag_keys_ctx = ctx;
if (defrag_keys_ctx->defrag_later) {
listRelease(defrag_keys_ctx->defrag_later);
}
zfree(defrag_keys_ctx);
}
static void freeDefragModelContext(void *ctx) {
defragModuleCtx *defrag_model_ctx = ctx;
sdsfree(defrag_model_ctx->module_name);
zfree(defrag_model_ctx);
}
static void freeDefragContext(void *ptr) {
StageDescriptor *stage = ptr;
if (stage->ctx_free_fn)
stage->ctx_free_fn(stage->ctx);
zfree(stage);
}
static void addDefragStage(defragStageFn stage_fn, defragStageContextFreeFn ctx_free_fn, void *ctx) {
StageDescriptor *stage = zmalloc(sizeof(StageDescriptor));
stage->stage_fn = stage_fn;
stage->ctx_free_fn = ctx_free_fn;
stage->ctx = ctx;
listAddNodeTail(defrag.remaining_stages, stage);
}
/* Updates the defrag decay rate based on the observed effectiveness of the defrag process.
* The decay rate is used to gradually slow down defrag when it's not being effective. */
static void updateDefragDecayRate(float frag_pct) {
long long last_hits = server.stat_active_defrag_hits - defrag.start_defrag_hits;
long long last_misses = server.stat_active_defrag_misses - defrag.start_defrag_misses;
float last_frag_pct_change = defrag.start_frag_pct - frag_pct;
/* When defragmentation efficiency is low, we gradually reduce the
* speed for the next cycle to avoid CPU waste. However, in the
* following two cases, we keep the normal speed:
* 1) If the fragmentation percentage has increased or decreased by more than 2%.
* 2) If the fragmentation percentage decrease is small, but hits are above 1%,
* we still keep the normal speed. */
if (fabs(last_frag_pct_change) > 2 ||
(last_frag_pct_change < 0 && last_hits >= (last_hits + last_misses) * 0.01))
{
defrag.decay_rate = 1.0f;
} else {
defrag.decay_rate *= 0.9;
}
}
/* Called at the end of a complete defrag cycle, or when defrag is terminated */
static void endDefragCycle(int normal_termination) {
if (normal_termination) {
/* For normal termination, we expect... */
serverAssert(!defrag.current_stage);
serverAssert(listLength(defrag.remaining_stages) == 0);
} else {
/* Defrag is being terminated abnormally */
aeDeleteTimeEvent(server.el, defrag.timeproc_id);
if (defrag.current_stage) {
listDelNode(defrag.remaining_stages, defrag.current_stage);
defrag.current_stage = NULL;
}
}
defrag.timeproc_id = AE_DELETED_EVENT_ID;
listRelease(defrag.remaining_stages);
defrag.remaining_stages = NULL;
size_t frag_bytes;
float frag_pct = getAllocatorFragmentation(&frag_bytes);
serverLog(LL_VERBOSE, "Active defrag done in %dms, reallocated=%d, frag=%.0f%%, frag_bytes=%zu",
(int)elapsedMs(defrag.start_cycle), (int)(server.stat_active_defrag_hits - defrag.start_defrag_hits),
frag_pct, frag_bytes);
server.stat_total_active_defrag_time += elapsedUs(server.stat_last_active_defrag_time);
server.stat_last_active_defrag_time = 0;
server.active_defrag_running = 0;
updateDefragDecayRate(frag_pct);
moduleDefragEnd();
/* Immediately check to see if we should start another defrag cycle. */
activeDefragCycle();
}
/* Must be called at the start of the timeProc as it measures the delay from the end of the previous
* timeProc invocation when performing the computation. */
static int computeDefragCycleUs(void) {
long dutyCycleUs;
int targetCpuPercent = server.active_defrag_running;
serverAssert(targetCpuPercent > 0 && targetCpuPercent < 100);
static int prevCpuPercent = 0; /* STATIC - this persists */
if (targetCpuPercent != prevCpuPercent) {
/* If the targetCpuPercent changes, the value might be different from when the last wait
* time was computed. In this case, don't consider wait time. (This is really only an
* issue in crazy tests that dramatically increase CPU while defrag is running.) */
defrag.timeproc_end_time = 0;
prevCpuPercent = targetCpuPercent;
}
/* Given when the last duty cycle ended, compute time needed to achieve the desired percentage. */
if (defrag.timeproc_end_time == 0) {
/* Either the first call to the timeProc, or we were paused for some reason. */
defrag.timeproc_overage_us = 0;
dutyCycleUs = DEFRAG_CYCLE_US;
} else {
long waitedUs = getMonotonicUs() - defrag.timeproc_end_time;
/* Given the elapsed wait time between calls, compute the necessary duty time needed to
* achieve the desired CPU percentage.
* With: D = duty time, W = wait time, P = percent
* Solve: D P
* ----- = -----
* D + W 100
* Solving for D:
* D = P * W / (100 - P)
*
* Note that dutyCycleUs addresses starvation. If the wait time was long, we will compensate
* with a proportionately long duty-cycle. This won't significantly affect perceived
* latency, because clients are already being impacted by the long cycle time which caused
* the starvation of the timer. */
dutyCycleUs = targetCpuPercent * waitedUs / (100 - targetCpuPercent);
/* Also adjust for any accumulated overage. */
dutyCycleUs -= defrag.timeproc_overage_us;
defrag.timeproc_overage_us = 0;
if (dutyCycleUs < DEFRAG_CYCLE_US) {
/* We never reduce our cycle time, that would increase overhead. Instead, we track this
* as part of the overage, and increase wait time between cycles. */
defrag.timeproc_overage_us = DEFRAG_CYCLE_US - dutyCycleUs;
dutyCycleUs = DEFRAG_CYCLE_US;
} else if (dutyCycleUs > DEFRAG_CYCLE_US * 10) {
/* Add a time limit for the defrag duty cycle to prevent excessive latency.
* When latency is already high (indicated by a long time between calls),
* we don't want to make it worse by running defrag for too long. */
dutyCycleUs = DEFRAG_CYCLE_US * 10;
}
}
return dutyCycleUs;
}
/* Must be called at the end of the timeProc as it records the timeproc_end_time for use in the next
* computeDefragCycleUs computation. */
static int computeDelayMs(monotime intendedEndtime) {
defrag.timeproc_end_time = getMonotonicUs();
long overage = defrag.timeproc_end_time - intendedEndtime;
defrag.timeproc_overage_us += overage; /* track over/under desired CPU */
/* Allow negative overage (underage) to count against existing overage, but don't allow
* underage (from short stages) to be accumulated. */
if (defrag.timeproc_overage_us < 0) defrag.timeproc_overage_us = 0;
int targetCpuPercent = server.active_defrag_running;
serverAssert(targetCpuPercent > 0 && targetCpuPercent < 100);
/* Given the desired duty cycle, what inter-cycle delay do we need to achieve that? */
/* We want to achieve a specific CPU percent. To do that, we can't use a skewed computation. */
/* Example, if we run for 1ms and delay 10ms, that's NOT 10%, because the total cycle time is 11ms. */
/* Instead, if we rum for 1ms, our total time should be 10ms. So the delay is only 9ms. */
long totalCycleTimeUs = DEFRAG_CYCLE_US * 100 / targetCpuPercent;
long delayUs = totalCycleTimeUs - DEFRAG_CYCLE_US;
/* Only increase delay by the fraction of the overage that would be non-duty-cycle */
delayUs += defrag.timeproc_overage_us * (100 - targetCpuPercent) / 100;
if (delayUs < 0) delayUs = 0;
long delayMs = delayUs / 1000; /* round down */
return delayMs;
}
/* An independent time proc for defrag. While defrag is running, this is called much more often
* than the server cron. Frequent short calls provides low latency impact. */
static int activeDefragTimeProc(struct aeEventLoop *eventLoop, long long id, void *clientData) {
UNUSED(eventLoop);
UNUSED(id);
UNUSED(clientData);
/* This timer shouldn't be registered unless there's work to do. */
serverAssert(defrag.current_stage || listLength(defrag.remaining_stages) > 0);
if (!server.active_defrag_enabled) {
/* Defrag has been disabled while running */
endDefragCycle(0);
return AE_NOMORE;
}
if (hasActiveChildProcess()) {
/* If there's a child process, pause the defrag, polling until the child completes. */
defrag.timeproc_end_time = 0; /* prevent starvation recovery */
return 100;
}
monotime starttime = getMonotonicUs();
int dutyCycleUs = computeDefragCycleUs();
monotime endtime = starttime + dutyCycleUs;
int haveMoreWork = 1;
/* Increment server.cronloops so that run_with_period works. */
long hz_ms = 1000 / server.hz;
int cronloops = (server.mstime - server.blocked_last_cron + (hz_ms - 1)) / hz_ms; /* rounding up */
server.blocked_last_cron += cronloops * hz_ms;
server.cronloops += cronloops;
mstime_t latency;
latencyStartMonitor(latency);
do {
if (!defrag.current_stage) {
defrag.current_stage = listFirst(defrag.remaining_stages);
}
StageDescriptor *stage = listNodeValue(defrag.current_stage);
doneStatus status = stage->stage_fn(stage->ctx, endtime);
if (status == DEFRAG_DONE) {
listDelNode(defrag.remaining_stages, defrag.current_stage);
defrag.current_stage = NULL;
}
haveMoreWork = (defrag.current_stage || listLength(defrag.remaining_stages) > 0);
/* If we've completed a stage early, and still have a standard time allotment remaining,
* we'll start another stage. This can happen when defrag is running infrequently, and
* starvation protection has increased the duty-cycle. */
} while (haveMoreWork && getMonotonicUs() <= endtime - DEFRAG_CYCLE_US);
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("active-defrag-cycle", latency);
if (haveMoreWork) {
return computeDelayMs(endtime);
} else {
endDefragCycle(1);
return AE_NOMORE; /* Ends the timer proc */
}
}
/* During long running scripts, or while loading, there is a periodic function for handling other
* actions. This interface allows defrag to continue running, avoiding a single long defrag step
* after the long operation completes. */
void defragWhileBlocked(void) {
/* This is called infrequently, while timers are not active. We might need to start defrag. */
if (!defragIsRunning()) activeDefragCycle();
if (!defragIsRunning()) return;
/* Save off the timeproc_id. If we have a normal termination, it will be cleared. */
long long timeproc_id = defrag.timeproc_id;
/* Simulate a single call of the timer proc */
long long reschedule_delay = activeDefragTimeProc(NULL, 0, NULL);
if (reschedule_delay == AE_NOMORE) {
/* If it's done, deregister the timer */
aeDeleteTimeEvent(server.el, timeproc_id);
}
/* Otherwise, just ignore the reschedule_delay, the timer will pop the next time that the
* event loop can process timers again. */
}
static void beginDefragCycle(void) {
serverAssert(!defragIsRunning());
moduleDefragStart();
serverAssert(defrag.remaining_stages == NULL);
defrag.remaining_stages = listCreate();
listSetFreeMethod(defrag.remaining_stages, freeDefragContext);
for (int dbid = 0; dbid < server.dbnum; dbid++) {
redisDb *db = &server.db[dbid];
/* Add stage for keys. */
defragKeysCtx *defrag_keys_ctx = zcalloc(sizeof(defragKeysCtx));
defrag_keys_ctx->kvstate = INIT_KVSTORE_STATE(db->keys);
defrag_keys_ctx->dbid = dbid;
addDefragStage(defragStageDbKeys, freeDefragKeysContext, defrag_keys_ctx);
/* Add stage for expires. */
defragKeysCtx *defrag_expires_ctx = zcalloc(sizeof(defragKeysCtx));
defrag_expires_ctx->kvstate = INIT_KVSTORE_STATE(db->expires);
defrag_expires_ctx->dbid = dbid;
addDefragStage(defragStageExpiresKvstore, freeDefragKeysContext, defrag_expires_ctx);
/* Add stage for hexpires. */
defragHExpiresCtx *defrag_hexpires_ctx = zcalloc(sizeof(defragHExpiresCtx));
defrag_hexpires_ctx->hexpires = db->hexpires;
defrag_hexpires_ctx->dbid = dbid;
addDefragStage(defragStageHExpires, zfree, defrag_hexpires_ctx);
}
/* Add stage for pubsub channels. */
defragPubSubCtx *defrag_pubsub_ctx = zmalloc(sizeof(defragPubSubCtx));
defrag_pubsub_ctx->kvstate = INIT_KVSTORE_STATE(server.pubsub_channels);
defrag_pubsub_ctx->getPubSubChannels = getClientPubSubChannels;
addDefragStage(defragStagePubsubKvstore, zfree, defrag_pubsub_ctx);
/* Add stage for pubsubshard channels. */
defragPubSubCtx *defrag_pubsubshard_ctx = zmalloc(sizeof(defragPubSubCtx));
defrag_pubsubshard_ctx->kvstate = INIT_KVSTORE_STATE(server.pubsubshard_channels);
defrag_pubsubshard_ctx->getPubSubChannels = getClientPubSubShardChannels;
addDefragStage(defragStagePubsubKvstore, zfree, defrag_pubsubshard_ctx);
addDefragStage(defragLuaScripts, NULL, NULL);
/* Add stages for modules. */
dictIterator *di = dictGetIterator(modules);
dictEntry *de;
while ((de = dictNext(di)) != NULL) {
struct RedisModule *module = dictGetVal(de);
if (module->defrag_cb || module->defrag_cb_2) {
defragModuleCtx *ctx = zmalloc(sizeof(defragModuleCtx));
ctx->cursor = 0;
ctx->module_name = sdsnew(module->name);
addDefragStage(defragModuleGlobals, freeDefragModelContext, ctx);
}
}
dictReleaseIterator(di);
defrag.current_stage = NULL;
defrag.start_cycle = getMonotonicUs();
defrag.start_defrag_hits = server.stat_active_defrag_hits;
defrag.start_defrag_misses = server.stat_active_defrag_misses;
defrag.start_frag_pct = getAllocatorFragmentation(NULL);
defrag.timeproc_end_time = 0;
defrag.timeproc_overage_us = 0;
defrag.timeproc_id = aeCreateTimeEvent(server.el, 0, activeDefragTimeProc, NULL, NULL);
elapsedStart(&server.stat_last_active_defrag_time);
}
void activeDefragCycle(void) {
if (!server.active_defrag_enabled) return;
/* Defrag gets paused while a child process is active. So there's no point in starting a new
* cycle or adjusting the CPU percentage for an existing cycle. */
if (hasActiveChildProcess()) return;
computeDefragCycles();
if (server.active_defrag_running > 0 && !defragIsRunning()) beginDefragCycle();
}
#else /* HAVE_DEFRAG */
void activeDefragCycle(void) {
/* Not implemented yet. */
}
void *activeDefragAlloc(void *ptr) {
UNUSED(ptr);
return NULL;
}
void *activeDefragAllocRaw(size_t size) {
/* fallback to regular allocation */
return zmalloc(size);
}
void activeDefragFreeRaw(void *ptr) {
/* fallback to regular free */
zfree(ptr);
}
robj *activeDefragStringOb(robj *ob) {
UNUSED(ob);
return NULL;
}
void defragWhileBlocked(void) {
}
#endif