374b550a08 | ||
---|---|---|
CovidInfo | ||
ReorderVis | ||
cmd_sh | ||
data | ||
output | ||
.gitignore | ||
Flask.py | ||
GetDifferPKG.py | ||
GetDifferPKGCovid.py | ||
GetPartner.py | ||
GetPartnerCovid.py | ||
PredictCovid.py | ||
README.md | ||
RNNModelPredict.py | ||
RNNModelTry.py | ||
ReadFile.py | ||
ReorderByGroup.py | ||
ReorderByGroupCovid.py | ||
ServerToStart.py | ||
TrainDataDiffer.npy | ||
TrainDataDifferRandomByOne_0.npy | ||
TrainDataDifferRandomByOne_100.npy | ||
TrainDataDifferRandomByOne_200.npy | ||
TrainDataDifferRandomByOne_300.npy | ||
TrainDataDifferRandomByOne_400.npy | ||
TrainDataDifferRandomByOne_1000.npy | ||
TrainDataDifferRandomByOne_2000.npy | ||
TrainDataDifferRandomByOne_3000.npy | ||
TrainDataDifferRandomByOne_4000.npy | ||
TrainDataDifferRandomByOne_5000.npy | ||
TrainDataDifferRandomByOne_6000.npy | ||
TrainDataDifferRandomByOne_7000.npy | ||
TrainDataDifferRandomByOne_8000.npy | ||
TrainDataDifferRandomByOne_9000.npy | ||
TrainDataDifferRandomByOne_10000.npy | ||
TrainDataDifferRandomByOne_11000.npy | ||
TrainDataDifferRandomByOne_12000.npy | ||
TrainDataDifferRandomByOne_13000.npy | ||
TrainDataDifferRandomByOne_14000.npy | ||
TrainDataDifferRandomByOne_15000.npy | ||
TrainDataDifferRandomByOne_16000.npy | ||
TrainDataDifferRandomByOne_17000.npy | ||
TrainDataDifferRandomByOne_18000.npy | ||
TrainDataDifferRandomByOne_19000.npy | ||
TrainDataDifferRandomByOne_20000.npy | ||
TrainDataPretreat.py | ||
__init__.py | ||
base_graph.py | ||
etc.py | ||
graph.py | ||
main.py | ||
name_dataset.py | ||
pylint.conf | ||
python2_requiements.txt | ||
python3_requiements.txt | ||
record.py | ||
rnn_model.py | ||
run.sh | ||
show.py | ||
status.py | ||
test_graph.py | ||
train_graph.py |
README.md
classifying_names_with_a_character-level_RNN
papers
The Unreasonable Effectiveness of Recurrent Neural Networks
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
Understanding LSTM Networks
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
dataset
https://download.pytorch.org/tutorial/data.zip
unzip data.zip
Included in the data/names
directory are 18 text files named as
"[Language].txt". Each file contains a bunch of names, one name per
line, mostly romanized (but we still need to convert from Unicode to
ASCII).
We'll end up with a dictionary of lists of names per language,
{language: [names ...]}
. The generic variables "category" and "line"
(for language and name in our case) are used for later extensibility.
how to run
bash run.sh
output
confusion
epoch acc
epoch loss
step acc
step loss
output
RNN(
(input_to_hidden): Linear(in_features=185, out_features=128, bias=True)
(input_to_output): Linear(in_features=185, out_features=18, bias=True)
(softmax): LogSoftmax()
)
config:
early_stop_epoch : True
print_every : 5
num_workers : 4
train_load_check_point_file : True
device : cpu
epoch_only : True
epochs : 100
early_stop_step_limit : 100
data_path : ./data/names
optimizer : SGD
steps : 100000
eval_epoch_steps : 10
train_epoch_steps : 10
early_stop_step : True
max_epoch_stop : True
n_hidden : 128
loss : NLL
all_letters : abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .,;'
dataset : names
early_stop_epoch_limit : 10
learn_rate : 0.005
max_step_stop : True
n_letters : 57
batch_size : 1000
momentum : 0.9
[E:0/100] [S:5/100000] [Train Loss:2.570616 Acc:0.252000 5/10 (50%)] [Val Loss:2.511683 Acc:0.267000 2670/10000 (27%)] [Best Epoch:0 Loss:2.511683 Acc:0.267000] [Best Step:5 Loss:2.511683 Acc:0.267000] Step status
[E:0/100] [S:10/100000] [Train Loss:2.207740 Acc:0.324000 10/10 (100%)] [Val Loss:2.149015 Acc:0.363700 3637/10000 (36%)] [Best Epoch:0 Loss:2.149015 Acc:0.363700] [Best Step:10 Loss:2.149015 Acc:0.363700] Step status
[E:0/100] [S:10/100000] [Train Loss:2.543881 Acc:0.245300] [Val Loss:2.156177 Acc:0.352700 3527/10000 (35%)] [Best Epoch:0 Loss:2.149015 Acc:0.363700] [Best Step:10 Loss:2.149015 Acc:0.363700] [20.09s 20.1s] Epoch status
[E:1/100] [S:15/100000] [Train Loss:2.027740 Acc:0.356000 5/10 (50%)] [Val Loss:1.972278 Acc:0.393200 3932/10000 (39%)] [Best Epoch:1 Loss:1.972278 Acc:0.393200] [Best Step:15 Loss:1.972278 Acc:0.393200] Step status
[E:1/100] [S:20/100000] [Train Loss:1.919879 Acc:0.383000 10/10 (100%)] [Val Loss:1.903391 Acc:0.394900 3949/10000 (39%)] [Best Epoch:1 Loss:1.903391 Acc:0.394900] [Best Step:20 Loss:1.903391 Acc:0.394900] Step status
[E:1/100] [S:20/100000] [Train Loss:2.012543 Acc:0.376500] [Val Loss:1.908830 Acc:0.393500 3935/10000 (39%)] [Best Epoch:1 Loss:1.903391 Acc:0.394900] [Best Step:20 Loss:1.903391 Acc:0.394900] [20.33s 40.4s] Epoch status
[E:2/100] [S:25/100000] [Train Loss:1.767248 Acc:0.437000 5/10 (50%)] [Val Loss:1.778559 Acc:0.439400 4394/10000 (44%)] [Best Epoch:2 Loss:1.778559 Acc:0.439400] [Best Step:25 Loss:1.778559 Acc:0.439400] Step status
[E:2/100] [S:30/100000] [Train Loss:1.676505 Acc:0.506000 10/10 (100%)] [Val Loss:1.618007 Acc:0.490700 4907/10000 (49%)] [Best Epoch:2 Loss:1.618007 Acc:0.490700] [Best Step:30 Loss:1.618007 Acc:0.490700] Step status
[E:2/100] [S:30/100000] [Train Loss:1.749471 Acc:0.455400] [Val Loss:1.652715 Acc:0.476300 4763/10000 (48%)] [Best Epoch:2 Loss:1.618007 Acc:0.490700] [Best Step:30 Loss:1.618007 Acc:0.490700] [19.68s 60.1s] Epoch status
[E:3/100] [S:35/100000] [Train Loss:1.642488 Acc:0.491000 5/10 (50%)] [Val Loss:1.594933 Acc:0.507200 5072/10000 (51%)] [Best Epoch:3 Loss:1.594933 Acc:0.507200] [Best Step:35 Loss:1.594933 Acc:0.507200] Step status
[E:3/100] [S:40/100000] [Train Loss:1.563026 Acc:0.508000 10/10 (100%)] [Val Loss:1.536687 Acc:0.515200 5152/10000 (52%)] [Best Epoch:3 Loss:1.536687 Acc:0.515200] [Best Step:40 Loss:1.536687 Acc:0.515200] Step status
[E:3/100] [S:40/100000] [Train Loss:1.591269 Acc:0.503300] [Val Loss:1.525412 Acc:0.522100 5221/10000 (52%)] [Best Epoch:3 Loss:1.525412 Acc:0.522100] [Best Step:40 Loss:1.536687 Acc:0.515200] [20.08s 80.2s] Epoch status
[E:4/100] [S:45/100000] [Train Loss:1.528413 Acc:0.527000 5/10 (50%)] [Val Loss:1.474179 Acc:0.529500 5295/10000 (53%)] [Best Epoch:4 Loss:1.474179 Acc:0.529500] [Best Step:45 Loss:1.474179 Acc:0.529500] Step status
[E:4/100] [S:50/100000] [Train Loss:1.515184 Acc:0.549000 10/10 (100%)] [Val Loss:1.465506 Acc:0.539800 5398/10000 (54%)] [Best Epoch:4 Loss:1.465506 Acc:0.539800] [Best Step:50 Loss:1.465506 Acc:0.539800] Step status
[E:4/100] [S:50/100000] [Train Loss:1.519756 Acc:0.529800] [Val Loss:1.479681 Acc:0.537800 5378/10000 (54%)] [Best Epoch:4 Loss:1.465506 Acc:0.539800] [Best Step:50 Loss:1.465506 Acc:0.539800] [20.18s 100.4s] Epoch status
[E:5/100] [S:55/100000] [Train Loss:1.443934 Acc:0.542000 5/10 (50%)] [Val Loss:1.405279 Acc:0.567200 5672/10000 (57%)] [Best Epoch:5 Loss:1.405279 Acc:0.567200] [Best Step:55 Loss:1.405279 Acc:0.567200] Step status
[E:5/100] [S:60/100000] [Train Loss:1.416611 Acc:0.557000 10/10 (100%)] [Val Loss:1.416860 Acc:0.547900 5479/10000 (55%)] [Best Epoch:5 Loss:1.405279 Acc:0.567200] [Best Step:55 Loss:1.405279 Acc:0.567200] Step status
[E:5/100] [S:60/100000] [Train Loss:1.443520 Acc:0.548000] [Val Loss:1.418511 Acc:0.554200 5542/10000 (55%)] [Best Epoch:5 Loss:1.405279 Acc:0.567200] [Best Step:55 Loss:1.405279 Acc:0.567200] [20.02s 120.4s] Epoch status
[E:6/100] [S:65/100000] [Train Loss:1.392056 Acc:0.568000 5/10 (50%)] [Val Loss:1.381336 Acc:0.572200 5722/10000 (57%)] [Best Epoch:6 Loss:1.381336 Acc:0.572200] [Best Step:65 Loss:1.381336 Acc:0.572200] Step status
[E:6/100] [S:70/100000] [Train Loss:1.374859 Acc:0.584000 10/10 (100%)] [Val Loss:1.374447 Acc:0.576600 5766/10000 (58%)] [Best Epoch:6 Loss:1.374447 Acc:0.576600] [Best Step:70 Loss:1.374447 Acc:0.576600] Step status
[E:6/100] [S:70/100000] [Train Loss:1.380793 Acc:0.565800] [Val Loss:1.424537 Acc:0.554400 5544/10000 (55%)] [Best Epoch:6 Loss:1.374447 Acc:0.576600] [Best Step:70 Loss:1.374447 Acc:0.576600] [20.12s 140.5s] Epoch status
[E:7/100] [S:75/100000] [Train Loss:1.355937 Acc:0.574000 5/10 (50%)] [Val Loss:1.365398 Acc:0.563200 5632/10000 (56%)] [Best Epoch:7 Loss:1.365398 Acc:0.563200] [Best Step:75 Loss:1.365398 Acc:0.563200] Step status
[E:7/100] [S:80/100000] [Train Loss:1.389207 Acc:0.564000 10/10 (100%)] [Val Loss:1.312955 Acc:0.599700 5997/10000 (60%)] [Best Epoch:7 Loss:1.312955 Acc:0.599700] [Best Step:80 Loss:1.312955 Acc:0.599700] Step status
[E:7/100] [S:80/100000] [Train Loss:1.353517 Acc:0.577600] [Val Loss:1.326047 Acc:0.598400 5984/10000 (60%)] [Best Epoch:7 Loss:1.312955 Acc:0.599700] [Best Step:80 Loss:1.312955 Acc:0.599700] [20.13s 160.6s] Epoch status
[E:8/100] [S:85/100000] [Train Loss:1.317934 Acc:0.577000 5/10 (50%)] [Val Loss:1.294633 Acc:0.584200 5842/10000 (58%)] [Best Epoch:8 Loss:1.294633 Acc:0.584200] [Best Step:85 Loss:1.294633 Acc:0.584200] Step status
[E:8/100] [S:90/100000] [Train Loss:1.259528 Acc:0.608000 10/10 (100%)] [Val Loss:1.308782 Acc:0.591000 5910/10000 (59%)] [Best Epoch:8 Loss:1.294633 Acc:0.584200] [Best Step:85 Loss:1.294633 Acc:0.584200] Step status
[E:8/100] [S:90/100000] [Train Loss:1.311848 Acc:0.588400] [Val Loss:1.288862 Acc:0.592200 5922/10000 (59%)] [Best Epoch:8 Loss:1.288862 Acc:0.592200] [Best Step:85 Loss:1.294633 Acc:0.584200] [19.98s 180.6s] Epoch status
[E:9/100] [S:95/100000] [Train Loss:1.300831 Acc:0.582000 5/10 (50%)] [Val Loss:1.300572 Acc:0.584600 5846/10000 (58%)] [Best Epoch:8 Loss:1.288862 Acc:0.592200] [Best Step:85 Loss:1.294633 Acc:0.584200] Step status
[E:9/100] [S:100/100000] [Train Loss:1.311145 Acc:0.587000 10/10 (100%)] [Val Loss:1.231630 Acc:0.611800 6118/10000 (61%)] [Best Epoch:9 Loss:1.231630 Acc:0.611800] [Best Step:100 Loss:1.231630 Acc:0.611800] Step status
[E:9/100] [S:100/100000] [Train Loss:1.285119 Acc:0.597900] [Val Loss:1.252770 Acc:0.601000 6010/10000 (60%)] [Best Epoch:9 Loss:1.231630 Acc:0.611800] [Best Step:100 Loss:1.231630 Acc:0.611800] [19.71s 200.3s] Epoch status
[E:10/100] [S:105/100000] [Train Loss:1.302027 Acc:0.566000 5/10 (50%)] [Val Loss:1.285808 Acc:0.595400 5954/10000 (60%)] [Best Epoch:9 Loss:1.231630 Acc:0.611800] [Best Step:100 Loss:1.231630 Acc:0.611800] Step status
[E:10/100] [S:110/100000] [Train Loss:1.260846 Acc:0.608000 10/10 (100%)] [Val Loss:1.253798 Acc:0.591300 5913/10000 (59%)] [Best Epoch:9 Loss:1.231630 Acc:0.611800] [Best Step:100 Loss:1.231630 Acc:0.611800] Step status
[E:10/100] [S:110/100000] [Train Loss:1.278418 Acc:0.591100] [Val Loss:1.256654 Acc:0.595400 5954/10000 (60%)] [Best Epoch:9 Loss:1.231630 Acc:0.611800] [Best Step:100 Loss:1.231630 Acc:0.611800] [19.90s 220.2s] Epoch status
[E:11/100] [S:115/100000] [Train Loss:1.240201 Acc:0.606000 5/10 (50%)] [Val Loss:1.228229 Acc:0.612500 6125/10000 (61%)] [Best Epoch:11 Loss:1.228229 Acc:0.612500] [Best Step:115 Loss:1.228229 Acc:0.612500] Step status
[E:11/100] [S:120/100000] [Train Loss:1.282284 Acc:0.578000 10/10 (100%)] [Val Loss:1.214430 Acc:0.612600 6126/10000 (61%)] [Best Epoch:11 Loss:1.214430 Acc:0.612600] [Best Step:120 Loss:1.214430 Acc:0.612600] Step status
[E:11/100] [S:120/100000] [Train Loss:1.256272 Acc:0.594700] [Val Loss:1.212468 Acc:0.614300 6143/10000 (61%)] [Best Epoch:11 Loss:1.212468 Acc:0.614300] [Best Step:120 Loss:1.214430 Acc:0.612600] [19.86s 240.1s] Epoch status
[E:12/100] [S:125/100000] [Train Loss:1.264794 Acc:0.628000 5/10 (50%)] [Val Loss:1.241468 Acc:0.594700 5947/10000 (59%)] [Best Epoch:11 Loss:1.212468 Acc:0.614300] [Best Step:120 Loss:1.214430 Acc:0.612600] Step status
[E:12/100] [S:130/100000] [Train Loss:1.244773 Acc:0.613000 10/10 (100%)] [Val Loss:1.184135 Acc:0.624400 6244/10000 (62%)] [Best Epoch:12 Loss:1.184135 Acc:0.624400] [Best Step:130 Loss:1.184135 Acc:0.624400] Step status
[E:12/100] [S:130/100000] [Train Loss:1.231683 Acc:0.604600] [Val Loss:1.202855 Acc:0.614500 6145/10000 (61%)] [Best Epoch:12 Loss:1.184135 Acc:0.624400] [Best Step:130 Loss:1.184135 Acc:0.624400] [19.93s 260.0s] Epoch status
[E:13/100] [S:135/100000] [Train Loss:1.240437 Acc:0.599000 5/10 (50%)] [Val Loss:1.327287 Acc:0.576700 5767/10000 (58%)] [Best Epoch:12 Loss:1.184135 Acc:0.624400] [Best Step:130 Loss:1.184135 Acc:0.624400] Step status
[E:13/100] [S:140/100000] [Train Loss:1.255932 Acc:0.605000 10/10 (100%)] [Val Loss:1.245981 Acc:0.594800 5948/10000 (59%)] [Best Epoch:12 Loss:1.184135 Acc:0.624400] [Best Step:130 Loss:1.184135 Acc:0.624400] Step status
[E:13/100] [S:140/100000] [Train Loss:1.230941 Acc:0.605700] [Val Loss:1.230431 Acc:0.601700 6017/10000 (60%)] [Best Epoch:12 Loss:1.184135 Acc:0.624400] [Best Step:130 Loss:1.184135 Acc:0.624400] [19.86s 279.9s] Epoch status
[E:14/100] [S:145/100000] [Train Loss:1.206273 Acc:0.606000 5/10 (50%)] [Val Loss:1.161500 Acc:0.621800 6218/10000 (62%)] [Best Epoch:14 Loss:1.161500 Acc:0.621800] [Best Step:145 Loss:1.161500 Acc:0.621800] Step status
[E:14/100] [S:150/100000] [Train Loss:1.242006 Acc:0.602000 10/10 (100%)] [Val Loss:1.281401 Acc:0.592700 5927/10000 (59%)] [Best Epoch:14 Loss:1.161500 Acc:0.621800] [Best Step:145 Loss:1.161500 Acc:0.621800] Step status
[E:14/100] [S:150/100000] [Train Loss:1.219782 Acc:0.606500] [Val Loss:1.310329 Acc:0.586100 5861/10000 (59%)] [Best Epoch:14 Loss:1.161500 Acc:0.621800] [Best Step:145 Loss:1.161500 Acc:0.621800] [19.85s 299.7s] Epoch status
[E:15/100] [S:155/100000] [Train Loss:1.221272 Acc:0.613000 5/10 (50%)] [Val Loss:1.212364 Acc:0.605000 6050/10000 (60%)] [Best Epoch:14 Loss:1.161500 Acc:0.621800] [Best Step:145 Loss:1.161500 Acc:0.621800] Step status
[E:15/100] [S:160/100000] [Train Loss:1.225789 Acc:0.615000 10/10 (100%)] [Val Loss:1.148690 Acc:0.626800 6268/10000 (63%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:15/100] [S:160/100000] [Train Loss:1.216946 Acc:0.613700] [Val Loss:1.166461 Acc:0.618800 6188/10000 (62%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] [19.75s 319.5s] Epoch status
[E:16/100] [S:165/100000] [Train Loss:1.241960 Acc:0.609000 5/10 (50%)] [Val Loss:1.161576 Acc:0.620700 6207/10000 (62%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:16/100] [S:170/100000] [Train Loss:1.167988 Acc:0.628000 10/10 (100%)] [Val Loss:1.219579 Acc:0.593700 5937/10000 (59%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:16/100] [S:170/100000] [Train Loss:1.191819 Acc:0.611600] [Val Loss:1.228102 Acc:0.600900 6009/10000 (60%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] [19.75s 339.2s] Epoch status
[E:17/100] [S:175/100000] [Train Loss:1.131161 Acc:0.636000 5/10 (50%)] [Val Loss:1.201044 Acc:0.601400 6014/10000 (60%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:17/100] [S:180/100000] [Train Loss:1.235602 Acc:0.609000 10/10 (100%)] [Val Loss:1.156403 Acc:0.634700 6347/10000 (63%)] [Best Epoch:15 Loss:1.148690 Acc:0.626800] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:17/100] [S:180/100000] [Train Loss:1.172539 Acc:0.619400] [Val Loss:1.146564 Acc:0.636500 6365/10000 (64%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] [19.78s 359.0s] Epoch status
[E:18/100] [S:185/100000] [Train Loss:1.189362 Acc:0.604000 5/10 (50%)] [Val Loss:1.200387 Acc:0.618100 6181/10000 (62%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:18/100] [S:190/100000] [Train Loss:1.140376 Acc:0.631000 10/10 (100%)] [Val Loss:1.189003 Acc:0.612900 6129/10000 (61%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:18/100] [S:190/100000] [Train Loss:1.180526 Acc:0.619500] [Val Loss:1.178285 Acc:0.619500 6195/10000 (62%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] [19.82s 378.8s] Epoch status
[E:19/100] [S:195/100000] [Train Loss:1.156811 Acc:0.628000 5/10 (50%)] [Val Loss:1.190560 Acc:0.600600 6006/10000 (60%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:19/100] [S:200/100000] [Train Loss:1.145239 Acc:0.627000 10/10 (100%)] [Val Loss:1.205553 Acc:0.607200 6072/10000 (61%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:19/100] [S:200/100000] [Train Loss:1.169514 Acc:0.619400] [Val Loss:1.217982 Acc:0.609900 6099/10000 (61%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] [19.76s 398.6s] Epoch status
[E:20/100] [S:205/100000] [Train Loss:1.170920 Acc:0.617000 5/10 (50%)] [Val Loss:1.154789 Acc:0.621200 6212/10000 (62%)] [Best Epoch:17 Loss:1.146564 Acc:0.636500] [Best Step:160 Loss:1.148690 Acc:0.626800] Step status
[E:20/100] [S:210/100000] [Train Loss:1.156138 Acc:0.632000 10/10 (100%)] [Val Loss:1.105138 Acc:0.643600 6436/10000 (64%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:20/100] [S:210/100000] [Train Loss:1.161057 Acc:0.623100] [Val Loss:1.114177 Acc:0.640100 6401/10000 (64%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.82s 418.4s] Epoch status
[E:21/100] [S:215/100000] [Train Loss:1.143365 Acc:0.637000 5/10 (50%)] [Val Loss:1.164103 Acc:0.620300 6203/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:21/100] [S:220/100000] [Train Loss:1.127164 Acc:0.638000 10/10 (100%)] [Val Loss:1.134541 Acc:0.625900 6259/10000 (63%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:21/100] [S:220/100000] [Train Loss:1.149521 Acc:0.629100] [Val Loss:1.159968 Acc:0.618100 6181/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.93s 438.3s] Epoch status
[E:22/100] [S:225/100000] [Train Loss:1.146146 Acc:0.633000 5/10 (50%)] [Val Loss:1.139251 Acc:0.628400 6284/10000 (63%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:22/100] [S:230/100000] [Train Loss:1.133274 Acc:0.632000 10/10 (100%)] [Val Loss:1.113613 Acc:0.637000 6370/10000 (64%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:22/100] [S:230/100000] [Train Loss:1.153472 Acc:0.621500] [Val Loss:1.129085 Acc:0.635300 6353/10000 (64%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.59s 457.9s] Epoch status
[E:23/100] [S:235/100000] [Train Loss:1.142108 Acc:0.650000 5/10 (50%)] [Val Loss:1.246087 Acc:0.591200 5912/10000 (59%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:23/100] [S:240/100000] [Train Loss:1.181328 Acc:0.612000 10/10 (100%)] [Val Loss:1.121277 Acc:0.633000 6330/10000 (63%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:23/100] [S:240/100000] [Train Loss:1.171542 Acc:0.619100] [Val Loss:1.106423 Acc:0.641400 6414/10000 (64%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.99s 477.9s] Epoch status
[E:24/100] [S:245/100000] [Train Loss:1.238899 Acc:0.601000 5/10 (50%)] [Val Loss:1.130263 Acc:0.628700 6287/10000 (63%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:24/100] [S:250/100000] [Train Loss:1.120919 Acc:0.635000 10/10 (100%)] [Val Loss:1.158685 Acc:0.616700 6167/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:24/100] [S:250/100000] [Train Loss:1.159118 Acc:0.620700] [Val Loss:1.142953 Acc:0.622400 6224/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.96s 497.9s] Epoch status
[E:25/100] [S:255/100000] [Train Loss:1.177418 Acc:0.625000 5/10 (50%)] [Val Loss:1.182119 Acc:0.618600 6186/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:25/100] [S:260/100000] [Train Loss:1.142253 Acc:0.625000 10/10 (100%)] [Val Loss:1.105325 Acc:0.635500 6355/10000 (64%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:25/100] [S:260/100000] [Train Loss:1.147700 Acc:0.623400] [Val Loss:1.116359 Acc:0.630700 6307/10000 (63%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.89s 517.8s] Epoch status
[E:26/100] [S:265/100000] [Train Loss:1.134531 Acc:0.611000 5/10 (50%)] [Val Loss:1.134069 Acc:0.622400 6224/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:26/100] [S:270/100000] [Train Loss:1.076760 Acc:0.637000 10/10 (100%)] [Val Loss:1.150421 Acc:0.622800 6228/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:26/100] [S:270/100000] [Train Loss:1.128681 Acc:0.624300] [Val Loss:1.154195 Acc:0.615900 6159/10000 (62%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] [19.96s 537.7s] Epoch status
[E:27/100] [S:275/100000] [Train Loss:1.096999 Acc:0.638000 5/10 (50%)] [Val Loss:1.140677 Acc:0.627900 6279/10000 (63%)] [Best Epoch:20 Loss:1.105138 Acc:0.643600] [Best Step:210 Loss:1.105138 Acc:0.643600] Step status
[E:27/100] [S:280/100000] [Train Loss:1.124923 Acc:0.629000 10/10 (100%)] [Val Loss:1.075512 Acc:0.651800 6518/10000 (65%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:27/100] [S:280/100000] [Train Loss:1.123663 Acc:0.633600] [Val Loss:1.086114 Acc:0.647200 6472/10000 (65%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] [19.80s 557.5s] Epoch status
[E:28/100] [S:285/100000] [Train Loss:1.151544 Acc:0.629000 5/10 (50%)] [Val Loss:1.138781 Acc:0.639000 6390/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:28/100] [S:290/100000] [Train Loss:1.106984 Acc:0.641000 10/10 (100%)] [Val Loss:1.122386 Acc:0.636000 6360/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:28/100] [S:290/100000] [Train Loss:1.128913 Acc:0.630800] [Val Loss:1.114227 Acc:0.640200 6402/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] [19.53s 577.1s] Epoch status
[E:29/100] [S:295/100000] [Train Loss:1.129568 Acc:0.651000 5/10 (50%)] [Val Loss:1.164874 Acc:0.613700 6137/10000 (61%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:29/100] [S:300/100000] [Train Loss:1.057530 Acc:0.664000 10/10 (100%)] [Val Loss:1.081106 Acc:0.645300 6453/10000 (65%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:29/100] [S:300/100000] [Train Loss:1.161124 Acc:0.625000] [Val Loss:1.078104 Acc:0.649000 6490/10000 (65%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] [19.96s 597.0s] Epoch status
[E:30/100] [S:305/100000] [Train Loss:1.089188 Acc:0.642000 5/10 (50%)] [Val Loss:1.130409 Acc:0.635200 6352/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:30/100] [S:310/100000] [Train Loss:1.115420 Acc:0.633000 10/10 (100%)] [Val Loss:1.116789 Acc:0.634800 6348/10000 (63%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:30/100] [S:310/100000] [Train Loss:1.128207 Acc:0.631000] [Val Loss:1.107183 Acc:0.638700 6387/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] [19.90s 616.9s] Epoch status
[E:31/100] [S:315/100000] [Train Loss:1.102926 Acc:0.637000 5/10 (50%)] [Val Loss:1.183165 Acc:0.608800 6088/10000 (61%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:31/100] [S:320/100000] [Train Loss:1.105992 Acc:0.649000 10/10 (100%)] [Val Loss:1.115085 Acc:0.640100 6401/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:31/100] [S:320/100000] [Train Loss:1.102957 Acc:0.641400] [Val Loss:1.088188 Acc:0.643500 6435/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] [19.53s 636.4s] Epoch status
[E:32/100] [S:325/100000] [Train Loss:1.122513 Acc:0.634000 5/10 (50%)] [Val Loss:1.099696 Acc:0.641100 6411/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:32/100] [S:330/100000] [Train Loss:1.160188 Acc:0.614000 10/10 (100%)] [Val Loss:1.097308 Acc:0.638800 6388/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] Step status
[E:32/100] [S:330/100000] [Train Loss:1.128807 Acc:0.634400] [Val Loss:1.097507 Acc:0.640900 6409/10000 (64%)] [Best Epoch:27 Loss:1.075512 Acc:0.651800] [Best Step:280 Loss:1.075512 Acc:0.651800] [19.99s 656.4s] Epoch status
[E:33/100] [S:335/100000] [Train Loss:1.166533 Acc:0.630000 5/10 (50%)] [Val Loss:1.074612 Acc:0.655600 6556/10000 (66%)] [Best Epoch:33 Loss:1.074612 Acc:0.655600] [Best Step:335 Loss:1.074612 Acc:0.655600] Step status
[E:33/100] [S:340/100000] [Train Loss:1.188134 Acc:0.613000 10/10 (100%)] [Val Loss:1.069681 Acc:0.659700 6597/10000 (66%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:33/100] [S:340/100000] [Train Loss:1.135677 Acc:0.629400] [Val Loss:1.086565 Acc:0.651500 6515/10000 (65%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.00s 676.4s] Epoch status
[E:34/100] [S:345/100000] [Train Loss:1.106099 Acc:0.620000 5/10 (50%)] [Val Loss:1.108088 Acc:0.641300 6413/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:34/100] [S:350/100000] [Train Loss:1.149848 Acc:0.612000 10/10 (100%)] [Val Loss:1.105935 Acc:0.628400 6284/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:34/100] [S:350/100000] [Train Loss:1.108683 Acc:0.636100] [Val Loss:1.109058 Acc:0.627100 6271/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.05s 696.5s] Epoch status
[E:35/100] [S:355/100000] [Train Loss:1.210073 Acc:0.609000 5/10 (50%)] [Val Loss:1.135575 Acc:0.622600 6226/10000 (62%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:35/100] [S:360/100000] [Train Loss:1.120926 Acc:0.634000 10/10 (100%)] [Val Loss:1.109824 Acc:0.635400 6354/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:35/100] [S:360/100000] [Train Loss:1.141297 Acc:0.623200] [Val Loss:1.131826 Acc:0.635000 6350/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.08s 716.6s] Epoch status
[E:36/100] [S:365/100000] [Train Loss:1.154690 Acc:0.623000 5/10 (50%)] [Val Loss:1.109297 Acc:0.628900 6289/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:36/100] [S:370/100000] [Train Loss:1.111283 Acc:0.657000 10/10 (100%)] [Val Loss:1.120579 Acc:0.631200 6312/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:36/100] [S:370/100000] [Train Loss:1.114520 Acc:0.638000] [Val Loss:1.121302 Acc:0.628200 6282/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.00s 736.6s] Epoch status
[E:37/100] [S:375/100000] [Train Loss:1.078494 Acc:0.658000 5/10 (50%)] [Val Loss:1.142237 Acc:0.628500 6285/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:37/100] [S:380/100000] [Train Loss:1.076631 Acc:0.648000 10/10 (100%)] [Val Loss:1.098411 Acc:0.637100 6371/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:37/100] [S:380/100000] [Train Loss:1.108114 Acc:0.644600] [Val Loss:1.108840 Acc:0.633400 6334/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.12s 756.7s] Epoch status
[E:38/100] [S:385/100000] [Train Loss:1.084809 Acc:0.657000 5/10 (50%)] [Val Loss:1.110116 Acc:0.633300 6333/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:38/100] [S:390/100000] [Train Loss:1.058614 Acc:0.654000 10/10 (100%)] [Val Loss:1.080049 Acc:0.654100 6541/10000 (65%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:38/100] [S:390/100000] [Train Loss:1.076580 Acc:0.645200] [Val Loss:1.110053 Acc:0.643600 6436/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [19.95s 776.6s] Epoch status
[E:39/100] [S:395/100000] [Train Loss:1.120218 Acc:0.644000 5/10 (50%)] [Val Loss:1.120146 Acc:0.634300 6343/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:39/100] [S:400/100000] [Train Loss:1.087189 Acc:0.656000 10/10 (100%)] [Val Loss:1.102170 Acc:0.640800 6408/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:39/100] [S:400/100000] [Train Loss:1.108199 Acc:0.641600] [Val Loss:1.093920 Acc:0.645600 6456/10000 (65%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.07s 796.7s] Epoch status
[E:40/100] [S:405/100000] [Train Loss:1.132214 Acc:0.636000 5/10 (50%)] [Val Loss:1.128390 Acc:0.636100 6361/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:40/100] [S:410/100000] [Train Loss:1.168948 Acc:0.627000 10/10 (100%)] [Val Loss:1.159214 Acc:0.621200 6212/10000 (62%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:40/100] [S:410/100000] [Train Loss:1.101381 Acc:0.644900] [Val Loss:1.136318 Acc:0.620300 6203/10000 (62%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.17s 816.9s] Epoch status
[E:41/100] [S:415/100000] [Train Loss:1.071941 Acc:0.644000 5/10 (50%)] [Val Loss:1.108393 Acc:0.637600 6376/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:41/100] [S:420/100000] [Train Loss:1.012549 Acc:0.677000 10/10 (100%)] [Val Loss:1.095745 Acc:0.648800 6488/10000 (65%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:41/100] [S:420/100000] [Train Loss:1.089551 Acc:0.639700] [Val Loss:1.078069 Acc:0.640500 6405/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.29s 837.2s] Epoch status
[E:42/100] [S:425/100000] [Train Loss:1.077498 Acc:0.646000 5/10 (50%)] [Val Loss:1.101282 Acc:0.638700 6387/10000 (64%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:42/100] [S:430/100000] [Train Loss:1.049053 Acc:0.662000 10/10 (100%)] [Val Loss:1.118357 Acc:0.630000 6300/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:42/100] [S:430/100000] [Train Loss:1.137134 Acc:0.628800] [Val Loss:1.118225 Acc:0.633800 6338/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] [20.08s 857.3s] Epoch status
[E:43/100] [S:435/100000] [Train Loss:1.164805 Acc:0.607000 5/10 (50%)] [Val Loss:1.086441 Acc:0.634100 6341/10000 (63%)] [Best Epoch:33 Loss:1.069681 Acc:0.659700] [Best Step:340 Loss:1.069681 Acc:0.659700] Step status
[E:43/100] [S:440/100000] [Train Loss:1.119229 Acc:0.634000 10/10 (100%)] [Val Loss:1.066756 Acc:0.655100 6551/10000 (66%)] [Best Epoch:43 Loss:1.066756 Acc:0.655100] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:43/100] [S:440/100000] [Train Loss:1.120700 Acc:0.632700] [Val Loss:1.063598 Acc:0.650300 6503/10000 (65%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] [20.09s 877.4s] Epoch status
[E:44/100] [S:445/100000] [Train Loss:1.144864 Acc:0.616000 5/10 (50%)] [Val Loss:1.105061 Acc:0.637000 6370/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:44/100] [S:450/100000] [Train Loss:1.078246 Acc:0.648000 10/10 (100%)] [Val Loss:1.094258 Acc:0.638100 6381/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:44/100] [S:450/100000] [Train Loss:1.109884 Acc:0.631800] [Val Loss:1.109701 Acc:0.636700 6367/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] [20.07s 897.4s] Epoch status
[E:45/100] [S:455/100000] [Train Loss:1.106094 Acc:0.641000 5/10 (50%)] [Val Loss:1.129583 Acc:0.636800 6368/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:45/100] [S:460/100000] [Train Loss:1.064615 Acc:0.640000 10/10 (100%)] [Val Loss:1.077839 Acc:0.642200 6422/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:45/100] [S:460/100000] [Train Loss:1.114823 Acc:0.634400] [Val Loss:1.086220 Acc:0.638200 6382/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] [20.23s 917.6s] Epoch status
[E:46/100] [S:465/100000] [Train Loss:1.068665 Acc:0.657000 5/10 (50%)] [Val Loss:1.125552 Acc:0.630600 6306/10000 (63%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:46/100] [S:470/100000] [Train Loss:1.091016 Acc:0.639000 10/10 (100%)] [Val Loss:1.077943 Acc:0.650200 6502/10000 (65%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:46/100] [S:470/100000] [Train Loss:1.079658 Acc:0.643300] [Val Loss:1.064142 Acc:0.646300 6463/10000 (65%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] [20.21s 937.9s] Epoch status
[E:47/100] [S:475/100000] [Train Loss:1.121663 Acc:0.629000 5/10 (50%)] [Val Loss:1.081663 Acc:0.645500 6455/10000 (65%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:47/100] [S:480/100000] [Train Loss:1.073009 Acc:0.650000 10/10 (100%)] [Val Loss:1.126041 Acc:0.641300 6413/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:47/100] [S:480/100000] [Train Loss:1.106697 Acc:0.631300] [Val Loss:1.122543 Acc:0.636800 6368/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] [20.14s 958.0s] Epoch status
[E:48/100] [S:485/100000] [Train Loss:1.060541 Acc:0.645000 5/10 (50%)] [Val Loss:1.085254 Acc:0.636600 6366/10000 (64%)] [Best Epoch:43 Loss:1.063598 Acc:0.650300] [Best Step:440 Loss:1.066756 Acc:0.655100] Step status
[E:48/100] [S:490/100000] [Train Loss:1.043159 Acc:0.645000 10/10 (100%)] [Val Loss:1.059383 Acc:0.657000 6570/10000 (66%)] [Best Epoch:48 Loss:1.059383 Acc:0.657000] [Best Step:490 Loss:1.059383 Acc:0.657000] Step status
[E:48/100] [S:490/100000] [Train Loss:1.097869 Acc:0.634500] [Val Loss:1.081426 Acc:0.647400 6474/10000 (65%)] [Best Epoch:48 Loss:1.059383 Acc:0.657000] [Best Step:490 Loss:1.059383 Acc:0.657000] [19.92s 977.9s] Epoch status
[E:49/100] [S:495/100000] [Train Loss:1.116079 Acc:0.624000 5/10 (50%)] [Val Loss:1.094050 Acc:0.629400 6294/10000 (63%)] [Best Epoch:48 Loss:1.059383 Acc:0.657000] [Best Step:490 Loss:1.059383 Acc:0.657000] Step status
[E:49/100] [S:500/100000] [Train Loss:1.130248 Acc:0.634000 10/10 (100%)] [Val Loss:1.051219 Acc:0.662200 6622/10000 (66%)] [Best Epoch:49 Loss:1.051219 Acc:0.662200] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:49/100] [S:500/100000] [Train Loss:1.093293 Acc:0.638800] [Val Loss:1.045672 Acc:0.658600 6586/10000 (66%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] [19.84s 997.8s] Epoch status
[E:50/100] [S:505/100000] [Train Loss:1.140463 Acc:0.638000 5/10 (50%)] [Val Loss:1.060365 Acc:0.654500 6545/10000 (65%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:50/100] [S:510/100000] [Train Loss:1.044390 Acc:0.663000 10/10 (100%)] [Val Loss:1.106635 Acc:0.644200 6442/10000 (64%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:50/100] [S:510/100000] [Train Loss:1.095504 Acc:0.643800] [Val Loss:1.072353 Acc:0.647600 6476/10000 (65%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] [19.85s 1017.6s] Epoch status
[E:51/100] [S:515/100000] [Train Loss:1.149685 Acc:0.613000 5/10 (50%)] [Val Loss:1.135782 Acc:0.633300 6333/10000 (63%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:51/100] [S:520/100000] [Train Loss:1.077325 Acc:0.638000 10/10 (100%)] [Val Loss:1.137759 Acc:0.635800 6358/10000 (64%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:51/100] [S:520/100000] [Train Loss:1.088232 Acc:0.639000] [Val Loss:1.094860 Acc:0.645500 6455/10000 (65%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] [19.91s 1037.5s] Epoch status
[E:52/100] [S:525/100000] [Train Loss:1.127501 Acc:0.626000 5/10 (50%)] [Val Loss:1.086300 Acc:0.640000 6400/10000 (64%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:52/100] [S:530/100000] [Train Loss:1.065977 Acc:0.658000 10/10 (100%)] [Val Loss:1.122966 Acc:0.630200 6302/10000 (63%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:52/100] [S:530/100000] [Train Loss:1.097328 Acc:0.640900] [Val Loss:1.117715 Acc:0.633000 6330/10000 (63%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] [19.86s 1057.4s] Epoch status
[E:53/100] [S:535/100000] [Train Loss:1.087094 Acc:0.647000 5/10 (50%)] [Val Loss:1.087964 Acc:0.632900 6329/10000 (63%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:53/100] [S:540/100000] [Train Loss:1.050918 Acc:0.646000 10/10 (100%)] [Val Loss:1.064021 Acc:0.655500 6555/10000 (66%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:53/100] [S:540/100000] [Train Loss:1.074915 Acc:0.646400] [Val Loss:1.057349 Acc:0.655300 6553/10000 (66%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] [19.91s 1077.3s] Epoch status
[E:54/100] [S:545/100000] [Train Loss:1.138784 Acc:0.627000 5/10 (50%)] [Val Loss:1.070358 Acc:0.645900 6459/10000 (65%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:54/100] [S:550/100000] [Train Loss:1.155756 Acc:0.632000 10/10 (100%)] [Val Loss:1.137023 Acc:0.621300 6213/10000 (62%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] Step status
[E:54/100] [S:550/100000] [Train Loss:1.084555 Acc:0.642900] [Val Loss:1.136311 Acc:0.621600 6216/10000 (62%)] [Best Epoch:49 Loss:1.045672 Acc:0.658600] [Best Step:500 Loss:1.051219 Acc:0.662200] [19.92s 1097.2s] Epoch status
[E:55/100] [S:555/100000] [Train Loss:1.081485 Acc:0.633000 5/10 (50%)] [Val Loss:1.024534 Acc:0.662600 6626/10000 (66%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:55/100] [S:560/100000] [Train Loss:1.083786 Acc:0.642000 10/10 (100%)] [Val Loss:1.085675 Acc:0.648200 6482/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:55/100] [S:560/100000] [Train Loss:1.079649 Acc:0.646200] [Val Loss:1.094631 Acc:0.647700 6477/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [19.92s 1117.1s] Epoch status
[E:56/100] [S:565/100000] [Train Loss:1.067666 Acc:0.651000 5/10 (50%)] [Val Loss:1.081291 Acc:0.646100 6461/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:56/100] [S:570/100000] [Train Loss:1.088738 Acc:0.644000 10/10 (100%)] [Val Loss:1.052702 Acc:0.644800 6448/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:56/100] [S:570/100000] [Train Loss:1.095016 Acc:0.637200] [Val Loss:1.071500 Acc:0.634100 6341/10000 (63%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [19.79s 1136.9s] Epoch status
[E:57/100] [S:575/100000] [Train Loss:1.029626 Acc:0.657000 5/10 (50%)] [Val Loss:1.076980 Acc:0.643200 6432/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:57/100] [S:580/100000] [Train Loss:1.092300 Acc:0.646000 10/10 (100%)] [Val Loss:1.067589 Acc:0.644800 6448/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:57/100] [S:580/100000] [Train Loss:1.093117 Acc:0.641300] [Val Loss:1.073517 Acc:0.639200 6392/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [20.52s 1157.4s] Epoch status
[E:58/100] [S:585/100000] [Train Loss:1.049593 Acc:0.635000 5/10 (50%)] [Val Loss:1.145984 Acc:0.628800 6288/10000 (63%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:58/100] [S:590/100000] [Train Loss:1.075136 Acc:0.660000 10/10 (100%)] [Val Loss:1.111776 Acc:0.636600 6366/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:58/100] [S:590/100000] [Train Loss:1.085887 Acc:0.649100] [Val Loss:1.108645 Acc:0.643800 6438/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [20.11s 1177.5s] Epoch status
[E:59/100] [S:595/100000] [Train Loss:1.116177 Acc:0.632000 5/10 (50%)] [Val Loss:1.064075 Acc:0.655500 6555/10000 (66%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:59/100] [S:600/100000] [Train Loss:1.113566 Acc:0.638000 10/10 (100%)] [Val Loss:1.086235 Acc:0.634800 6348/10000 (63%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:59/100] [S:600/100000] [Train Loss:1.115535 Acc:0.635300] [Val Loss:1.092341 Acc:0.629400 6294/10000 (63%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [22.62s 1200.2s] Epoch status
[E:60/100] [S:605/100000] [Train Loss:1.123111 Acc:0.647000 5/10 (50%)] [Val Loss:1.084873 Acc:0.636800 6368/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:60/100] [S:610/100000] [Train Loss:1.101901 Acc:0.631000 10/10 (100%)] [Val Loss:1.097978 Acc:0.644300 6443/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:60/100] [S:610/100000] [Train Loss:1.082605 Acc:0.643100] [Val Loss:1.081505 Acc:0.653200 6532/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [20.09s 1220.3s] Epoch status
[E:61/100] [S:615/100000] [Train Loss:1.117607 Acc:0.641000 5/10 (50%)] [Val Loss:1.093737 Acc:0.640200 6402/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:61/100] [S:620/100000] [Train Loss:1.094660 Acc:0.636000 10/10 (100%)] [Val Loss:1.097514 Acc:0.642800 6428/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:61/100] [S:620/100000] [Train Loss:1.104322 Acc:0.637600] [Val Loss:1.076359 Acc:0.650200 6502/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [20.08s 1240.3s] Epoch status
[E:62/100] [S:625/100000] [Train Loss:1.112613 Acc:0.633000 5/10 (50%)] [Val Loss:1.094935 Acc:0.642300 6423/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:62/100] [S:630/100000] [Train Loss:1.017960 Acc:0.664000 10/10 (100%)] [Val Loss:1.061892 Acc:0.649300 6493/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:62/100] [S:630/100000] [Train Loss:1.087227 Acc:0.636500] [Val Loss:1.037155 Acc:0.658900 6589/10000 (66%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [20.14s 1260.5s] Epoch status
[E:63/100] [S:635/100000] [Train Loss:1.038473 Acc:0.675000 5/10 (50%)] [Val Loss:1.059394 Acc:0.654400 6544/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:63/100] [S:640/100000] [Train Loss:1.089411 Acc:0.641000 10/10 (100%)] [Val Loss:1.102378 Acc:0.638500 6385/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:63/100] [S:640/100000] [Train Loss:1.088521 Acc:0.650700] [Val Loss:1.115940 Acc:0.633800 6338/10000 (63%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [19.81s 1280.3s] Epoch status
[E:64/100] [S:645/100000] [Train Loss:1.117524 Acc:0.622000 5/10 (50%)] [Val Loss:1.086889 Acc:0.645500 6455/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:64/100] [S:650/100000] [Train Loss:1.139455 Acc:0.630000 10/10 (100%)] [Val Loss:1.077764 Acc:0.644100 6441/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:64/100] [S:650/100000] [Train Loss:1.091119 Acc:0.643600] [Val Loss:1.078986 Acc:0.650200 6502/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [19.86s 1300.1s] Epoch status
[E:65/100] [S:655/100000] [Train Loss:1.135261 Acc:0.633000 5/10 (50%)] [Val Loss:1.109965 Acc:0.645600 6456/10000 (65%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
[E:65/100] [S:660/100000] [Train Loss:1.104078 Acc:0.632000 10/10 (100%)] [Val Loss:1.067992 Acc:0.644500 6445/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] Step status
Early Stop With step: 660
[E:65/100] [S:660/100000] [Train Loss:1.092243 Acc:0.646400] [Val Loss:1.067515 Acc:0.640500 6405/10000 (64%)] [Best Epoch:55 Loss:1.024534 Acc:0.662600] [Best Step:555 Loss:1.024534 Acc:0.662600] [19.72s 1319.9s] Epoch status
> Dovesky
[[-11.15456 -12.608416 -4.3386755 -9.514153 -10.997666
-5.879319 -5.6799726 -1.4792681 -9.864466 -2.6395202
-10.024909 -3.0944839 -0.46927977 -9.845455 -12.673562
-5.267896 -14.660818 -5.2269883 ]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.47) Russian
(-1.48) Czech
(-2.64) Irish
> Jackson
[[-11.136252 -13.164243 -9.152903 -5.671031 -9.121303
-6.3863363 -0.11942005 -6.688505 -11.711407 -8.398445
-11.543731 -2.4797602 -5.3600435 -11.202702 -13.145058
-4.0789714 -12.38205 -8.085201 ]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.12) Scottish
(-2.48) English
(-4.08) French
> Satoshi
[[-12.311507 -7.3708954 -3.0775084 -3.1271336 -5.84587
-5.185088 -5.1088986 -5.3196754 -2.5652363 -6.6197653
-0.35248804 -6.264645 -5.089513 -2.9695826 -3.3472583
-5.7556515 -9.279834 -4.5078664 ]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.35) Japanese
(-2.57) Arabic
(-2.97) Italian
> Foong
[[-2.9198012 -1.0796714 -4.7780027 -7.685022 -5.1835794 -3.2180996
-4.860241 -2.9677668 -6.3561764 -2.3206499 -4.878993 -2.954226
-4.6359863 -3.9107776 -7.0906854 -4.5995116 -1.666034 -2.2692003]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-1.08) Chinese
(-1.67) Vietnamese
(-2.27) German
> Tsai
[[-7.5000424 -1.0480399 -4.730262 -5.5038843 -6.9739256 -7.76619
-5.7381983 -6.0231447 -0.9425225 -9.867343 -3.251836 -7.269185
-7.3243184 -2.6890192 -7.4435186 -7.567208 -2.0430076 -7.6369867]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.94) Arabic
(-1.05) Chinese
(-2.04) Vietnamese
> Dovesky
[[-11.15456 -12.608416 -4.3386755 -9.514153 -10.997666
-5.879319 -5.6799726 -1.4792681 -9.864466 -2.6395202
-10.024909 -3.0944839 -0.46927977 -9.845455 -12.673562
-5.267896 -14.660818 -5.2269883 ]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.47) Russian
(-1.48) Czech
(-2.64) Irish
> Jackson
[[-11.136252 -13.164243 -9.152903 -5.671031 -9.121303
-6.3863363 -0.11942005 -6.688505 -11.711407 -8.398445
-11.543731 -2.4797602 -5.3600435 -11.202702 -13.145058
-4.0789714 -12.38205 -8.085201 ]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.12) Scottish
(-2.48) English
(-4.08) French
> Satoshi
[[-12.311507 -7.3708954 -3.0775084 -3.1271336 -5.84587
-5.185088 -5.1088986 -5.3196754 -2.5652363 -6.6197653
-0.35248804 -6.264645 -5.089513 -2.9695826 -3.3472583
-5.7556515 -9.279834 -4.5078664 ]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.35) Japanese
(-2.57) Arabic
(-2.97) Italian
> Foong
[[-2.9198012 -1.0796714 -4.7780027 -7.685022 -5.1835794 -3.2180996
-4.860241 -2.9677668 -6.3561764 -2.3206499 -4.878993 -2.954226
-4.6359863 -3.9107776 -7.0906854 -4.5995116 -1.666034 -2.2692003]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-1.08) Chinese
(-1.67) Vietnamese
(-2.27) German
> Tsai
[[-7.5000424 -1.0480399 -4.730262 -5.5038843 -6.9739256 -7.76619
-5.7381983 -6.0231447 -0.9425225 -9.867343 -3.251836 -7.269185
-7.3243184 -2.6890192 -7.4435186 -7.567208 -2.0430076 -7.6369867]]
['Korean', 'Chinese', 'Polish', 'Greek', 'Spanish', 'Dutch', 'Scottish', 'Czech', 'Arabic', 'Irish', 'Japanese', 'English', 'Russian', 'Italian', 'Portuguese', 'French', 'Vietnamese', 'German']
(-0.94) Arabic
(-1.05) Chinese
(-2.04) Vietnamese