apr/include/apr_tables.h

508 lines
19 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef APR_TABLES_H
#define APR_TABLES_H
/**
* @file apr_tables.h
* @brief APR Table library
*/
#include "apr.h"
#include "apr_pools.h"
#if APR_HAVE_STDARG_H
#include <stdarg.h> /* for va_list */
#endif
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/**
* @defgroup apr_tables Table and Array Functions
* @ingroup APR
* Arrays are used to store data which is referenced sequentially or
* as a stack. Functions are provided to push and pop individual
* elements as well as to operate on the entire array.
*
* Tables are used to store data which can be referenced by key.
* Limited capabilities are provided for tables with multiple elements
* which share a key; while key lookup will return only a single
* element, iteration is available. Additionally, a table can be
* compressed to resolve duplicates.
*
* Both arrays and tables may store string or binary data; some features,
* such as concatenation or merging of elements, work only for string
* data.
* @{
*/
/** the table abstract data type */
typedef struct apr_table_t apr_table_t;
/** @see apr_array_header_t */
typedef struct apr_array_header_t apr_array_header_t;
/** An opaque array type */
struct apr_array_header_t {
/** The pool the array is allocated out of */
apr_pool_t *pool;
/** The amount of memory allocated for each element of the array */
int elt_size;
/** The number of active elements in the array */
int nelts;
/** The number of elements allocated in the array */
int nalloc;
/** The elements in the array */
char *elts;
};
/**
* The (opaque) structure for string-content tables.
*/
typedef struct apr_table_entry_t apr_table_entry_t;
/** The type for each entry in a string-content table */
struct apr_table_entry_t {
/** The key for the current table entry */
char *key; /* maybe NULL in future;
* check when iterating thru table_elts
*/
/** The value for the current table entry */
char *val;
/** A checksum for the key, for use by the apr_table internals */
apr_uint32_t key_checksum;
};
/**
* Get the elements from a table.
* @param t The table
* @return An array containing the contents of the table
*/
APR_DECLARE(const apr_array_header_t *) apr_table_elts(const apr_table_t *t);
/**
* Determine if the table is empty (either NULL or having no elements).
* @param t The table to check
* @return True if empty, False otherwise
*/
APR_DECLARE(int) apr_is_empty_table(const apr_table_t *t);
/**
* Determine if the array is empty (either NULL or having no elements).
* @param a The array to check
* @return True if empty, False otherwise
*/
APR_DECLARE(int) apr_is_empty_array(const apr_array_header_t *a);
/**
* Create an array.
* @param p The pool to allocate the memory out of
* @param nelts the number of elements in the initial array
* @param elt_size The size of each element in the array.
* @return The new array
*/
APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
int nelts, int elt_size);
/**
* Add a new element to an array (as a first-in, last-out stack).
* @param arr The array to add an element to.
* @return Location for the new element in the array.
* @remark If there are no free spots in the array, then this function will
* allocate new space for the new element.
*/
APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr);
/** A helper macro for accessing a member of an APR array.
*
* @param ary the array
* @param i the index into the array to return
* @param type the type of the objects stored in the array
*
* @return the item at index i
*/
#define APR_ARRAY_IDX(ary,i,type) (((type *)(ary)->elts)[i])
/** A helper macro for pushing elements into an APR array.
*
* @param ary the array
* @param type the type of the objects stored in the array
*
* @return the location where the new object should be placed
*/
#define APR_ARRAY_PUSH(ary,type) (*((type *)apr_array_push(ary)))
/**
* Remove an element from an array (as a first-in, last-out stack).
* @param arr The array to remove an element from.
* @return Location of the element in the array.
* @remark If there are no elements in the array, NULL is returned.
*/
APR_DECLARE(void *) apr_array_pop(apr_array_header_t *arr);
/**
* Remove all elements from an array.
* @param arr The array to remove all elements from.
* @remark As the underlying storage is allocated from a pool, no
* memory is freed by this operation, but is available for reuse.
*/
APR_DECLARE(void) apr_array_clear(apr_array_header_t *arr);
/**
* Concatenate two arrays together.
* @param dst The destination array, and the one to go first in the combined
* array
* @param src The source array to add to the destination array
*/
APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
const apr_array_header_t *src);
/**
* Copy the entire array.
* @param p The pool to allocate the copy of the array out of
* @param arr The array to copy
* @return An exact copy of the array passed in
* @remark The alternate apr_array_copy_hdr() copies only the header, and arranges
* for the elements to be copied if (and only if) the code subsequently
* does a push or arraycat.
*/
APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
const apr_array_header_t *arr);
/**
* Copy the headers of the array, and arrange for the elements to be copied if
* and only if the code subsequently does a push or arraycat.
* @param p The pool to allocate the copy of the array out of
* @param arr The array to copy
* @return An exact copy of the array passed in
* @remark The alternate apr_array_copy() copies the *entire* array.
*/
APR_DECLARE(apr_array_header_t *) apr_array_copy_hdr(apr_pool_t *p,
const apr_array_header_t *arr);
/**
* Append one array to the end of another, creating a new array in the process.
* @param p The pool to allocate the new array out of
* @param first The array to put first in the new array.
* @param second The array to put second in the new array.
* @return A new array containing the data from the two arrays passed in.
*/
APR_DECLARE(apr_array_header_t *) apr_array_append(apr_pool_t *p,
const apr_array_header_t *first,
const apr_array_header_t *second);
/**
* Generate a new string from the apr_pool_t containing the concatenated
* sequence of substrings referenced as elements within the array. The string
* will be empty if all substrings are empty or null, or if there are no
* elements in the array. If sep is non-NUL, it will be inserted between
* elements as a separator.
* @param p The pool to allocate the string out of
* @param arr The array to generate the string from
* @param sep The separator to use
* @return A string containing all of the data in the array.
*/
APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
const apr_array_header_t *arr,
const char sep);
/**
* Make a new table.
* @param p The pool to allocate the pool out of
* @param nelts The number of elements in the initial table.
* @return The new table.
* @warning This table can only store text data
*/
APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts);
/**
* Create a new table and copy another table into it.
* @param p The pool to allocate the new table out of
* @param t The table to copy
* @return A copy of the table passed in
* @warning The table keys and respective values are not copied
*/
APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p,
const apr_table_t *t);
/**
* Create a new table whose contents are deep copied from the given
* table. A deep copy operation copies all fields, and makes copies
* of dynamically allocated memory pointed to by the fields.
* @param p The pool to allocate the new table out of
* @param t The table to clone
* @return A deep copy of the table passed in
*/
APR_DECLARE(apr_table_t *) apr_table_clone(apr_pool_t *p,
const apr_table_t *t);
/**
* Delete all of the elements from a table.
* @param t The table to clear
*/
APR_DECLARE(void) apr_table_clear(apr_table_t *t);
/**
* Get the value associated with a given key from the table. After this call,
* the data is still in the table.
* @param t The table to search for the key
* @param key The key to search for (case does not matter)
* @return The value associated with the key, or NULL if the key does not exist.
*/
APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key);
/**
* Get values associated with a given key from the table. If more than one
* value exists, return a comma separated list of values. After this call, the
* data is still in the table.
* @param p The pool to allocate the combined value from, if necessary
* @param t The table to search for the key
* @param key The key to search for (case does not matter)
* @return The value associated with the key, or NULL if the key does not exist.
*/
APR_DECLARE(const char *) apr_table_getm(apr_pool_t *p, const apr_table_t *t,
const char *key);
/**
* Add a key/value pair to a table. If another element already exists with the
* same key, this will overwrite the old data.
* @param t The table to add the data to.
* @param key The key to use (case does not matter)
* @param val The value to add
* @remark When adding data, this function makes a copy of both the key and the
* value.
*/
APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
const char *val);
/**
* Add a key/value pair to a table. If another element already exists with the
* same key, this will overwrite the old data.
* @param t The table to add the data to.
* @param key The key to use (case does not matter)
* @param val The value to add
* @warning When adding data, this function does not make a copy of the key or
* the value, so care should be taken to ensure that the values will
* not change after they have been added..
*/
APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
const char *val);
/**
* Remove data from the table.
* @param t The table to remove data from
* @param key The key of the data being removed (case does not matter)
*/
APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key);
/**
* Add data to a table by merging the value with data that has already been
* stored. The merging is done by concatenating the two values, separated
* by the string ", ".
* @param t The table to search for the data
* @param key The key to merge data for (case does not matter)
* @param val The data to add
* @remark If the key is not found, then this function acts like apr_table_add()
*/
APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
const char *val);
/**
* Add data to a table by merging the value with data that has already been
* stored. The merging is done by concatenating the two values, separated
* by the string ", ".
* @param t The table to search for the data
* @param key The key to merge data for (case does not matter)
* @param val The data to add
* @remark If the key is not found, then this function acts like apr_table_addn()
*/
APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
const char *val);
/**
* Add data to a table, regardless of whether there is another element with the
* same key.
* @param t The table to add to
* @param key The key to use
* @param val The value to add.
* @remark When adding data, this function makes a copy of both the key and the
* value.
*/
APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
const char *val);
/**
* Add data to a table, regardless of whether there is another element with the
* same key.
* @param t The table to add to
* @param key The key to use
* @param val The value to add.
* @remark When adding data, this function does not make a copy of the key or the
* value, so care should be taken to ensure that the values will not
* change after they have been added.
*/
APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
const char *val);
/**
* Merge two tables into one new table.
* @param p The pool to use for the new table
* @param overlay The first table to put in the new table
* @param base The table to add at the end of the new table
* @return A new table containing all of the data from the two passed in
*/
APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
const apr_table_t *overlay,
const apr_table_t *base);
/**
* Declaration prototype for the iterator callback function of apr_table_do()
* and apr_table_vdo().
* @param rec The data passed as the first argument to apr_table_[v]do()
* @param key The key from this iteration of the table
* @param value The value from this iteration of the table
* @remark Iteration continues while this callback function returns non-zero.
* To export the callback function for apr_table_[v]do() it must be declared
* in the _NONSTD convention.
* @see apr_table_do @see apr_table_vdo
*/
typedef int (apr_table_do_callback_fn_t)(void *rec, const char *key,
const char *value);
/**
* Iterate over a table running the provided function once for every
* element in the table. The varargs array must be a list of zero or
* more (char *) keys followed by a NULL pointer. If zero keys are
* given, the @param comp function will be invoked for every element
* in the table. Otherwise, the function is invoked only for those
* elements matching the keys specified.
*
* If an invocation of the comp function returns zero,
* iteration will continue using the next specified key, if any.
*
* @param comp The function to run
* @param rec The data to pass as the first argument to the function
* @param t The table to iterate over
* @param ... A varargs array of zero or more (char *) keys followed by NULL
* @return FALSE if one of the comp() iterations returned zero; TRUE if all
* iterations returned non-zero
* @see apr_table_do_callback_fn_t @see apr_table_vdo
*/
APR_DECLARE_NONSTD(int) apr_table_do(apr_table_do_callback_fn_t *comp,
void *rec, const apr_table_t *t, ...)
#if defined(__GNUC__) && __GNUC__ >= 4
__attribute__((sentinel))
#endif
;
/**
* Iterate over a table running the provided function once for every
* element in the table. The vp varargs parameter must be a
* list of zero or more (char *) keys followed by a NULL pointer. If
* zero keys are given, the @param comp function will be invoked for
* every element in the table. Otherwise, the function is invoked
* only for those elements matching the keys specified.
*
* If an invocation of the comp function returns zero,
* iteration will continue using the next specified key, if any.
*
* @param comp The function to run
* @param rec The data to pass as the first argument to the function
* @param t The table to iterate over
* @param vp List of zero or more (char *) keys followed by NULL
* @return FALSE if one of the comp() iterations returned zero; TRUE if all
* iterations returned non-zero
* @see apr_table_do_callback_fn_t @see apr_table_do
*/
APR_DECLARE(int) apr_table_vdo(apr_table_do_callback_fn_t *comp,
void *rec, const apr_table_t *t, va_list vp);
/** flag for overlap to use apr_table_setn */
#define APR_OVERLAP_TABLES_SET (0)
/** flag for overlap to use apr_table_mergen */
#define APR_OVERLAP_TABLES_MERGE (1)
/** flag for overlap to use apr_table_addn */
#define APR_OVERLAP_TABLES_ADD (2)
/**
* For each element in table b, either use setn or mergen to add the data
* to table a. Which method is used is determined by the flags passed in.
* @param a The table to add the data to.
* @param b The table to iterate over, adding its data to table a
* @param flags How to add the table to table a. One of:
* APR_OVERLAP_TABLES_SET Use apr_table_setn
* APR_OVERLAP_TABLES_MERGE Use apr_table_mergen
* APR_OVERLAP_TABLES_ADD Use apr_table_addn
* @remark When merging duplicates, the two values are concatenated,
* separated by the string ", ".
* @remark This function is highly optimized, and uses less memory and CPU cycles
* than a function that just loops through table b calling other functions.
*/
/**
* Conceptually, apr_table_overlap does this:
*
* <pre>
* apr_array_header_t *barr = apr_table_elts(b);
* apr_table_entry_t *belt = (apr_table_entry_t *)barr->elts;
* int i;
*
* for (i = 0; i < barr->nelts; ++i) {
* if (flags & APR_OVERLAP_TABLES_MERGE) {
* apr_table_mergen(a, belt[i].key, belt[i].val);
* }
* else if (flags & APR_OVERLAP_TABLES_ADD) {
* apr_table_addn(a, belt[i].key, belt[i].val);
* }
* else {
* apr_table_setn(a, belt[i].key, belt[i].val);
* }
* }
* </pre>
*
* Except that it is more efficient (less space and cpu-time) especially
* when b has many elements.
*
* Notice the assumptions on the keys and values in b -- they must be
* in an ancestor of a's pool. In practice b and a are usually from
* the same pool.
*/
APR_DECLARE(void) apr_table_overlap(apr_table_t *a, const apr_table_t *b,
unsigned flags);
/**
* Eliminate redundant entries in a table by either overwriting
* or merging duplicates.
*
* @param t Table.
* @param flags APR_OVERLAP_TABLES_MERGE to merge, or
* APR_OVERLAP_TABLES_SET to overwrite, or
* APR_OVERLAP_TABLES_ADD to add
* @remark When merging duplicates, the two values are concatenated,
* separated by the string ", ".
*/
APR_DECLARE(void) apr_table_compress(apr_table_t *t, unsigned flags);
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* ! APR_TABLES_H */