mirror of https://gitee.com/openkylin/apr.git
1408 lines
43 KiB
C
1408 lines
43 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "apr.h"
|
|
#include "apr_private.h"
|
|
|
|
#include "apr_lib.h"
|
|
#include "apr_strings.h"
|
|
#include "apr_network_io.h"
|
|
#include "apr_portable.h"
|
|
#include "apr_errno.h"
|
|
#include <math.h>
|
|
#if APR_HAVE_CTYPE_H
|
|
#include <ctype.h>
|
|
#endif
|
|
#if APR_HAVE_NETINET_IN_H
|
|
#include <netinet/in.h>
|
|
#endif
|
|
#if APR_HAVE_SYS_SOCKET_H
|
|
#include <sys/socket.h>
|
|
#endif
|
|
#if APR_HAVE_ARPA_INET_H
|
|
#include <arpa/inet.h>
|
|
#endif
|
|
#if APR_HAVE_LIMITS_H
|
|
#include <limits.h>
|
|
#endif
|
|
#if APR_HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
|
|
typedef enum {
|
|
NO = 0, YES = 1
|
|
} boolean_e;
|
|
|
|
#ifndef FALSE
|
|
#define FALSE 0
|
|
#endif
|
|
#ifndef TRUE
|
|
#define TRUE 1
|
|
#endif
|
|
#define NUL '\0'
|
|
|
|
static const char null_string[] = "(null)";
|
|
#define S_NULL ((char *)null_string)
|
|
#define S_NULL_LEN 6
|
|
|
|
#define FLOAT_DIGITS 6
|
|
#define EXPONENT_LENGTH 10
|
|
|
|
/*
|
|
* NUM_BUF_SIZE is the size of the buffer used for arithmetic conversions
|
|
*
|
|
* NOTICE: this is a magic number; do not decrease it
|
|
*/
|
|
#define NUM_BUF_SIZE 512
|
|
|
|
/*
|
|
* cvt - IEEE floating point formatting routines.
|
|
* Derived from UNIX V7, Copyright(C) Caldera International Inc.
|
|
*/
|
|
|
|
/*
|
|
* apr_ecvt converts to decimal
|
|
* the number of digits is specified by ndigit
|
|
* decpt is set to the position of the decimal point
|
|
* sign is set to 0 for positive, 1 for negative
|
|
*/
|
|
|
|
#define NDIG 80
|
|
|
|
/* buf must have at least NDIG bytes */
|
|
static char *apr_cvt(double arg, int ndigits, int *decpt, int *sign,
|
|
int eflag, char *buf)
|
|
{
|
|
register int r2;
|
|
double fi, fj;
|
|
register char *p, *p1;
|
|
|
|
if (ndigits >= NDIG - 1)
|
|
ndigits = NDIG - 2;
|
|
r2 = 0;
|
|
*sign = 0;
|
|
p = &buf[0];
|
|
if (arg < 0) {
|
|
*sign = 1;
|
|
arg = -arg;
|
|
}
|
|
arg = modf(arg, &fi);
|
|
/*
|
|
* Do integer part
|
|
*/
|
|
if (fi != 0) {
|
|
p1 = &buf[NDIG];
|
|
while (p1 > &buf[0] && fi != 0) {
|
|
fj = modf(fi / 10, &fi);
|
|
*--p1 = (int) ((fj + .03) * 10) + '0';
|
|
r2++;
|
|
}
|
|
while (p1 < &buf[NDIG])
|
|
*p++ = *p1++;
|
|
}
|
|
else if (arg > 0) {
|
|
while ((fj = arg * 10) < 1) {
|
|
arg = fj;
|
|
r2--;
|
|
}
|
|
}
|
|
p1 = &buf[ndigits];
|
|
if (eflag == 0)
|
|
p1 += r2;
|
|
if (p1 < &buf[0]) {
|
|
*decpt = -ndigits;
|
|
buf[0] = '\0';
|
|
return (buf);
|
|
}
|
|
*decpt = r2;
|
|
while (p <= p1 && p < &buf[NDIG]) {
|
|
arg *= 10;
|
|
arg = modf(arg, &fj);
|
|
*p++ = (int) fj + '0';
|
|
}
|
|
if (p1 >= &buf[NDIG]) {
|
|
buf[NDIG - 1] = '\0';
|
|
return (buf);
|
|
}
|
|
p = p1;
|
|
*p1 += 5;
|
|
while (*p1 > '9') {
|
|
*p1 = '0';
|
|
if (p1 > buf)
|
|
++ * --p1;
|
|
else {
|
|
*p1 = '1';
|
|
(*decpt)++;
|
|
if (eflag == 0) {
|
|
if (p > buf)
|
|
*p = '0';
|
|
p++;
|
|
}
|
|
}
|
|
}
|
|
*p = '\0';
|
|
return (buf);
|
|
}
|
|
|
|
static char *apr_ecvt(double arg, int ndigits, int *decpt, int *sign, char *buf)
|
|
{
|
|
return (apr_cvt(arg, ndigits, decpt, sign, 1, buf));
|
|
}
|
|
|
|
static char *apr_fcvt(double arg, int ndigits, int *decpt, int *sign, char *buf)
|
|
{
|
|
return (apr_cvt(arg, ndigits, decpt, sign, 0, buf));
|
|
}
|
|
|
|
/*
|
|
* apr_gcvt - Floating output conversion to
|
|
* minimal length string
|
|
*/
|
|
|
|
static char *apr_gcvt(double number, int ndigit, char *buf, boolean_e altform)
|
|
{
|
|
int sign, decpt;
|
|
register char *p1, *p2;
|
|
register int i;
|
|
char buf1[NDIG];
|
|
|
|
p1 = apr_ecvt(number, ndigit, &decpt, &sign, buf1);
|
|
p2 = buf;
|
|
if (sign)
|
|
*p2++ = '-';
|
|
for (i = ndigit - 1; i > 0 && p1[i] == '0'; i--)
|
|
ndigit--;
|
|
if ((decpt >= 0 && decpt - ndigit > 4)
|
|
|| (decpt < 0 && decpt < -3)) { /* use E-style */
|
|
decpt--;
|
|
*p2++ = *p1++;
|
|
*p2++ = '.';
|
|
for (i = 1; i < ndigit; i++)
|
|
*p2++ = *p1++;
|
|
*p2++ = 'e';
|
|
if (decpt < 0) {
|
|
decpt = -decpt;
|
|
*p2++ = '-';
|
|
}
|
|
else
|
|
*p2++ = '+';
|
|
if (decpt / 100 > 0)
|
|
*p2++ = decpt / 100 + '0';
|
|
if (decpt / 10 > 0)
|
|
*p2++ = (decpt % 100) / 10 + '0';
|
|
*p2++ = decpt % 10 + '0';
|
|
}
|
|
else {
|
|
if (decpt <= 0) {
|
|
if (*p1 != '0')
|
|
*p2++ = '.';
|
|
while (decpt < 0) {
|
|
decpt++;
|
|
*p2++ = '0';
|
|
}
|
|
}
|
|
for (i = 1; i <= ndigit; i++) {
|
|
*p2++ = *p1++;
|
|
if (i == decpt)
|
|
*p2++ = '.';
|
|
}
|
|
if (ndigit < decpt) {
|
|
while (ndigit++ < decpt)
|
|
*p2++ = '0';
|
|
*p2++ = '.';
|
|
}
|
|
}
|
|
if (p2[-1] == '.' && !altform)
|
|
p2--;
|
|
*p2 = '\0';
|
|
return (buf);
|
|
}
|
|
|
|
/*
|
|
* The INS_CHAR macro inserts a character in the buffer and writes
|
|
* the buffer back to disk if necessary
|
|
* It uses the char pointers sp and bep:
|
|
* sp points to the next available character in the buffer
|
|
* bep points to the end-of-buffer+1
|
|
* While using this macro, note that the nextb pointer is NOT updated.
|
|
*
|
|
* NOTE: Evaluation of the c argument should not have any side-effects
|
|
*/
|
|
#define INS_CHAR(c, sp, bep, cc) \
|
|
{ \
|
|
if (sp) { \
|
|
if (sp >= bep) { \
|
|
vbuff->curpos = sp; \
|
|
if (flush_func(vbuff)) \
|
|
return -1; \
|
|
sp = vbuff->curpos; \
|
|
bep = vbuff->endpos; \
|
|
} \
|
|
*sp++ = (c); \
|
|
} \
|
|
cc++; \
|
|
}
|
|
|
|
#define NUM(c) (c - '0')
|
|
|
|
#define STR_TO_DEC(str, num) \
|
|
num = NUM(*str++); \
|
|
while (apr_isdigit(*str)) \
|
|
{ \
|
|
num *= 10 ; \
|
|
num += NUM(*str++); \
|
|
}
|
|
|
|
/*
|
|
* This macro does zero padding so that the precision
|
|
* requirement is satisfied. The padding is done by
|
|
* adding '0's to the left of the string that is going
|
|
* to be printed. We don't allow precision to be large
|
|
* enough that we continue past the start of s.
|
|
*
|
|
* NOTE: this makes use of the magic info that s is
|
|
* always based on num_buf with a size of NUM_BUF_SIZE.
|
|
*/
|
|
#define FIX_PRECISION(adjust, precision, s, s_len) \
|
|
if (adjust) { \
|
|
apr_size_t p = (precision + 1 < NUM_BUF_SIZE) \
|
|
? precision : NUM_BUF_SIZE - 1; \
|
|
while (s_len < p) \
|
|
{ \
|
|
*--s = '0'; \
|
|
s_len++; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* Macro that does padding. The padding is done by printing
|
|
* the character ch.
|
|
*/
|
|
#define PAD(width, len, ch) \
|
|
do \
|
|
{ \
|
|
INS_CHAR(ch, sp, bep, cc); \
|
|
width--; \
|
|
} \
|
|
while (width > len)
|
|
|
|
/*
|
|
* Prefix the character ch to the string str
|
|
* Increase length
|
|
* Set the has_prefix flag
|
|
*/
|
|
#define PREFIX(str, length, ch) \
|
|
*--str = ch; \
|
|
length++; \
|
|
has_prefix=YES;
|
|
|
|
|
|
/*
|
|
* Convert num to its decimal format.
|
|
* Return value:
|
|
* - a pointer to a string containing the number (no sign)
|
|
* - len contains the length of the string
|
|
* - is_negative is set to TRUE or FALSE depending on the sign
|
|
* of the number (always set to FALSE if is_unsigned is TRUE)
|
|
*
|
|
* The caller provides a buffer for the string: that is the buf_end argument
|
|
* which is a pointer to the END of the buffer + 1 (i.e. if the buffer
|
|
* is declared as buf[ 100 ], buf_end should be &buf[ 100 ])
|
|
*
|
|
* Note: we have 2 versions. One is used when we need to use quads
|
|
* (conv_10_quad), the other when we don't (conv_10). We're assuming the
|
|
* latter is faster.
|
|
*/
|
|
static char *conv_10(register apr_int32_t num, register int is_unsigned,
|
|
register int *is_negative, char *buf_end,
|
|
register apr_size_t *len)
|
|
{
|
|
register char *p = buf_end;
|
|
register apr_uint32_t magnitude = num;
|
|
|
|
if (is_unsigned) {
|
|
*is_negative = FALSE;
|
|
}
|
|
else {
|
|
*is_negative = (num < 0);
|
|
|
|
/*
|
|
* On a 2's complement machine, negating the most negative integer
|
|
* results in a number that cannot be represented as a signed integer.
|
|
* Here is what we do to obtain the number's magnitude:
|
|
* a. add 1 to the number
|
|
* b. negate it (becomes positive)
|
|
* c. convert it to unsigned
|
|
* d. add 1
|
|
*/
|
|
if (*is_negative) {
|
|
apr_int32_t t = num + 1;
|
|
magnitude = ((apr_uint32_t) -t) + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We use a do-while loop so that we write at least 1 digit
|
|
*/
|
|
do {
|
|
register apr_uint32_t new_magnitude = magnitude / 10;
|
|
|
|
*--p = (char) (magnitude - new_magnitude * 10 + '0');
|
|
magnitude = new_magnitude;
|
|
}
|
|
while (magnitude);
|
|
|
|
*len = buf_end - p;
|
|
return (p);
|
|
}
|
|
|
|
static char *conv_10_quad(apr_int64_t num, register int is_unsigned,
|
|
register int *is_negative, char *buf_end,
|
|
register apr_size_t *len)
|
|
{
|
|
register char *p = buf_end;
|
|
apr_uint64_t magnitude = num;
|
|
|
|
/*
|
|
* We see if we can use the faster non-quad version by checking the
|
|
* number against the largest long value it can be. If <=, we
|
|
* punt to the quicker version.
|
|
*/
|
|
if ((magnitude <= APR_UINT32_MAX && is_unsigned)
|
|
|| (num <= APR_INT32_MAX && num >= APR_INT32_MIN && !is_unsigned))
|
|
return(conv_10((apr_int32_t)num, is_unsigned, is_negative, buf_end, len));
|
|
|
|
if (is_unsigned) {
|
|
*is_negative = FALSE;
|
|
}
|
|
else {
|
|
*is_negative = (num < 0);
|
|
|
|
/*
|
|
* On a 2's complement machine, negating the most negative integer
|
|
* results in a number that cannot be represented as a signed integer.
|
|
* Here is what we do to obtain the number's magnitude:
|
|
* a. add 1 to the number
|
|
* b. negate it (becomes positive)
|
|
* c. convert it to unsigned
|
|
* d. add 1
|
|
*/
|
|
if (*is_negative) {
|
|
apr_int64_t t = num + 1;
|
|
magnitude = ((apr_uint64_t) -t) + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We use a do-while loop so that we write at least 1 digit
|
|
*/
|
|
do {
|
|
apr_uint64_t new_magnitude = magnitude / 10;
|
|
|
|
*--p = (char) (magnitude - new_magnitude * 10 + '0');
|
|
magnitude = new_magnitude;
|
|
}
|
|
while (magnitude);
|
|
|
|
*len = buf_end - p;
|
|
return (p);
|
|
}
|
|
|
|
static char *conv_in_addr(struct in_addr *ia, char *buf_end, apr_size_t *len)
|
|
{
|
|
unsigned addr = ntohl(ia->s_addr);
|
|
char *p = buf_end;
|
|
int is_negative;
|
|
apr_size_t sub_len;
|
|
|
|
p = conv_10((addr & 0x000000FF) , TRUE, &is_negative, p, &sub_len);
|
|
*--p = '.';
|
|
p = conv_10((addr & 0x0000FF00) >> 8, TRUE, &is_negative, p, &sub_len);
|
|
*--p = '.';
|
|
p = conv_10((addr & 0x00FF0000) >> 16, TRUE, &is_negative, p, &sub_len);
|
|
*--p = '.';
|
|
p = conv_10((addr & 0xFF000000) >> 24, TRUE, &is_negative, p, &sub_len);
|
|
|
|
*len = buf_end - p;
|
|
return (p);
|
|
}
|
|
|
|
|
|
/* Must be passed a buffer of size NUM_BUF_SIZE where buf_end points
|
|
* to 1 byte past the end of the buffer. */
|
|
static char *conv_apr_sockaddr(apr_sockaddr_t *sa, char *buf_end, apr_size_t *len)
|
|
{
|
|
char *p = buf_end;
|
|
int is_negative;
|
|
apr_size_t sub_len;
|
|
char *ipaddr_str;
|
|
|
|
p = conv_10(sa->port, TRUE, &is_negative, p, &sub_len);
|
|
*--p = ':';
|
|
ipaddr_str = buf_end - NUM_BUF_SIZE;
|
|
if (apr_sockaddr_ip_getbuf(ipaddr_str, sa->addr_str_len, sa)) {
|
|
/* Should only fail if the buffer is too small, which it
|
|
* should not be; but fail safe anyway: */
|
|
*--p = '?';
|
|
*len = buf_end - p;
|
|
return p;
|
|
}
|
|
sub_len = strlen(ipaddr_str);
|
|
#if APR_HAVE_IPV6
|
|
if (sa->family == APR_INET6 &&
|
|
!IN6_IS_ADDR_V4MAPPED(&sa->sa.sin6.sin6_addr)) {
|
|
*(p - 1) = ']';
|
|
p -= sub_len + 2;
|
|
*p = '[';
|
|
memcpy(p + 1, ipaddr_str, sub_len);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
p -= sub_len;
|
|
memcpy(p, ipaddr_str, sub_len);
|
|
}
|
|
|
|
*len = buf_end - p;
|
|
return (p);
|
|
}
|
|
|
|
|
|
|
|
#if APR_HAS_THREADS
|
|
static char *conv_os_thread_t(apr_os_thread_t *tid, char *buf_end, apr_size_t *len)
|
|
{
|
|
union {
|
|
apr_os_thread_t tid;
|
|
apr_uint64_t u64;
|
|
apr_uint32_t u32;
|
|
} u;
|
|
int is_negative;
|
|
|
|
u.tid = *tid;
|
|
switch(sizeof(u.tid)) {
|
|
case sizeof(apr_int32_t):
|
|
return conv_10(u.u32, TRUE, &is_negative, buf_end, len);
|
|
case sizeof(apr_int64_t):
|
|
return conv_10_quad(u.u64, TRUE, &is_negative, buf_end, len);
|
|
default:
|
|
/* not implemented; stick 0 in the buffer */
|
|
return conv_10(0, TRUE, &is_negative, buf_end, len);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
* Convert a floating point number to a string formats 'f', 'e' or 'E'.
|
|
* The result is placed in buf, and len denotes the length of the string
|
|
* The sign is returned in the is_negative argument (and is not placed
|
|
* in buf).
|
|
*/
|
|
static char *conv_fp(register char format, register double num,
|
|
boolean_e add_dp, int precision, int *is_negative,
|
|
char *buf, apr_size_t *len)
|
|
{
|
|
register char *s = buf;
|
|
register char *p;
|
|
int decimal_point;
|
|
char buf1[NDIG];
|
|
|
|
if (format == 'f')
|
|
p = apr_fcvt(num, precision, &decimal_point, is_negative, buf1);
|
|
else /* either e or E format */
|
|
p = apr_ecvt(num, precision + 1, &decimal_point, is_negative, buf1);
|
|
|
|
/*
|
|
* Check for Infinity and NaN
|
|
*/
|
|
if (apr_isalpha(*p)) {
|
|
*len = strlen(p);
|
|
memcpy(buf, p, *len + 1);
|
|
*is_negative = FALSE;
|
|
return (buf);
|
|
}
|
|
|
|
if (format == 'f') {
|
|
if (decimal_point <= 0) {
|
|
*s++ = '0';
|
|
if (precision > 0) {
|
|
*s++ = '.';
|
|
while (decimal_point++ < 0)
|
|
*s++ = '0';
|
|
}
|
|
else if (add_dp)
|
|
*s++ = '.';
|
|
}
|
|
else {
|
|
while (decimal_point-- > 0)
|
|
*s++ = *p++;
|
|
if (precision > 0 || add_dp)
|
|
*s++ = '.';
|
|
}
|
|
}
|
|
else {
|
|
*s++ = *p++;
|
|
if (precision > 0 || add_dp)
|
|
*s++ = '.';
|
|
}
|
|
|
|
/*
|
|
* copy the rest of p, the NUL is NOT copied
|
|
*/
|
|
while (*p)
|
|
*s++ = *p++;
|
|
|
|
if (format != 'f') {
|
|
char temp[EXPONENT_LENGTH]; /* for exponent conversion */
|
|
apr_size_t t_len;
|
|
int exponent_is_negative;
|
|
|
|
*s++ = format; /* either e or E */
|
|
decimal_point--;
|
|
if (decimal_point != 0) {
|
|
p = conv_10((apr_int32_t) decimal_point, FALSE, &exponent_is_negative,
|
|
&temp[EXPONENT_LENGTH], &t_len);
|
|
*s++ = exponent_is_negative ? '-' : '+';
|
|
|
|
/*
|
|
* Make sure the exponent has at least 2 digits
|
|
*/
|
|
if (t_len == 1)
|
|
*s++ = '0';
|
|
while (t_len--)
|
|
*s++ = *p++;
|
|
}
|
|
else {
|
|
*s++ = '+';
|
|
*s++ = '0';
|
|
*s++ = '0';
|
|
}
|
|
}
|
|
|
|
*len = s - buf;
|
|
return (buf);
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert num to a base X number where X is a power of 2. nbits determines X.
|
|
* For example, if nbits is 3, we do base 8 conversion
|
|
* Return value:
|
|
* a pointer to a string containing the number
|
|
*
|
|
* The caller provides a buffer for the string: that is the buf_end argument
|
|
* which is a pointer to the END of the buffer + 1 (i.e. if the buffer
|
|
* is declared as buf[ 100 ], buf_end should be &buf[ 100 ])
|
|
*
|
|
* As with conv_10, we have a faster version which is used when
|
|
* the number isn't quad size.
|
|
*/
|
|
static char *conv_p2(register apr_uint32_t num, register int nbits,
|
|
char format, char *buf_end, register apr_size_t *len)
|
|
{
|
|
register int mask = (1 << nbits) - 1;
|
|
register char *p = buf_end;
|
|
static const char low_digits[] = "0123456789abcdef";
|
|
static const char upper_digits[] = "0123456789ABCDEF";
|
|
register const char *digits = (format == 'X') ? upper_digits : low_digits;
|
|
|
|
do {
|
|
*--p = digits[num & mask];
|
|
num >>= nbits;
|
|
}
|
|
while (num);
|
|
|
|
*len = buf_end - p;
|
|
return (p);
|
|
}
|
|
|
|
static char *conv_p2_quad(apr_uint64_t num, register int nbits,
|
|
char format, char *buf_end, register apr_size_t *len)
|
|
{
|
|
register int mask = (1 << nbits) - 1;
|
|
register char *p = buf_end;
|
|
static const char low_digits[] = "0123456789abcdef";
|
|
static const char upper_digits[] = "0123456789ABCDEF";
|
|
register const char *digits = (format == 'X') ? upper_digits : low_digits;
|
|
|
|
if (num <= APR_UINT32_MAX)
|
|
return(conv_p2((apr_uint32_t)num, nbits, format, buf_end, len));
|
|
|
|
do {
|
|
*--p = digits[num & mask];
|
|
num >>= nbits;
|
|
}
|
|
while (num);
|
|
|
|
*len = buf_end - p;
|
|
return (p);
|
|
}
|
|
|
|
#if APR_HAS_THREADS
|
|
static char *conv_os_thread_t_hex(apr_os_thread_t *tid, char *buf_end, apr_size_t *len)
|
|
{
|
|
union {
|
|
apr_os_thread_t tid;
|
|
apr_uint64_t u64;
|
|
apr_uint32_t u32;
|
|
} u;
|
|
int is_negative;
|
|
|
|
u.tid = *tid;
|
|
switch(sizeof(u.tid)) {
|
|
case sizeof(apr_int32_t):
|
|
return conv_p2(u.u32, 4, 'x', buf_end, len);
|
|
case sizeof(apr_int64_t):
|
|
return conv_p2_quad(u.u64, 4, 'x', buf_end, len);
|
|
default:
|
|
/* not implemented; stick 0 in the buffer */
|
|
return conv_10(0, TRUE, &is_negative, buf_end, len);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Do format conversion placing the output in buffer
|
|
*/
|
|
APR_DECLARE(int) apr_vformatter(int (*flush_func)(apr_vformatter_buff_t *),
|
|
apr_vformatter_buff_t *vbuff, const char *fmt, va_list ap)
|
|
{
|
|
register char *sp;
|
|
register char *bep;
|
|
register int cc = 0;
|
|
register apr_size_t i;
|
|
|
|
register char *s = NULL;
|
|
char *q;
|
|
apr_size_t s_len = 0;
|
|
|
|
register apr_size_t min_width = 0;
|
|
apr_size_t precision = 0;
|
|
enum {
|
|
LEFT, RIGHT
|
|
} adjust;
|
|
char pad_char;
|
|
char prefix_char;
|
|
|
|
double fp_num;
|
|
apr_int64_t i_quad = 0;
|
|
apr_uint64_t ui_quad;
|
|
apr_int32_t i_num = 0;
|
|
apr_uint32_t ui_num = 0;
|
|
|
|
char num_buf[NUM_BUF_SIZE];
|
|
char char_buf[2]; /* for printing %% and %<unknown> */
|
|
|
|
enum var_type_enum {
|
|
IS_QUAD, IS_LONG, IS_SHORT, IS_INT
|
|
};
|
|
enum var_type_enum var_type = IS_INT;
|
|
|
|
/*
|
|
* Flag variables
|
|
*/
|
|
boolean_e alternate_form;
|
|
boolean_e print_sign;
|
|
boolean_e print_blank;
|
|
boolean_e adjust_precision;
|
|
boolean_e adjust_width;
|
|
int is_negative;
|
|
|
|
sp = vbuff->curpos;
|
|
bep = vbuff->endpos;
|
|
|
|
while (*fmt) {
|
|
if (*fmt != '%') {
|
|
INS_CHAR(*fmt, sp, bep, cc);
|
|
}
|
|
else {
|
|
/*
|
|
* Default variable settings
|
|
*/
|
|
boolean_e print_something = YES;
|
|
adjust = RIGHT;
|
|
alternate_form = print_sign = print_blank = NO;
|
|
pad_char = ' ';
|
|
prefix_char = NUL;
|
|
|
|
fmt++;
|
|
|
|
/*
|
|
* Try to avoid checking for flags, width or precision
|
|
*/
|
|
if (!apr_islower(*fmt)) {
|
|
/*
|
|
* Recognize flags: -, #, BLANK, +
|
|
*/
|
|
for (;; fmt++) {
|
|
if (*fmt == '-')
|
|
adjust = LEFT;
|
|
else if (*fmt == '+')
|
|
print_sign = YES;
|
|
else if (*fmt == '#')
|
|
alternate_form = YES;
|
|
else if (*fmt == ' ')
|
|
print_blank = YES;
|
|
else if (*fmt == '0')
|
|
pad_char = '0';
|
|
else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check if a width was specified
|
|
*/
|
|
if (apr_isdigit(*fmt)) {
|
|
STR_TO_DEC(fmt, min_width);
|
|
adjust_width = YES;
|
|
}
|
|
else if (*fmt == '*') {
|
|
int v = va_arg(ap, int);
|
|
fmt++;
|
|
adjust_width = YES;
|
|
if (v < 0) {
|
|
adjust = LEFT;
|
|
min_width = (apr_size_t)(-v);
|
|
}
|
|
else
|
|
min_width = (apr_size_t)v;
|
|
}
|
|
else
|
|
adjust_width = NO;
|
|
|
|
/*
|
|
* Check if a precision was specified
|
|
*/
|
|
if (*fmt == '.') {
|
|
adjust_precision = YES;
|
|
fmt++;
|
|
if (apr_isdigit(*fmt)) {
|
|
STR_TO_DEC(fmt, precision);
|
|
}
|
|
else if (*fmt == '*') {
|
|
int v = va_arg(ap, int);
|
|
fmt++;
|
|
precision = (v < 0) ? 0 : (apr_size_t)v;
|
|
}
|
|
else
|
|
precision = 0;
|
|
}
|
|
else
|
|
adjust_precision = NO;
|
|
}
|
|
else
|
|
adjust_precision = adjust_width = NO;
|
|
|
|
/*
|
|
* Modifier check. In same cases, APR_OFF_T_FMT can be
|
|
* "lld" and APR_INT64_T_FMT can be "ld" (that is, off_t is
|
|
* "larger" than int64). Check that case 1st.
|
|
* Note that if APR_OFF_T_FMT is "d",
|
|
* the first if condition is never true. If APR_INT64_T_FMT
|
|
* is "d' then the second if condition is never true.
|
|
*/
|
|
if ((sizeof(APR_OFF_T_FMT) > sizeof(APR_INT64_T_FMT)) &&
|
|
((sizeof(APR_OFF_T_FMT) == 4 &&
|
|
fmt[0] == APR_OFF_T_FMT[0] &&
|
|
fmt[1] == APR_OFF_T_FMT[1]) ||
|
|
(sizeof(APR_OFF_T_FMT) == 3 &&
|
|
fmt[0] == APR_OFF_T_FMT[0]) ||
|
|
(sizeof(APR_OFF_T_FMT) > 4 &&
|
|
strncmp(fmt, APR_OFF_T_FMT,
|
|
sizeof(APR_OFF_T_FMT) - 2) == 0))) {
|
|
/* Need to account for trailing 'd' and null in sizeof() */
|
|
var_type = IS_QUAD;
|
|
fmt += (sizeof(APR_OFF_T_FMT) - 2);
|
|
}
|
|
else if ((sizeof(APR_INT64_T_FMT) == 4 &&
|
|
fmt[0] == APR_INT64_T_FMT[0] &&
|
|
fmt[1] == APR_INT64_T_FMT[1]) ||
|
|
(sizeof(APR_INT64_T_FMT) == 3 &&
|
|
fmt[0] == APR_INT64_T_FMT[0]) ||
|
|
(sizeof(APR_INT64_T_FMT) > 4 &&
|
|
strncmp(fmt, APR_INT64_T_FMT,
|
|
sizeof(APR_INT64_T_FMT) - 2) == 0)) {
|
|
/* Need to account for trailing 'd' and null in sizeof() */
|
|
var_type = IS_QUAD;
|
|
fmt += (sizeof(APR_INT64_T_FMT) - 2);
|
|
}
|
|
else if (*fmt == 'q') {
|
|
var_type = IS_QUAD;
|
|
fmt++;
|
|
}
|
|
else if (*fmt == 'l') {
|
|
var_type = IS_LONG;
|
|
fmt++;
|
|
}
|
|
else if (*fmt == 'h') {
|
|
var_type = IS_SHORT;
|
|
fmt++;
|
|
}
|
|
else {
|
|
var_type = IS_INT;
|
|
}
|
|
|
|
/*
|
|
* Argument extraction and printing.
|
|
* First we determine the argument type.
|
|
* Then, we convert the argument to a string.
|
|
* On exit from the switch, s points to the string that
|
|
* must be printed, s_len has the length of the string
|
|
* The precision requirements, if any, are reflected in s_len.
|
|
*
|
|
* NOTE: pad_char may be set to '0' because of the 0 flag.
|
|
* It is reset to ' ' by non-numeric formats
|
|
*/
|
|
switch (*fmt) {
|
|
case 'u':
|
|
if (var_type == IS_QUAD) {
|
|
i_quad = va_arg(ap, apr_uint64_t);
|
|
s = conv_10_quad(i_quad, 1, &is_negative,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
else {
|
|
if (var_type == IS_LONG)
|
|
i_num = (apr_int32_t) va_arg(ap, apr_uint32_t);
|
|
else if (var_type == IS_SHORT)
|
|
i_num = (apr_int32_t) (unsigned short) va_arg(ap, unsigned int);
|
|
else
|
|
i_num = (apr_int32_t) va_arg(ap, unsigned int);
|
|
s = conv_10(i_num, 1, &is_negative,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
FIX_PRECISION(adjust_precision, precision, s, s_len);
|
|
break;
|
|
|
|
case 'd':
|
|
case 'i':
|
|
if (var_type == IS_QUAD) {
|
|
i_quad = va_arg(ap, apr_int64_t);
|
|
s = conv_10_quad(i_quad, 0, &is_negative,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
else {
|
|
if (var_type == IS_LONG)
|
|
i_num = va_arg(ap, apr_int32_t);
|
|
else if (var_type == IS_SHORT)
|
|
i_num = (short) va_arg(ap, int);
|
|
else
|
|
i_num = va_arg(ap, int);
|
|
s = conv_10(i_num, 0, &is_negative,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
FIX_PRECISION(adjust_precision, precision, s, s_len);
|
|
|
|
if (is_negative)
|
|
prefix_char = '-';
|
|
else if (print_sign)
|
|
prefix_char = '+';
|
|
else if (print_blank)
|
|
prefix_char = ' ';
|
|
break;
|
|
|
|
|
|
case 'o':
|
|
if (var_type == IS_QUAD) {
|
|
ui_quad = va_arg(ap, apr_uint64_t);
|
|
s = conv_p2_quad(ui_quad, 3, *fmt,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
else {
|
|
if (var_type == IS_LONG)
|
|
ui_num = va_arg(ap, apr_uint32_t);
|
|
else if (var_type == IS_SHORT)
|
|
ui_num = (unsigned short) va_arg(ap, unsigned int);
|
|
else
|
|
ui_num = va_arg(ap, unsigned int);
|
|
s = conv_p2(ui_num, 3, *fmt,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
FIX_PRECISION(adjust_precision, precision, s, s_len);
|
|
if (alternate_form && *s != '0') {
|
|
*--s = '0';
|
|
s_len++;
|
|
}
|
|
break;
|
|
|
|
|
|
case 'x':
|
|
case 'X':
|
|
if (var_type == IS_QUAD) {
|
|
ui_quad = va_arg(ap, apr_uint64_t);
|
|
s = conv_p2_quad(ui_quad, 4, *fmt,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
else {
|
|
if (var_type == IS_LONG)
|
|
ui_num = va_arg(ap, apr_uint32_t);
|
|
else if (var_type == IS_SHORT)
|
|
ui_num = (unsigned short) va_arg(ap, unsigned int);
|
|
else
|
|
ui_num = va_arg(ap, unsigned int);
|
|
s = conv_p2(ui_num, 4, *fmt,
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
FIX_PRECISION(adjust_precision, precision, s, s_len);
|
|
if (alternate_form && ui_num != 0) {
|
|
*--s = *fmt; /* 'x' or 'X' */
|
|
*--s = '0';
|
|
s_len += 2;
|
|
}
|
|
break;
|
|
|
|
|
|
case 's':
|
|
s = va_arg(ap, char *);
|
|
if (s != NULL) {
|
|
if (!adjust_precision) {
|
|
s_len = strlen(s);
|
|
}
|
|
else {
|
|
/* From the C library standard in section 7.9.6.1:
|
|
* ...if the precision is specified, no more then
|
|
* that many characters are written. If the
|
|
* precision is not specified or is greater
|
|
* than the size of the array, the array shall
|
|
* contain a null character.
|
|
*
|
|
* My reading is is precision is specified and
|
|
* is less then or equal to the size of the
|
|
* array, no null character is required. So
|
|
* we can't do a strlen.
|
|
*
|
|
* This figures out the length of the string
|
|
* up to the precision. Once it's long enough
|
|
* for the specified precision, we don't care
|
|
* anymore.
|
|
*
|
|
* NOTE: you must do the length comparison
|
|
* before the check for the null character.
|
|
* Otherwise, you'll check one beyond the
|
|
* last valid character.
|
|
*/
|
|
const char *walk;
|
|
|
|
for (walk = s, s_len = 0;
|
|
(s_len < precision) && (*walk != '\0');
|
|
++walk, ++s_len);
|
|
}
|
|
}
|
|
else {
|
|
s = S_NULL;
|
|
s_len = S_NULL_LEN;
|
|
}
|
|
pad_char = ' ';
|
|
break;
|
|
|
|
|
|
case 'f':
|
|
case 'e':
|
|
case 'E':
|
|
fp_num = va_arg(ap, double);
|
|
/*
|
|
* We use &num_buf[ 1 ], so that we have room for the sign
|
|
*/
|
|
s = NULL;
|
|
#ifdef HAVE_ISNAN
|
|
if (isnan(fp_num)) {
|
|
s = "nan";
|
|
s_len = 3;
|
|
}
|
|
#endif
|
|
#ifdef HAVE_ISINF
|
|
if (!s && isinf(fp_num)) {
|
|
s = "inf";
|
|
s_len = 3;
|
|
}
|
|
#endif
|
|
if (!s) {
|
|
s = conv_fp(*fmt, fp_num, alternate_form,
|
|
(int)((adjust_precision == NO) ? FLOAT_DIGITS : precision),
|
|
&is_negative, &num_buf[1], &s_len);
|
|
if (is_negative)
|
|
prefix_char = '-';
|
|
else if (print_sign)
|
|
prefix_char = '+';
|
|
else if (print_blank)
|
|
prefix_char = ' ';
|
|
}
|
|
break;
|
|
|
|
|
|
case 'g':
|
|
case 'G':
|
|
if (adjust_precision == NO)
|
|
precision = FLOAT_DIGITS;
|
|
else if (precision == 0)
|
|
precision = 1;
|
|
/*
|
|
* * We use &num_buf[ 1 ], so that we have room for the sign
|
|
*/
|
|
s = apr_gcvt(va_arg(ap, double), (int) precision, &num_buf[1],
|
|
alternate_form);
|
|
if (*s == '-')
|
|
prefix_char = *s++;
|
|
else if (print_sign)
|
|
prefix_char = '+';
|
|
else if (print_blank)
|
|
prefix_char = ' ';
|
|
|
|
s_len = strlen(s);
|
|
|
|
if (alternate_form && (q = strchr(s, '.')) == NULL) {
|
|
s[s_len++] = '.';
|
|
s[s_len] = '\0'; /* delimit for following strchr() */
|
|
}
|
|
if (*fmt == 'G' && (q = strchr(s, 'e')) != NULL)
|
|
*q = 'E';
|
|
break;
|
|
|
|
|
|
case 'c':
|
|
char_buf[0] = (char) (va_arg(ap, int));
|
|
s = &char_buf[0];
|
|
s_len = 1;
|
|
pad_char = ' ';
|
|
break;
|
|
|
|
|
|
case '%':
|
|
char_buf[0] = '%';
|
|
s = &char_buf[0];
|
|
s_len = 1;
|
|
pad_char = ' ';
|
|
break;
|
|
|
|
|
|
case 'n':
|
|
if (var_type == IS_QUAD)
|
|
*(va_arg(ap, apr_int64_t *)) = cc;
|
|
else if (var_type == IS_LONG)
|
|
*(va_arg(ap, long *)) = cc;
|
|
else if (var_type == IS_SHORT)
|
|
*(va_arg(ap, short *)) = cc;
|
|
else
|
|
*(va_arg(ap, int *)) = cc;
|
|
print_something = NO;
|
|
break;
|
|
|
|
/*
|
|
* This is where we extend the printf format, with a second
|
|
* type specifier
|
|
*/
|
|
case 'p':
|
|
switch(*++fmt) {
|
|
/*
|
|
* If the pointer size is equal to or smaller than the size
|
|
* of the largest unsigned int, we convert the pointer to a
|
|
* hex number, otherwise we print "%p" to indicate that we
|
|
* don't handle "%p".
|
|
*/
|
|
case 'p':
|
|
#if APR_SIZEOF_VOIDP == 8
|
|
if (sizeof(void *) <= sizeof(apr_uint64_t)) {
|
|
ui_quad = (apr_uint64_t) va_arg(ap, void *);
|
|
s = conv_p2_quad(ui_quad, 4, 'x',
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
#else
|
|
if (sizeof(void *) <= sizeof(apr_uint32_t)) {
|
|
ui_num = (apr_uint32_t) va_arg(ap, void *);
|
|
s = conv_p2(ui_num, 4, 'x',
|
|
&num_buf[NUM_BUF_SIZE], &s_len);
|
|
}
|
|
#endif
|
|
else {
|
|
s = "%p";
|
|
s_len = 2;
|
|
prefix_char = NUL;
|
|
}
|
|
pad_char = ' ';
|
|
break;
|
|
|
|
/* print an apr_sockaddr_t as a.b.c.d:port */
|
|
case 'I':
|
|
{
|
|
apr_sockaddr_t *sa;
|
|
|
|
sa = va_arg(ap, apr_sockaddr_t *);
|
|
if (sa != NULL) {
|
|
s = conv_apr_sockaddr(sa, &num_buf[NUM_BUF_SIZE], &s_len);
|
|
if (adjust_precision && precision < s_len)
|
|
s_len = precision;
|
|
}
|
|
else {
|
|
s = S_NULL;
|
|
s_len = S_NULL_LEN;
|
|
}
|
|
pad_char = ' ';
|
|
}
|
|
break;
|
|
|
|
/* print a struct in_addr as a.b.c.d */
|
|
case 'A':
|
|
{
|
|
struct in_addr *ia;
|
|
|
|
ia = va_arg(ap, struct in_addr *);
|
|
if (ia != NULL) {
|
|
s = conv_in_addr(ia, &num_buf[NUM_BUF_SIZE], &s_len);
|
|
if (adjust_precision && precision < s_len)
|
|
s_len = precision;
|
|
}
|
|
else {
|
|
s = S_NULL;
|
|
s_len = S_NULL_LEN;
|
|
}
|
|
pad_char = ' ';
|
|
}
|
|
break;
|
|
|
|
/* print the error for an apr_status_t */
|
|
case 'm':
|
|
{
|
|
apr_status_t *mrv;
|
|
|
|
mrv = va_arg(ap, apr_status_t *);
|
|
if (mrv != NULL) {
|
|
s = apr_strerror(*mrv, num_buf, NUM_BUF_SIZE-1);
|
|
s_len = strlen(s);
|
|
}
|
|
else {
|
|
s = S_NULL;
|
|
s_len = S_NULL_LEN;
|
|
}
|
|
pad_char = ' ';
|
|
}
|
|
break;
|
|
|
|
case 'T':
|
|
#if APR_HAS_THREADS
|
|
{
|
|
apr_os_thread_t *tid;
|
|
|
|
tid = va_arg(ap, apr_os_thread_t *);
|
|
if (tid != NULL) {
|
|
s = conv_os_thread_t(tid, &num_buf[NUM_BUF_SIZE], &s_len);
|
|
if (adjust_precision && precision < s_len)
|
|
s_len = precision;
|
|
}
|
|
else {
|
|
s = S_NULL;
|
|
s_len = S_NULL_LEN;
|
|
}
|
|
pad_char = ' ';
|
|
}
|
|
#else
|
|
char_buf[0] = '0';
|
|
s = &char_buf[0];
|
|
s_len = 1;
|
|
pad_char = ' ';
|
|
#endif
|
|
break;
|
|
|
|
case 't':
|
|
#if APR_HAS_THREADS
|
|
{
|
|
apr_os_thread_t *tid;
|
|
|
|
tid = va_arg(ap, apr_os_thread_t *);
|
|
if (tid != NULL) {
|
|
s = conv_os_thread_t_hex(tid, &num_buf[NUM_BUF_SIZE], &s_len);
|
|
if (adjust_precision && precision < s_len)
|
|
s_len = precision;
|
|
}
|
|
else {
|
|
s = S_NULL;
|
|
s_len = S_NULL_LEN;
|
|
}
|
|
pad_char = ' ';
|
|
}
|
|
#else
|
|
char_buf[0] = '0';
|
|
s = &char_buf[0];
|
|
s_len = 1;
|
|
pad_char = ' ';
|
|
#endif
|
|
break;
|
|
|
|
case 'B':
|
|
case 'F':
|
|
case 'S':
|
|
{
|
|
char buf[5];
|
|
apr_off_t size = 0;
|
|
|
|
if (*fmt == 'B') {
|
|
apr_uint32_t *arg = va_arg(ap, apr_uint32_t *);
|
|
size = (arg) ? *arg : 0;
|
|
}
|
|
else if (*fmt == 'F') {
|
|
apr_off_t *arg = va_arg(ap, apr_off_t *);
|
|
size = (arg) ? *arg : 0;
|
|
}
|
|
else {
|
|
apr_size_t *arg = va_arg(ap, apr_size_t *);
|
|
size = (arg) ? *arg : 0;
|
|
}
|
|
|
|
s = apr_strfsize(size, buf);
|
|
s_len = strlen(s);
|
|
pad_char = ' ';
|
|
}
|
|
break;
|
|
|
|
case NUL:
|
|
/* if %p ends the string, oh well ignore it */
|
|
continue;
|
|
|
|
default:
|
|
s = "bogus %p";
|
|
s_len = 8;
|
|
prefix_char = NUL;
|
|
(void)va_arg(ap, void *); /* skip the bogus argument on the stack */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case NUL:
|
|
/*
|
|
* The last character of the format string was %.
|
|
* We ignore it.
|
|
*/
|
|
continue;
|
|
|
|
|
|
/*
|
|
* The default case is for unrecognized %'s.
|
|
* We print %<char> to help the user identify what
|
|
* option is not understood.
|
|
* This is also useful in case the user wants to pass
|
|
* the output of format_converter to another function
|
|
* that understands some other %<char> (like syslog).
|
|
* Note that we can't point s inside fmt because the
|
|
* unknown <char> could be preceded by width etc.
|
|
*/
|
|
default:
|
|
char_buf[0] = '%';
|
|
char_buf[1] = *fmt;
|
|
s = char_buf;
|
|
s_len = 2;
|
|
pad_char = ' ';
|
|
break;
|
|
}
|
|
|
|
if (prefix_char != NUL && s != S_NULL && s != char_buf) {
|
|
*--s = prefix_char;
|
|
s_len++;
|
|
}
|
|
|
|
if (adjust_width && adjust == RIGHT && min_width > s_len) {
|
|
if (pad_char == '0' && prefix_char != NUL) {
|
|
INS_CHAR(*s, sp, bep, cc);
|
|
s++;
|
|
s_len--;
|
|
min_width--;
|
|
}
|
|
PAD(min_width, s_len, pad_char);
|
|
}
|
|
|
|
/*
|
|
* Print the string s.
|
|
*/
|
|
if (print_something == YES) {
|
|
for (i = s_len; i != 0; i--) {
|
|
INS_CHAR(*s, sp, bep, cc);
|
|
s++;
|
|
}
|
|
}
|
|
|
|
if (adjust_width && adjust == LEFT && min_width > s_len)
|
|
PAD(min_width, s_len, pad_char);
|
|
}
|
|
fmt++;
|
|
}
|
|
vbuff->curpos = sp;
|
|
|
|
return cc;
|
|
}
|
|
|
|
|
|
static int snprintf_flush(apr_vformatter_buff_t *vbuff)
|
|
{
|
|
/* if the buffer fills we have to abort immediately, there is no way
|
|
* to "flush" an apr_snprintf... there's nowhere to flush it to.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
|
|
APR_DECLARE_NONSTD(int) apr_snprintf(char *buf, apr_size_t len,
|
|
const char *format, ...)
|
|
{
|
|
int cc;
|
|
va_list ap;
|
|
apr_vformatter_buff_t vbuff;
|
|
|
|
if (len == 0) {
|
|
/* NOTE: This is a special case; we just want to return the number
|
|
* of chars that would be written (minus \0) if the buffer
|
|
* size was infinite. We leverage the fact that INS_CHAR
|
|
* just does actual inserts iff the buffer pointer is non-NULL.
|
|
* In this case, we don't care what buf is; it can be NULL, since
|
|
* we don't touch it at all.
|
|
*/
|
|
vbuff.curpos = NULL;
|
|
vbuff.endpos = NULL;
|
|
} else {
|
|
/* save one byte for nul terminator */
|
|
vbuff.curpos = buf;
|
|
vbuff.endpos = buf + len - 1;
|
|
}
|
|
va_start(ap, format);
|
|
cc = apr_vformatter(snprintf_flush, &vbuff, format, ap);
|
|
va_end(ap);
|
|
if (len != 0) {
|
|
*vbuff.curpos = '\0';
|
|
}
|
|
return (cc == -1) ? (int)len - 1 : cc;
|
|
}
|
|
|
|
|
|
APR_DECLARE(int) apr_vsnprintf(char *buf, apr_size_t len, const char *format,
|
|
va_list ap)
|
|
{
|
|
int cc;
|
|
apr_vformatter_buff_t vbuff;
|
|
|
|
if (len == 0) {
|
|
/* See above note */
|
|
vbuff.curpos = NULL;
|
|
vbuff.endpos = NULL;
|
|
} else {
|
|
/* save one byte for nul terminator */
|
|
vbuff.curpos = buf;
|
|
vbuff.endpos = buf + len - 1;
|
|
}
|
|
cc = apr_vformatter(snprintf_flush, &vbuff, format, ap);
|
|
if (len != 0) {
|
|
*vbuff.curpos = '\0';
|
|
}
|
|
return (cc == -1) ? (int)len - 1 : cc;
|
|
}
|