mirror of https://gitee.com/openkylin/apr.git
327 lines
9.5 KiB
C
327 lines
9.5 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
/*
|
|
* See the paper "On Randomness" by Ben Laurie for an explanation of this PRNG.
|
|
* http://www.apache-ssl.org/randomness.pdf
|
|
* XXX: Is there a formal proof of this PRNG? Couldn't we use the more popular
|
|
* Mersenne Twister PRNG (and BSD licensed)?
|
|
*/
|
|
|
|
#include "apr.h"
|
|
#include "apr_pools.h"
|
|
#include "apr_random.h"
|
|
#include "apr_thread_proc.h"
|
|
#include <assert.h>
|
|
|
|
#ifdef min
|
|
#undef min
|
|
#endif
|
|
#define min(a,b) ((a) < (b) ? (a) : (b))
|
|
|
|
#define APR_RANDOM_DEFAULT_POOLS 32
|
|
#define APR_RANDOM_DEFAULT_REHASH_SIZE 1024
|
|
#define APR_RANDOM_DEFAULT_RESEED_SIZE 32
|
|
#define APR_RANDOM_DEFAULT_HASH_SECRET_SIZE 32
|
|
#define APR_RANDOM_DEFAULT_G_FOR_INSECURE 32
|
|
#define APR_RANDOM_DEFAULT_G_FOR_SECURE 320
|
|
|
|
typedef struct apr_random_pool_t {
|
|
unsigned char *pool;
|
|
unsigned int bytes;
|
|
unsigned int pool_size;
|
|
} apr_random_pool_t;
|
|
|
|
#define hash_init(h) (h)->init(h)
|
|
#define hash_add(h,b,n) (h)->add(h,b,n)
|
|
#define hash_finish(h,r) (h)->finish(h,r)
|
|
|
|
#define hash(h,r,b,n) hash_init(h),hash_add(h,b,n),hash_finish(h,r)
|
|
|
|
#define crypt_setkey(c,k) (c)->set_key((c)->data,k)
|
|
#define crypt_crypt(c,out,in) (c)->crypt((c)->date,out,in)
|
|
|
|
struct apr_random_t {
|
|
apr_pool_t *apr_pool;
|
|
apr_crypto_hash_t *pool_hash;
|
|
unsigned int npools;
|
|
apr_random_pool_t *pools;
|
|
unsigned int next_pool;
|
|
unsigned int generation;
|
|
apr_size_t rehash_size;
|
|
apr_size_t reseed_size;
|
|
apr_crypto_hash_t *key_hash;
|
|
#define K_size(g) ((g)->key_hash->size)
|
|
apr_crypto_hash_t *prng_hash;
|
|
#define B_size(g) ((g)->prng_hash->size)
|
|
|
|
unsigned char *H;
|
|
unsigned char *H_waiting;
|
|
#define H_size(g) (B_size(g)+K_size(g))
|
|
#define H_current(g) (((g)->insecure_started && !(g)->secure_started) \
|
|
? (g)->H_waiting : (g)->H)
|
|
|
|
unsigned char *randomness;
|
|
apr_size_t random_bytes;
|
|
unsigned int g_for_insecure;
|
|
unsigned int g_for_secure;
|
|
unsigned int secure_base;
|
|
unsigned int insecure_started:1;
|
|
unsigned int secure_started:1;
|
|
|
|
apr_random_t *next;
|
|
};
|
|
|
|
static apr_random_t *all_random;
|
|
|
|
static apr_status_t random_cleanup(void *data)
|
|
{
|
|
apr_random_t *remove_this = data,
|
|
*cur = all_random,
|
|
**prev_ptr = &all_random;
|
|
while (cur) {
|
|
if (cur == remove_this) {
|
|
*prev_ptr = cur->next;
|
|
break;
|
|
}
|
|
prev_ptr = &cur->next;
|
|
cur = cur->next;
|
|
}
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
|
|
APR_DECLARE(void) apr_random_init(apr_random_t *g,apr_pool_t *p,
|
|
apr_crypto_hash_t *pool_hash,
|
|
apr_crypto_hash_t *key_hash,
|
|
apr_crypto_hash_t *prng_hash)
|
|
{
|
|
unsigned int n;
|
|
|
|
g->apr_pool = p;
|
|
|
|
g->pool_hash = pool_hash;
|
|
g->key_hash = key_hash;
|
|
g->prng_hash = prng_hash;
|
|
|
|
g->npools = APR_RANDOM_DEFAULT_POOLS;
|
|
g->pools = apr_palloc(p,g->npools*sizeof *g->pools);
|
|
for (n = 0; n < g->npools; ++n) {
|
|
g->pools[n].bytes = g->pools[n].pool_size = 0;
|
|
g->pools[n].pool = NULL;
|
|
}
|
|
g->next_pool = 0;
|
|
|
|
g->generation = 0;
|
|
|
|
g->rehash_size = APR_RANDOM_DEFAULT_REHASH_SIZE;
|
|
/* Ensure that the rehash size is twice the size of the pool hasher */
|
|
g->rehash_size = ((g->rehash_size+2*g->pool_hash->size-1)/g->pool_hash->size
|
|
/2)*g->pool_hash->size*2;
|
|
g->reseed_size = APR_RANDOM_DEFAULT_RESEED_SIZE;
|
|
|
|
g->H = apr_pcalloc(p,H_size(g));
|
|
g->H_waiting = apr_pcalloc(p,H_size(g));
|
|
|
|
g->randomness = apr_palloc(p,B_size(g));
|
|
g->random_bytes = 0;
|
|
|
|
g->g_for_insecure = APR_RANDOM_DEFAULT_G_FOR_INSECURE;
|
|
g->secure_base = 0;
|
|
g->g_for_secure = APR_RANDOM_DEFAULT_G_FOR_SECURE;
|
|
g->secure_started = g->insecure_started = 0;
|
|
|
|
g->next = all_random;
|
|
all_random = g;
|
|
apr_pool_cleanup_register(p, g, random_cleanup, apr_pool_cleanup_null);
|
|
}
|
|
|
|
static void mix_pid(apr_random_t *g,unsigned char *H,pid_t pid)
|
|
{
|
|
hash_init(g->key_hash);
|
|
hash_add(g->key_hash,H,H_size(g));
|
|
hash_add(g->key_hash,&pid,sizeof pid);
|
|
hash_finish(g->key_hash,H);
|
|
}
|
|
|
|
static void mixer(apr_random_t *g,pid_t pid)
|
|
{
|
|
unsigned char *H = H_current(g);
|
|
|
|
/* mix the PID into the current H */
|
|
mix_pid(g,H,pid);
|
|
/* if we are in waiting, then also mix into main H */
|
|
if (H != g->H)
|
|
mix_pid(g,g->H,pid);
|
|
/* change order of pool mixing for good measure - note that going
|
|
backwards is much better than going forwards */
|
|
--g->generation;
|
|
/* blow away any lingering randomness */
|
|
g->random_bytes = 0;
|
|
}
|
|
|
|
APR_DECLARE(void) apr_random_after_fork(apr_proc_t *proc)
|
|
{
|
|
apr_random_t *r;
|
|
|
|
for (r = all_random; r; r = r->next)
|
|
/*
|
|
* XXX Note: the pid does not provide sufficient entropy to
|
|
* actually call this secure. See Ben's paper referenced at
|
|
* the top of this file.
|
|
*/
|
|
mixer(r,proc->pid);
|
|
}
|
|
|
|
APR_DECLARE(apr_random_t *) apr_random_standard_new(apr_pool_t *p)
|
|
{
|
|
apr_random_t *r = apr_palloc(p,sizeof *r);
|
|
|
|
apr_random_init(r,p,apr_crypto_sha256_new(p),apr_crypto_sha256_new(p),
|
|
apr_crypto_sha256_new(p));
|
|
return r;
|
|
}
|
|
|
|
static void rekey(apr_random_t *g)
|
|
{
|
|
unsigned int n;
|
|
unsigned char *H = H_current(g);
|
|
|
|
hash_init(g->key_hash);
|
|
hash_add(g->key_hash,H,H_size(g));
|
|
for (n = 0 ; n < g->npools && (n == 0 || g->generation&(1 << (n-1)))
|
|
; ++n) {
|
|
hash_add(g->key_hash,g->pools[n].pool,g->pools[n].bytes);
|
|
g->pools[n].bytes = 0;
|
|
}
|
|
hash_finish(g->key_hash,H+B_size(g));
|
|
|
|
++g->generation;
|
|
if (!g->insecure_started && g->generation > g->g_for_insecure) {
|
|
g->insecure_started = 1;
|
|
if (!g->secure_started) {
|
|
memcpy(g->H_waiting,g->H,H_size(g));
|
|
g->secure_base = g->generation;
|
|
}
|
|
}
|
|
|
|
if (!g->secure_started && g->generation > g->secure_base+g->g_for_secure) {
|
|
g->secure_started = 1;
|
|
memcpy(g->H,g->H_waiting,H_size(g));
|
|
}
|
|
}
|
|
|
|
APR_DECLARE(void) apr_random_add_entropy(apr_random_t *g,const void *entropy_,
|
|
apr_size_t bytes)
|
|
{
|
|
unsigned int n;
|
|
const unsigned char *entropy = entropy_;
|
|
|
|
for (n = 0; n < bytes; ++n) {
|
|
apr_random_pool_t *p = &g->pools[g->next_pool];
|
|
|
|
if (++g->next_pool == g->npools)
|
|
g->next_pool = 0;
|
|
|
|
if (p->pool_size < p->bytes+1) {
|
|
unsigned char *np = apr_palloc(g->apr_pool,(p->bytes+1)*2);
|
|
|
|
memcpy(np,p->pool,p->bytes);
|
|
p->pool = np;
|
|
p->pool_size = (p->bytes+1)*2;
|
|
}
|
|
p->pool[p->bytes++] = entropy[n];
|
|
|
|
if (p->bytes == g->rehash_size) {
|
|
apr_size_t r;
|
|
|
|
for (r = 0; r < p->bytes/2; r+=g->pool_hash->size)
|
|
hash(g->pool_hash,p->pool+r,p->pool+r*2,g->pool_hash->size*2);
|
|
p->bytes/=2;
|
|
}
|
|
assert(p->bytes < g->rehash_size);
|
|
}
|
|
|
|
if (g->pools[0].bytes >= g->reseed_size)
|
|
rekey(g);
|
|
}
|
|
|
|
/* This will give g->B_size bytes of randomness */
|
|
static void apr_random_block(apr_random_t *g,unsigned char *random)
|
|
{
|
|
/* FIXME: in principle, these are different hashes */
|
|
hash(g->prng_hash,g->H,g->H,H_size(g));
|
|
hash(g->prng_hash,random,g->H,B_size(g));
|
|
}
|
|
|
|
static void apr_random_bytes(apr_random_t *g,unsigned char *random,
|
|
apr_size_t bytes)
|
|
{
|
|
apr_size_t n;
|
|
|
|
for (n = 0; n < bytes; ) {
|
|
apr_size_t l;
|
|
|
|
if (g->random_bytes == 0) {
|
|
apr_random_block(g,g->randomness);
|
|
g->random_bytes = B_size(g);
|
|
}
|
|
l = min(bytes-n,g->random_bytes);
|
|
memcpy(&random[n],g->randomness+B_size(g)-g->random_bytes,l);
|
|
g->random_bytes-=l;
|
|
n+=l;
|
|
}
|
|
}
|
|
|
|
APR_DECLARE(apr_status_t) apr_random_secure_bytes(apr_random_t *g,
|
|
void *random,
|
|
apr_size_t bytes)
|
|
{
|
|
if (!g->secure_started)
|
|
return APR_ENOTENOUGHENTROPY;
|
|
apr_random_bytes(g,random,bytes);
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
APR_DECLARE(apr_status_t) apr_random_insecure_bytes(apr_random_t *g,
|
|
void *random,
|
|
apr_size_t bytes)
|
|
{
|
|
if (!g->insecure_started)
|
|
return APR_ENOTENOUGHENTROPY;
|
|
apr_random_bytes(g,random,bytes);
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
APR_DECLARE(void) apr_random_barrier(apr_random_t *g)
|
|
{
|
|
g->secure_started = 0;
|
|
g->secure_base = g->generation;
|
|
}
|
|
|
|
APR_DECLARE(apr_status_t) apr_random_secure_ready(apr_random_t *r)
|
|
{
|
|
if (!r->secure_started)
|
|
return APR_ENOTENOUGHENTROPY;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
APR_DECLARE(apr_status_t) apr_random_insecure_ready(apr_random_t *r)
|
|
{
|
|
if (!r->insecure_started)
|
|
return APR_ENOTENOUGHENTROPY;
|
|
return APR_SUCCESS;
|
|
}
|