2428 lines
64 KiB
C
2428 lines
64 KiB
C
/*
|
|
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* See the COPYRIGHT file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
*/
|
|
|
|
/*! \file */
|
|
|
|
#include <config.h>
|
|
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
|
|
#include <isc/buffer.h>
|
|
#include <isc/mem.h>
|
|
#include <isc/net.h>
|
|
#include <isc/netaddr.h>
|
|
#include <isc/print.h>
|
|
#include <isc/rwlock.h>
|
|
#include <isc/stdlib.h>
|
|
#include <isc/string.h>
|
|
#include <isc/util.h>
|
|
|
|
#include <dns/db.h>
|
|
#include <dns/fixedname.h>
|
|
#include <dns/log.h>
|
|
#include <dns/rdata.h>
|
|
#include <dns/rdataset.h>
|
|
#include <dns/rdatastruct.h>
|
|
#include <dns/result.h>
|
|
#include <dns/rbt.h>
|
|
#include <dns/rpz.h>
|
|
#include <dns/view.h>
|
|
|
|
|
|
/*
|
|
* Parallel radix trees for databases of response policy IP addresses
|
|
*
|
|
* The radix or patricia trees are somewhat specialized to handle response
|
|
* policy addresses by representing the two sets of IP addresses and name
|
|
* server IP addresses in a single tree. One set of IP addresses is
|
|
* for rpz-ip policies or policies triggered by addresses in A or
|
|
* AAAA records in responses.
|
|
* The second set is for rpz-nsip policies or policies triggered by addresses
|
|
* in A or AAAA records for NS records that are authorities for responses.
|
|
*
|
|
* Each leaf indicates that an IP address is listed in the IP address or the
|
|
* name server IP address policy sub-zone (or both) of the corresponding
|
|
* response policy zone. The policy data such as a CNAME or an A record
|
|
* is kept in the policy zone. After an IP address has been found in a radix
|
|
* tree, the node in the policy zone's database is found by converting
|
|
* the IP address to a domain name in a canonical form.
|
|
*
|
|
*
|
|
* The response policy zone canonical form of an IPv6 address is one of:
|
|
* prefix.W.W.W.W.W.W.W.W
|
|
* prefix.WORDS.zz
|
|
* prefix.WORDS.zz.WORDS
|
|
* prefix.zz.WORDS
|
|
* where
|
|
* prefix is the prefix length of the IPv6 address between 1 and 128
|
|
* W is a number between 0 and 65535
|
|
* WORDS is one or more numbers W separated with "."
|
|
* zz corresponds to :: in the standard IPv6 text representation
|
|
*
|
|
* The canonical form of IPv4 addresses is:
|
|
* prefix.B.B.B.B
|
|
* where
|
|
* prefix is the prefix length of the address between 1 and 32
|
|
* B is a number between 0 and 255
|
|
*
|
|
* Names for IPv4 addresses are distinguished from IPv6 addresses by having
|
|
* 5 labels all of which are numbers, and a prefix between 1 and 32.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Use a private definition of IPv6 addresses because s6_addr32 is not
|
|
* always defined and our IPv6 addresses are in non-standard byte order
|
|
*/
|
|
typedef uint32_t dns_rpz_cidr_word_t;
|
|
#define DNS_RPZ_CIDR_WORD_BITS ((int)sizeof(dns_rpz_cidr_word_t)*8)
|
|
#define DNS_RPZ_CIDR_KEY_BITS ((int)sizeof(dns_rpz_cidr_key_t)*8)
|
|
#define DNS_RPZ_CIDR_WORDS (128/DNS_RPZ_CIDR_WORD_BITS)
|
|
typedef struct {
|
|
dns_rpz_cidr_word_t w[DNS_RPZ_CIDR_WORDS];
|
|
} dns_rpz_cidr_key_t;
|
|
|
|
#define ADDR_V4MAPPED 0xffff
|
|
#define KEY_IS_IPV4(prefix,ip) ((prefix) >= 96 && (ip)->w[0] == 0 && \
|
|
(ip)->w[1] == 0 && (ip)->w[2] == ADDR_V4MAPPED)
|
|
|
|
#define DNS_RPZ_WORD_MASK(b) ((b) == 0 ? (dns_rpz_cidr_word_t)(-1) \
|
|
: ((dns_rpz_cidr_word_t)(-1) \
|
|
<< (DNS_RPZ_CIDR_WORD_BITS - (b))))
|
|
|
|
/*
|
|
* Get bit #n from the array of words of an IP address.
|
|
*/
|
|
#define DNS_RPZ_IP_BIT(ip, n) (1 & ((ip)->w[(n)/DNS_RPZ_CIDR_WORD_BITS] >> \
|
|
(DNS_RPZ_CIDR_WORD_BITS \
|
|
- 1 - ((n) % DNS_RPZ_CIDR_WORD_BITS))))
|
|
|
|
/*
|
|
* A triplet of arrays of bits flagging the existence of
|
|
* client-IP, IP, and NSIP policy triggers.
|
|
*/
|
|
typedef struct dns_rpz_addr_zbits dns_rpz_addr_zbits_t;
|
|
struct dns_rpz_addr_zbits {
|
|
dns_rpz_zbits_t client_ip;
|
|
dns_rpz_zbits_t ip;
|
|
dns_rpz_zbits_t nsip;
|
|
};
|
|
|
|
/*
|
|
* A CIDR or radix tree node.
|
|
*/
|
|
struct dns_rpz_cidr_node {
|
|
dns_rpz_cidr_node_t *parent;
|
|
dns_rpz_cidr_node_t *child[2];
|
|
dns_rpz_cidr_key_t ip;
|
|
dns_rpz_prefix_t prefix;
|
|
dns_rpz_addr_zbits_t set;
|
|
dns_rpz_addr_zbits_t sum;
|
|
};
|
|
|
|
/*
|
|
* A pair of arrays of bits flagging the existence of
|
|
* QNAME and NSDNAME policy triggers.
|
|
*/
|
|
typedef struct dns_rpz_nm_zbits dns_rpz_nm_zbits_t;
|
|
struct dns_rpz_nm_zbits {
|
|
dns_rpz_zbits_t qname;
|
|
dns_rpz_zbits_t ns;
|
|
};
|
|
|
|
/*
|
|
* The data in a RBT node has two pairs of bits for policy zones.
|
|
* One pair is for the corresponding name of the node such as example.com
|
|
* and the other pair is for a wildcard child such as *.example.com.
|
|
*/
|
|
typedef struct dns_rpz_nm_data dns_rpz_nm_data_t;
|
|
struct dns_rpz_nm_data {
|
|
dns_rpz_nm_zbits_t set;
|
|
dns_rpz_nm_zbits_t wild;
|
|
};
|
|
|
|
#if 0
|
|
/*
|
|
* Catch a name while debugging.
|
|
*/
|
|
static void
|
|
catch_name(const dns_name_t *src_name, const char *tgt, const char *str) {
|
|
dns_fixedname_t tgt_namef;
|
|
dns_name_t *tgt_name;
|
|
|
|
tgt_name = dns_fixedname_initname(&tgt_namef);
|
|
dns_name_fromstring(tgt_name, tgt, DNS_NAME_DOWNCASE, NULL);
|
|
if (dns_name_equal(src_name, tgt_name)) {
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"rpz hit failed: %s %s", str, tgt);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
const char *
|
|
dns_rpz_type2str(dns_rpz_type_t type) {
|
|
switch (type) {
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
return ("CLIENT-IP");
|
|
case DNS_RPZ_TYPE_QNAME:
|
|
return ("QNAME");
|
|
case DNS_RPZ_TYPE_IP:
|
|
return ("IP");
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
return ("NSIP");
|
|
case DNS_RPZ_TYPE_NSDNAME:
|
|
return ("NSDNAME");
|
|
case DNS_RPZ_TYPE_BAD:
|
|
break;
|
|
}
|
|
FATAL_ERROR(__FILE__, __LINE__, "impossible rpz type %d", type);
|
|
return ("impossible");
|
|
}
|
|
|
|
dns_rpz_policy_t
|
|
dns_rpz_str2policy(const char *str) {
|
|
static struct {
|
|
const char *str;
|
|
dns_rpz_policy_t policy;
|
|
} tbl[] = {
|
|
{"given", DNS_RPZ_POLICY_GIVEN},
|
|
{"disabled", DNS_RPZ_POLICY_DISABLED},
|
|
{"passthru", DNS_RPZ_POLICY_PASSTHRU},
|
|
{"drop", DNS_RPZ_POLICY_DROP},
|
|
{"tcp-only", DNS_RPZ_POLICY_TCP_ONLY},
|
|
{"nxdomain", DNS_RPZ_POLICY_NXDOMAIN},
|
|
{"nodata", DNS_RPZ_POLICY_NODATA},
|
|
{"cname", DNS_RPZ_POLICY_CNAME},
|
|
{"no-op", DNS_RPZ_POLICY_PASSTHRU}, /* old passthru */
|
|
};
|
|
unsigned int n;
|
|
|
|
if (str == NULL)
|
|
return (DNS_RPZ_POLICY_ERROR);
|
|
for (n = 0; n < sizeof(tbl)/sizeof(tbl[0]); ++n) {
|
|
if (!strcasecmp(tbl[n].str, str))
|
|
return (tbl[n].policy);
|
|
}
|
|
return (DNS_RPZ_POLICY_ERROR);
|
|
}
|
|
|
|
const char *
|
|
dns_rpz_policy2str(dns_rpz_policy_t policy) {
|
|
const char *str;
|
|
|
|
switch (policy) {
|
|
case DNS_RPZ_POLICY_PASSTHRU:
|
|
str = "PASSTHRU";
|
|
break;
|
|
case DNS_RPZ_POLICY_DROP:
|
|
str = "DROP";
|
|
break;
|
|
case DNS_RPZ_POLICY_TCP_ONLY:
|
|
str = "TCP-ONLY";
|
|
break;
|
|
case DNS_RPZ_POLICY_NXDOMAIN:
|
|
str = "NXDOMAIN";
|
|
break;
|
|
case DNS_RPZ_POLICY_NODATA:
|
|
str = "NODATA";
|
|
break;
|
|
case DNS_RPZ_POLICY_RECORD:
|
|
str = "Local-Data";
|
|
break;
|
|
case DNS_RPZ_POLICY_CNAME:
|
|
case DNS_RPZ_POLICY_WILDCNAME:
|
|
str = "CNAME";
|
|
break;
|
|
case DNS_RPZ_POLICY_MISS:
|
|
str = "MISS";
|
|
break;
|
|
case DNS_RPZ_POLICY_DNS64:
|
|
str = "DNS64";
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
return (str);
|
|
}
|
|
|
|
/*
|
|
* Return the bit number of the highest set bit in 'zbit'.
|
|
* (for example, 0x01 returns 0, 0xFF returns 7, etc.)
|
|
*/
|
|
static int
|
|
zbit_to_num(dns_rpz_zbits_t zbit) {
|
|
dns_rpz_num_t rpz_num;
|
|
|
|
REQUIRE(zbit != 0);
|
|
rpz_num = 0;
|
|
#if DNS_RPZ_MAX_ZONES > 32
|
|
if ((zbit & 0xffffffff00000000L) != 0) {
|
|
zbit >>= 32;
|
|
rpz_num += 32;
|
|
}
|
|
#endif
|
|
if ((zbit & 0xffff0000) != 0) {
|
|
zbit >>= 16;
|
|
rpz_num += 16;
|
|
}
|
|
if ((zbit & 0xff00) != 0) {
|
|
zbit >>= 8;
|
|
rpz_num += 8;
|
|
}
|
|
if ((zbit & 0xf0) != 0) {
|
|
zbit >>= 4;
|
|
rpz_num += 4;
|
|
}
|
|
if ((zbit & 0xc) != 0) {
|
|
zbit >>= 2;
|
|
rpz_num += 2;
|
|
}
|
|
if ((zbit & 2) != 0)
|
|
++rpz_num;
|
|
return (rpz_num);
|
|
}
|
|
|
|
/*
|
|
* Make a set of bit masks given one or more bits and their type.
|
|
*/
|
|
static void
|
|
make_addr_set(dns_rpz_addr_zbits_t *tgt_set, dns_rpz_zbits_t zbits,
|
|
dns_rpz_type_t type)
|
|
{
|
|
switch (type) {
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
tgt_set->client_ip = zbits;
|
|
tgt_set->ip = 0;
|
|
tgt_set->nsip = 0;
|
|
break;
|
|
case DNS_RPZ_TYPE_IP:
|
|
tgt_set->client_ip = 0;
|
|
tgt_set->ip = zbits;
|
|
tgt_set->nsip = 0;
|
|
break;
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
tgt_set->client_ip = 0;
|
|
tgt_set->ip = 0;
|
|
tgt_set->nsip = zbits;
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static void
|
|
make_nm_set(dns_rpz_nm_zbits_t *tgt_set,
|
|
dns_rpz_num_t rpz_num, dns_rpz_type_t type)
|
|
{
|
|
switch (type) {
|
|
case DNS_RPZ_TYPE_QNAME:
|
|
tgt_set->qname = DNS_RPZ_ZBIT(rpz_num);
|
|
tgt_set->ns = 0;
|
|
break;
|
|
case DNS_RPZ_TYPE_NSDNAME:
|
|
tgt_set->qname = 0;
|
|
tgt_set->ns = DNS_RPZ_ZBIT(rpz_num);
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark a node and all of its parents as having client-IP, IP, or NSIP data
|
|
*/
|
|
static void
|
|
set_sum_pair(dns_rpz_cidr_node_t *cnode) {
|
|
dns_rpz_cidr_node_t *child;
|
|
dns_rpz_addr_zbits_t sum;
|
|
|
|
do {
|
|
sum = cnode->set;
|
|
|
|
child = cnode->child[0];
|
|
if (child != NULL) {
|
|
sum.client_ip |= child->sum.client_ip;
|
|
sum.ip |= child->sum.ip;
|
|
sum.nsip |= child->sum.nsip;
|
|
}
|
|
|
|
child = cnode->child[1];
|
|
if (child != NULL) {
|
|
sum.client_ip |= child->sum.client_ip;
|
|
sum.ip |= child->sum.ip;
|
|
sum.nsip |= child->sum.nsip;
|
|
}
|
|
|
|
if (cnode->sum.client_ip == sum.client_ip &&
|
|
cnode->sum.ip == sum.ip &&
|
|
cnode->sum.nsip == sum.nsip)
|
|
break;
|
|
cnode->sum = sum;
|
|
cnode = cnode->parent;
|
|
} while (cnode != NULL);
|
|
}
|
|
|
|
/* Caller must hold rpzs->maint_lock */
|
|
static void
|
|
fix_qname_skip_recurse(dns_rpz_zones_t *rpzs) {
|
|
dns_rpz_zbits_t mask;
|
|
|
|
/*
|
|
* qname_wait_recurse and qname_skip_recurse are used to
|
|
* implement the "qname-wait-recurse" config option.
|
|
*
|
|
* When "qname-wait-recurse" is yes, no processing happens
|
|
* without recursion. In this case, qname_wait_recurse is true,
|
|
* and qname_skip_recurse (a bitfield indicating which policy
|
|
* zones can be processed without recursion) is set to all 0's
|
|
* by fix_qname_skip_recurse().
|
|
*
|
|
* When "qname-wait-recurse" is no, qname_skip_recurse may be
|
|
* set to a non-zero value by fix_qname_skip_recurse(). The mask
|
|
* has to have bits set for the policy zones for which
|
|
* processing may continue without recursion, and bits cleared
|
|
* for the rest.
|
|
*
|
|
* (1) The ARM says:
|
|
*
|
|
* The "qname-wait-recurse no" option overrides that default
|
|
* behavior when recursion cannot change a non-error
|
|
* response. The option does not affect QNAME or client-IP
|
|
* triggers in policy zones listed after other zones
|
|
* containing IP, NSIP and NSDNAME triggers, because those may
|
|
* depend on the A, AAAA, and NS records that would be found
|
|
* during recursive resolution.
|
|
*
|
|
* Let's consider the following:
|
|
*
|
|
* zbits_req = (rpzs->have.ipv4 | rpzs->have.ipv6 |
|
|
* rpzs->have.nsdname |
|
|
* rpzs->have.nsipv4 | rpzs->have.nsipv6);
|
|
*
|
|
* zbits_req now contains bits set for zones which require
|
|
* recursion.
|
|
*
|
|
* But going by the description in the ARM, if the first policy
|
|
* zone requires recursion, then all zones after that (higher
|
|
* order bits) have to wait as well. If the Nth zone requires
|
|
* recursion, then (N+1)th zone onwards all need to wait.
|
|
*
|
|
* So mapping this, examples:
|
|
*
|
|
* zbits_req = 0b000 mask = 0xffffffff (no zones have to wait for
|
|
* recursion)
|
|
* zbits_req = 0b001 mask = 0x00000000 (all zones have to wait)
|
|
* zbits_req = 0b010 mask = 0x00000001 (the first zone doesn't have to
|
|
* wait, second zone onwards need
|
|
* to wait)
|
|
* zbits_req = 0b011 mask = 0x00000000 (all zones have to wait)
|
|
* zbits_req = 0b100 mask = 0x00000011 (the 1st and 2nd zones don't
|
|
* have to wait, third zone
|
|
* onwards need to wait)
|
|
*
|
|
* More generally, we have to count the number of trailing 0
|
|
* bits in zbits_req and only these can be processed without
|
|
* recursion. All the rest need to wait.
|
|
*
|
|
* (2) The ARM says that "qname-wait-recurse no" option
|
|
* overrides the default behavior when recursion cannot change a
|
|
* non-error response. So, in the order of listing of policy
|
|
* zones, within the first policy zone where recursion may be
|
|
* required, we should first allow CLIENT-IP and QNAME policy
|
|
* records to be attempted without recursion.
|
|
*/
|
|
|
|
/*
|
|
* Get a mask covering all policy zones that are not subordinate to
|
|
* other policy zones containing triggers that require that the
|
|
* qname be resolved before they can be checked.
|
|
*/
|
|
rpzs->have.client_ip = rpzs->have.client_ipv4 | rpzs->have.client_ipv6;
|
|
rpzs->have.ip = rpzs->have.ipv4 | rpzs->have.ipv6;
|
|
rpzs->have.nsip = rpzs->have.nsipv4 | rpzs->have.nsipv6;
|
|
|
|
if (rpzs->p.qname_wait_recurse) {
|
|
mask = 0;
|
|
} else {
|
|
dns_rpz_zbits_t zbits_req;
|
|
dns_rpz_zbits_t zbits_notreq;
|
|
dns_rpz_zbits_t mask2;
|
|
dns_rpz_zbits_t req_mask;
|
|
|
|
/*
|
|
* Get the masks of zones with policies that
|
|
* do/don't require recursion
|
|
*/
|
|
|
|
zbits_req = (rpzs->have.ipv4 | rpzs->have.ipv6 |
|
|
rpzs->have.nsdname |
|
|
rpzs->have.nsipv4 | rpzs->have.nsipv6);
|
|
zbits_notreq = (rpzs->have.client_ip | rpzs->have.qname);
|
|
|
|
if (zbits_req == 0) {
|
|
mask = DNS_RPZ_ALL_ZBITS;
|
|
goto set;
|
|
}
|
|
|
|
/*
|
|
* req_mask is a mask covering used bits in
|
|
* zbits_req. (For instance, 0b1 => 0b1, 0b101 => 0b111,
|
|
* 0b11010101 => 0b11111111).
|
|
*/
|
|
req_mask = zbits_req;
|
|
req_mask |= req_mask >> 1;
|
|
req_mask |= req_mask >> 2;
|
|
req_mask |= req_mask >> 4;
|
|
req_mask |= req_mask >> 8;
|
|
req_mask |= req_mask >> 16;
|
|
#if DNS_RPZ_MAX_ZONES > 32
|
|
req_mask |= req_mask >> 32;
|
|
#endif
|
|
|
|
/*
|
|
* There's no point in skipping recursion for a later
|
|
* zone if it is required in a previous zone.
|
|
*/
|
|
if ((zbits_notreq & req_mask) == 0) {
|
|
mask = 0;
|
|
goto set;
|
|
}
|
|
|
|
/*
|
|
* This bit arithmetic creates a mask of zones in which
|
|
* it is okay to skip recursion. After the first zone
|
|
* that has to wait for recursion, all the others have
|
|
* to wait as well, so we want to create a mask in which
|
|
* all the trailing zeroes in zbits_req are are 1, and
|
|
* more significant bits are 0. (For instance,
|
|
* 0x0700 => 0x00ff, 0x0007 => 0x0000)
|
|
*/
|
|
mask = ~(zbits_req | ((~zbits_req) + 1));
|
|
|
|
/*
|
|
* As mentioned in (2) above, the zone corresponding to
|
|
* the least significant zero could have its CLIENT-IP
|
|
* and QNAME policies checked before recursion, if it
|
|
* has any of those policies. So if it does, we
|
|
* can set its 0 to 1.
|
|
*
|
|
* Locate the least significant 0 bit in the mask (for
|
|
* instance, 0xff => 0x100)...
|
|
*/
|
|
mask2 = (mask << 1) & ~mask;
|
|
|
|
/*
|
|
* Also set the bit for zone 0, because if it's in
|
|
* zbits_notreq then it's definitely okay to attempt to
|
|
* skip recursion for zone 0...
|
|
*/
|
|
mask2 |= 1;
|
|
|
|
/* Clear any bits *not* in zbits_notreq... */
|
|
mask2 &= zbits_notreq;
|
|
|
|
/* And merge the result into the skip-recursion mask */
|
|
mask |= mask2;
|
|
}
|
|
|
|
set:
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ, DNS_LOGMODULE_RBTDB,
|
|
DNS_RPZ_DEBUG_QUIET,
|
|
"computed RPZ qname_skip_recurse mask=0x%" PRIx64,
|
|
(uint64_t) mask);
|
|
rpzs->have.qname_skip_recurse = mask;
|
|
}
|
|
|
|
static void
|
|
adj_trigger_cnt(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type,
|
|
const dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t tgt_prefix,
|
|
bool inc)
|
|
{
|
|
dns_rpz_trigger_counter_t *cnt = NULL;
|
|
dns_rpz_zbits_t *have = NULL;
|
|
|
|
switch (rpz_type) {
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
REQUIRE(tgt_ip != NULL);
|
|
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
|
|
cnt = &rpzs->triggers[rpz_num].client_ipv4;
|
|
have = &rpzs->have.client_ipv4;
|
|
} else {
|
|
cnt = &rpzs->triggers[rpz_num].client_ipv6;
|
|
have = &rpzs->have.client_ipv6;
|
|
}
|
|
break;
|
|
case DNS_RPZ_TYPE_QNAME:
|
|
cnt = &rpzs->triggers[rpz_num].qname;
|
|
have = &rpzs->have.qname;
|
|
break;
|
|
case DNS_RPZ_TYPE_IP:
|
|
REQUIRE(tgt_ip != NULL);
|
|
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
|
|
cnt = &rpzs->triggers[rpz_num].ipv4;
|
|
have = &rpzs->have.ipv4;
|
|
} else {
|
|
cnt = &rpzs->triggers[rpz_num].ipv6;
|
|
have = &rpzs->have.ipv6;
|
|
}
|
|
break;
|
|
case DNS_RPZ_TYPE_NSDNAME:
|
|
cnt = &rpzs->triggers[rpz_num].nsdname;
|
|
have = &rpzs->have.nsdname;
|
|
break;
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
REQUIRE(tgt_ip != NULL);
|
|
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
|
|
cnt = &rpzs->triggers[rpz_num].nsipv4;
|
|
have = &rpzs->have.nsipv4;
|
|
} else {
|
|
cnt = &rpzs->triggers[rpz_num].nsipv6;
|
|
have = &rpzs->have.nsipv6;
|
|
}
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
|
|
if (inc) {
|
|
if (++*cnt == 1U) {
|
|
*have |= DNS_RPZ_ZBIT(rpz_num);
|
|
fix_qname_skip_recurse(rpzs);
|
|
}
|
|
} else {
|
|
REQUIRE(*cnt != 0U);
|
|
if (--*cnt == 0U) {
|
|
*have &= ~DNS_RPZ_ZBIT(rpz_num);
|
|
fix_qname_skip_recurse(rpzs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static dns_rpz_cidr_node_t *
|
|
new_node(dns_rpz_zones_t *rpzs,
|
|
const dns_rpz_cidr_key_t *ip, dns_rpz_prefix_t prefix,
|
|
const dns_rpz_cidr_node_t *child)
|
|
{
|
|
dns_rpz_cidr_node_t *node;
|
|
int i, words, wlen;
|
|
|
|
node = isc_mem_get(rpzs->mctx, sizeof(*node));
|
|
if (node == NULL)
|
|
return (NULL);
|
|
memset(node, 0, sizeof(*node));
|
|
|
|
if (child != NULL)
|
|
node->sum = child->sum;
|
|
|
|
node->prefix = prefix;
|
|
words = prefix / DNS_RPZ_CIDR_WORD_BITS;
|
|
wlen = prefix % DNS_RPZ_CIDR_WORD_BITS;
|
|
i = 0;
|
|
while (i < words) {
|
|
node->ip.w[i] = ip->w[i];
|
|
++i;
|
|
}
|
|
if (wlen != 0) {
|
|
node->ip.w[i] = ip->w[i] & DNS_RPZ_WORD_MASK(wlen);
|
|
++i;
|
|
}
|
|
while (i < DNS_RPZ_CIDR_WORDS)
|
|
node->ip.w[i++] = 0;
|
|
|
|
return (node);
|
|
}
|
|
|
|
static void
|
|
badname(int level, dns_name_t *name, const char *str1, const char *str2) {
|
|
char namebuf[DNS_NAME_FORMATSIZE];
|
|
|
|
/*
|
|
* bin/tests/system/rpz/tests.sh looks for "invalid rpz".
|
|
*/
|
|
if (level < DNS_RPZ_DEBUG_QUIET &&
|
|
isc_log_wouldlog(dns_lctx, level)) {
|
|
dns_name_format(name, namebuf, sizeof(namebuf));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, level,
|
|
"invalid rpz IP address \"%s\"%s%s",
|
|
namebuf, str1, str2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert an IP address from radix tree binary (host byte order) to
|
|
* to its canonical response policy domain name without the origin of the
|
|
* policy zone.
|
|
*
|
|
* Generate a name for an IPv6 address that fits RFC 5952, except that
|
|
* our reversed format requires that when the length of the consecutive
|
|
* 16-bit 0 fields are equal (e.g., 1.0.0.1.0.0.db8.2001 corresponding
|
|
* to 2001:db8:0:0:1:0:0:1), we shorted the last instead of the first
|
|
* (e.g., 1.0.0.1.zz.db8.2001 corresponding to 2001:db8::1:0:0:1).
|
|
*/
|
|
static isc_result_t
|
|
ip2name(const dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t tgt_prefix,
|
|
dns_name_t *base_name, dns_name_t *ip_name)
|
|
{
|
|
#ifndef INET6_ADDRSTRLEN
|
|
#define INET6_ADDRSTRLEN 46
|
|
#endif
|
|
int w[DNS_RPZ_CIDR_WORDS*2];
|
|
char str[1+8+1+INET6_ADDRSTRLEN+1];
|
|
isc_buffer_t buffer;
|
|
isc_result_t result;
|
|
int best_first, best_len, cur_first, cur_len;
|
|
int i, n, len;
|
|
|
|
if (KEY_IS_IPV4(tgt_prefix, tgt_ip)) {
|
|
len = snprintf(str, sizeof(str), "%u.%u.%u.%u.%u",
|
|
tgt_prefix - 96U,
|
|
tgt_ip->w[3] & 0xffU,
|
|
(tgt_ip->w[3]>>8) & 0xffU,
|
|
(tgt_ip->w[3]>>16) & 0xffU,
|
|
(tgt_ip->w[3]>>24) & 0xffU);
|
|
if (len < 0 || len > (int)sizeof(str)) {
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
} else {
|
|
len = snprintf(str, sizeof(str), "%d", tgt_prefix);
|
|
if (len == -1)
|
|
return (ISC_R_FAILURE);
|
|
for (i = 0; i < DNS_RPZ_CIDR_WORDS; i++) {
|
|
w[i*2+1] = ((tgt_ip->w[DNS_RPZ_CIDR_WORDS-1-i] >> 16)
|
|
& 0xffff);
|
|
w[i*2] = tgt_ip->w[DNS_RPZ_CIDR_WORDS-1-i] & 0xffff;
|
|
}
|
|
/*
|
|
* Find the start and length of the first longest sequence
|
|
* of zeros in the address.
|
|
*/
|
|
best_first = -1;
|
|
best_len = 0;
|
|
cur_first = -1;
|
|
cur_len = 0;
|
|
for (n = 0; n <=7; ++n) {
|
|
if (w[n] != 0) {
|
|
cur_len = 0;
|
|
cur_first = -1;
|
|
} else {
|
|
++cur_len;
|
|
if (cur_first < 0) {
|
|
cur_first = n;
|
|
} else if (cur_len >= best_len) {
|
|
best_first = cur_first;
|
|
best_len = cur_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 0; n <= 7; ++n) {
|
|
INSIST(len < (int)sizeof(str));
|
|
if (n == best_first) {
|
|
len += snprintf(str + len, sizeof(str) - len,
|
|
".zz");
|
|
n += best_len - 1;
|
|
} else {
|
|
len += snprintf(str + len, sizeof(str) - len,
|
|
".%x", w[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
isc_buffer_init(&buffer, str, sizeof(str));
|
|
isc_buffer_add(&buffer, len);
|
|
result = dns_name_fromtext(ip_name, &buffer, base_name, 0, NULL);
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Determine the type of a name in a response policy zone.
|
|
*/
|
|
static dns_rpz_type_t
|
|
type_from_name(dns_rpz_zone_t *rpz, dns_name_t *name) {
|
|
|
|
if (dns_name_issubdomain(name, &rpz->ip))
|
|
return (DNS_RPZ_TYPE_IP);
|
|
|
|
if (dns_name_issubdomain(name, &rpz->client_ip))
|
|
return (DNS_RPZ_TYPE_CLIENT_IP);
|
|
|
|
#ifdef ENABLE_RPZ_NSIP
|
|
if (dns_name_issubdomain(name, &rpz->nsip))
|
|
return (DNS_RPZ_TYPE_NSIP);
|
|
#endif
|
|
|
|
#ifdef ENABLE_RPZ_NSDNAME
|
|
if (dns_name_issubdomain(name, &rpz->nsdname))
|
|
return (DNS_RPZ_TYPE_NSDNAME);
|
|
#endif
|
|
|
|
return (DNS_RPZ_TYPE_QNAME);
|
|
}
|
|
|
|
/*
|
|
* Convert an IP address from canonical response policy domain name form
|
|
* to radix tree binary (host byte order) for adding or deleting IP or NSIP
|
|
* data.
|
|
*/
|
|
static isc_result_t
|
|
name2ipkey(int log_level,
|
|
const dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type, dns_name_t *src_name,
|
|
dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t *tgt_prefix,
|
|
dns_rpz_addr_zbits_t *new_set)
|
|
{
|
|
dns_rpz_zone_t *rpz;
|
|
char ip_str[DNS_NAME_FORMATSIZE];
|
|
char ip2_str[DNS_NAME_FORMATSIZE];
|
|
dns_offsets_t ip_name_offsets;
|
|
dns_fixedname_t ip_name2f;
|
|
dns_name_t ip_name, *ip_name2;
|
|
const char *prefix_str, *cp, *end;
|
|
char *cp2;
|
|
int ip_labels;
|
|
dns_rpz_prefix_t prefix;
|
|
unsigned long prefix_num, l;
|
|
isc_result_t result;
|
|
int i;
|
|
|
|
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
|
|
rpz = rpzs->zones[rpz_num];
|
|
REQUIRE(rpz != NULL);
|
|
|
|
make_addr_set(new_set, DNS_RPZ_ZBIT(rpz_num), rpz_type);
|
|
|
|
ip_labels = dns_name_countlabels(src_name);
|
|
if (rpz_type == DNS_RPZ_TYPE_QNAME)
|
|
ip_labels -= dns_name_countlabels(&rpz->origin);
|
|
else
|
|
ip_labels -= dns_name_countlabels(&rpz->nsdname);
|
|
if (ip_labels < 2) {
|
|
badname(log_level, src_name, "; too short", "");
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
dns_name_init(&ip_name, ip_name_offsets);
|
|
dns_name_getlabelsequence(src_name, 0, ip_labels, &ip_name);
|
|
|
|
/*
|
|
* Get text for the IP address
|
|
*/
|
|
dns_name_format(&ip_name, ip_str, sizeof(ip_str));
|
|
end = &ip_str[strlen(ip_str)+1];
|
|
prefix_str = ip_str;
|
|
|
|
prefix_num = strtoul(prefix_str, &cp2, 10);
|
|
if (*cp2 != '.') {
|
|
badname(log_level, src_name,
|
|
"; invalid leading prefix length", "");
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
|
|
if (prefix_num < 1U || prefix_num > 128U) {
|
|
badname(log_level, src_name,
|
|
"; invalid prefix length of ", prefix_str);
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
cp = cp2+1;
|
|
|
|
if (--ip_labels == 4 && !strchr(cp, 'z')) {
|
|
/*
|
|
* Convert an IPv4 address
|
|
* from the form "prefix.z.y.x.w"
|
|
*/
|
|
if (prefix_num > 32U) {
|
|
badname(log_level, src_name,
|
|
"; invalid IPv4 prefix length of ", prefix_str);
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
prefix_num += 96;
|
|
*tgt_prefix = (dns_rpz_prefix_t)prefix_num;
|
|
tgt_ip->w[0] = 0;
|
|
tgt_ip->w[1] = 0;
|
|
tgt_ip->w[2] = ADDR_V4MAPPED;
|
|
tgt_ip->w[3] = 0;
|
|
for (i = 0; i < 32; i += 8) {
|
|
l = strtoul(cp, &cp2, 10);
|
|
if (l > 255U || (*cp2 != '.' && *cp2 != '\0')) {
|
|
if (*cp2 == '.')
|
|
*cp2 = '\0';
|
|
badname(log_level, src_name,
|
|
"; invalid IPv4 octet ", cp);
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
tgt_ip->w[3] |= l << i;
|
|
cp = cp2 + 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* Convert a text IPv6 address.
|
|
*/
|
|
*tgt_prefix = (dns_rpz_prefix_t)prefix_num;
|
|
for (i = 0;
|
|
ip_labels > 0 && i < DNS_RPZ_CIDR_WORDS * 2;
|
|
ip_labels--) {
|
|
if (cp[0] == 'z' && cp[1] == 'z' &&
|
|
(cp[2] == '.' || cp[2] == '\0') &&
|
|
i <= 6) {
|
|
do {
|
|
if ((i & 1) == 0)
|
|
tgt_ip->w[3-i/2] = 0;
|
|
++i;
|
|
} while (ip_labels + i <= 8);
|
|
cp += 3;
|
|
} else {
|
|
l = strtoul(cp, &cp2, 16);
|
|
if (l > 0xffffu ||
|
|
(*cp2 != '.' && *cp2 != '\0')) {
|
|
if (*cp2 == '.')
|
|
*cp2 = '\0';
|
|
badname(log_level, src_name,
|
|
"; invalid IPv6 word ", cp);
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
if ((i & 1) == 0)
|
|
tgt_ip->w[3-i/2] = l;
|
|
else
|
|
tgt_ip->w[3-i/2] |= l << 16;
|
|
i++;
|
|
cp = cp2 + 1;
|
|
}
|
|
}
|
|
}
|
|
if (cp != end) {
|
|
badname(log_level, src_name, "", "");
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* Check for 1s after the prefix length.
|
|
*/
|
|
prefix = (dns_rpz_prefix_t)prefix_num;
|
|
while (prefix < DNS_RPZ_CIDR_KEY_BITS) {
|
|
dns_rpz_cidr_word_t aword;
|
|
|
|
i = prefix % DNS_RPZ_CIDR_WORD_BITS;
|
|
aword = tgt_ip->w[prefix / DNS_RPZ_CIDR_WORD_BITS];
|
|
if ((aword & ~DNS_RPZ_WORD_MASK(i)) != 0) {
|
|
badname(log_level, src_name,
|
|
"; too small prefix length of ", prefix_str);
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
prefix -= i;
|
|
prefix += DNS_RPZ_CIDR_WORD_BITS;
|
|
}
|
|
|
|
/*
|
|
* Complain about bad names but be generous and accept them.
|
|
*/
|
|
if (log_level < DNS_RPZ_DEBUG_QUIET &&
|
|
isc_log_wouldlog(dns_lctx, log_level)) {
|
|
/*
|
|
* Convert the address back to a canonical domain name
|
|
* to ensure that the original name is in canonical form.
|
|
*/
|
|
ip_name2 = dns_fixedname_initname(&ip_name2f);
|
|
result = ip2name(tgt_ip, (dns_rpz_prefix_t)prefix_num,
|
|
NULL, ip_name2);
|
|
if (result != ISC_R_SUCCESS ||
|
|
!dns_name_equal(&ip_name, ip_name2)) {
|
|
dns_name_format(ip_name2, ip2_str, sizeof(ip2_str));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, log_level,
|
|
"rpz IP address \"%s\""
|
|
" is not the canonical \"%s\"",
|
|
ip_str, ip2_str);
|
|
}
|
|
}
|
|
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Get trigger name and data bits for adding or deleting summary NSDNAME
|
|
* or QNAME data.
|
|
*/
|
|
static void
|
|
name2data(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type, const dns_name_t *src_name,
|
|
dns_name_t *trig_name, dns_rpz_nm_data_t *new_data)
|
|
{
|
|
dns_rpz_zone_t *rpz;
|
|
dns_offsets_t tmp_name_offsets;
|
|
dns_name_t tmp_name;
|
|
unsigned int prefix_len, n;
|
|
|
|
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
|
|
rpz = rpzs->zones[rpz_num];
|
|
REQUIRE(rpz != NULL);
|
|
|
|
/*
|
|
* Handle wildcards by putting only the parent into the
|
|
* summary RBT. The summary database only causes a check of the
|
|
* real policy zone where wildcards will be handled.
|
|
*/
|
|
if (dns_name_iswildcard(src_name)) {
|
|
prefix_len = 1;
|
|
memset(&new_data->set, 0, sizeof(new_data->set));
|
|
make_nm_set(&new_data->wild, rpz_num, rpz_type);
|
|
} else {
|
|
prefix_len = 0;
|
|
make_nm_set(&new_data->set, rpz_num, rpz_type);
|
|
memset(&new_data->wild, 0, sizeof(new_data->wild));
|
|
}
|
|
|
|
dns_name_init(&tmp_name, tmp_name_offsets);
|
|
n = dns_name_countlabels(src_name);
|
|
n -= prefix_len;
|
|
if (rpz_type == DNS_RPZ_TYPE_QNAME)
|
|
n -= dns_name_countlabels(&rpz->origin);
|
|
else
|
|
n -= dns_name_countlabels(&rpz->nsdname);
|
|
dns_name_getlabelsequence(src_name, prefix_len, n, &tmp_name);
|
|
(void)dns_name_concatenate(&tmp_name, dns_rootname, trig_name, NULL);
|
|
}
|
|
|
|
#ifndef HAVE_BUILTIN_CLZ
|
|
/**
|
|
* \brief Count Leading Zeros: Find the location of the left-most set
|
|
* bit.
|
|
*/
|
|
static inline unsigned int
|
|
clz(dns_rpz_cidr_word_t w) {
|
|
unsigned int bit;
|
|
|
|
bit = DNS_RPZ_CIDR_WORD_BITS-1;
|
|
|
|
if ((w & 0xffff0000) != 0) {
|
|
w >>= 16;
|
|
bit -= 16;
|
|
}
|
|
|
|
if ((w & 0xff00) != 0) {
|
|
w >>= 8;
|
|
bit -= 8;
|
|
}
|
|
|
|
if ((w & 0xf0) != 0) {
|
|
w >>= 4;
|
|
bit -= 4;
|
|
}
|
|
|
|
if ((w & 0xc) != 0) {
|
|
w >>= 2;
|
|
bit -= 2;
|
|
}
|
|
|
|
if ((w & 2) != 0)
|
|
--bit;
|
|
|
|
return (bit);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find the first differing bit in two keys (IP addresses).
|
|
*/
|
|
static int
|
|
diff_keys(const dns_rpz_cidr_key_t *key1, dns_rpz_prefix_t prefix1,
|
|
const dns_rpz_cidr_key_t *key2, dns_rpz_prefix_t prefix2)
|
|
{
|
|
dns_rpz_cidr_word_t delta;
|
|
dns_rpz_prefix_t maxbit, bit;
|
|
int i;
|
|
|
|
bit = 0;
|
|
maxbit = ISC_MIN(prefix1, prefix2);
|
|
|
|
/*
|
|
* find the first differing words
|
|
*/
|
|
for (i = 0; bit < maxbit; i++, bit += DNS_RPZ_CIDR_WORD_BITS) {
|
|
delta = key1->w[i] ^ key2->w[i];
|
|
if (ISC_UNLIKELY(delta != 0)) {
|
|
#ifdef HAVE_BUILTIN_CLZ
|
|
bit += __builtin_clz(delta);
|
|
#else
|
|
bit += clz(delta);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
return (ISC_MIN(bit, maxbit));
|
|
}
|
|
|
|
/*
|
|
* Given a hit while searching the radix trees,
|
|
* clear all bits for higher numbered zones.
|
|
*/
|
|
static inline dns_rpz_zbits_t
|
|
trim_zbits(dns_rpz_zbits_t zbits, dns_rpz_zbits_t found) {
|
|
dns_rpz_zbits_t x;
|
|
|
|
/*
|
|
* Isolate the first or smallest numbered hit bit.
|
|
* Make a mask of that bit and all smaller numbered bits.
|
|
*/
|
|
x = zbits & found;
|
|
x &= (~x + 1);
|
|
x = (x << 1) - 1;
|
|
return (zbits &= x);
|
|
}
|
|
|
|
/*
|
|
* Search a radix tree for an IP address for ordinary lookup
|
|
* or for a CIDR block adding or deleting an entry
|
|
*
|
|
* Return ISC_R_SUCCESS, DNS_R_PARTIALMATCH, ISC_R_NOTFOUND,
|
|
* and *found=longest match node
|
|
* or with create==true, ISC_R_EXISTS or ISC_R_NOMEMORY
|
|
*/
|
|
static isc_result_t
|
|
search(dns_rpz_zones_t *rpzs,
|
|
const dns_rpz_cidr_key_t *tgt_ip, dns_rpz_prefix_t tgt_prefix,
|
|
const dns_rpz_addr_zbits_t *tgt_set, bool create,
|
|
dns_rpz_cidr_node_t **found)
|
|
{
|
|
dns_rpz_cidr_node_t *cur, *parent, *child, *new_parent, *sibling;
|
|
dns_rpz_addr_zbits_t set;
|
|
int cur_num, child_num;
|
|
dns_rpz_prefix_t dbit;
|
|
isc_result_t find_result;
|
|
|
|
set = *tgt_set;
|
|
find_result = ISC_R_NOTFOUND;
|
|
*found = NULL;
|
|
cur = rpzs->cidr;
|
|
parent = NULL;
|
|
cur_num = 0;
|
|
for (;;) {
|
|
if (cur == NULL) {
|
|
/*
|
|
* No child so we cannot go down.
|
|
* Quit with whatever we already found
|
|
* or add the target as a child of the current parent.
|
|
*/
|
|
if (!create)
|
|
return (find_result);
|
|
child = new_node(rpzs, tgt_ip, tgt_prefix, NULL);
|
|
if (child == NULL)
|
|
return (ISC_R_NOMEMORY);
|
|
if (parent == NULL)
|
|
rpzs->cidr = child;
|
|
else
|
|
parent->child[cur_num] = child;
|
|
child->parent = parent;
|
|
child->set.client_ip |= tgt_set->client_ip;
|
|
child->set.ip |= tgt_set->ip;
|
|
child->set.nsip |= tgt_set->nsip;
|
|
set_sum_pair(child);
|
|
*found = child;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
if ((cur->sum.client_ip & set.client_ip) == 0 &&
|
|
(cur->sum.ip & set.ip) == 0 &&
|
|
(cur->sum.nsip & set.nsip) == 0) {
|
|
/*
|
|
* This node has no relevant data
|
|
* and is in none of the target trees.
|
|
* Pretend it does not exist if we are not adding.
|
|
*
|
|
* If we are adding, continue down to eventually add
|
|
* a node and mark/put this node in the correct tree.
|
|
*/
|
|
if (!create)
|
|
return (find_result);
|
|
}
|
|
|
|
dbit = diff_keys(tgt_ip, tgt_prefix, &cur->ip, cur->prefix);
|
|
/*
|
|
* dbit <= tgt_prefix and dbit <= cur->prefix always.
|
|
* We are finished searching if we matched all of the target.
|
|
*/
|
|
if (dbit == tgt_prefix) {
|
|
if (tgt_prefix == cur->prefix) {
|
|
/*
|
|
* The node's key matches the target exactly.
|
|
*/
|
|
if ((cur->set.client_ip & set.client_ip) != 0 ||
|
|
(cur->set.ip & set.ip) != 0 ||
|
|
(cur->set.nsip & set.nsip) != 0) {
|
|
/*
|
|
* It is the answer if it has data.
|
|
*/
|
|
*found = cur;
|
|
if (create) {
|
|
find_result = ISC_R_EXISTS;
|
|
} else {
|
|
find_result = ISC_R_SUCCESS;
|
|
}
|
|
} else if (create) {
|
|
/*
|
|
* The node lacked relevant data,
|
|
* but will have it now.
|
|
*/
|
|
cur->set.client_ip |= tgt_set->client_ip;
|
|
cur->set.ip |= tgt_set->ip;
|
|
cur->set.nsip |= tgt_set->nsip;
|
|
set_sum_pair(cur);
|
|
*found = cur;
|
|
find_result = ISC_R_SUCCESS;
|
|
}
|
|
return (find_result);
|
|
}
|
|
|
|
/*
|
|
* We know tgt_prefix < cur->prefix which means that
|
|
* the target is shorter than the current node.
|
|
* Add the target as the current node's parent.
|
|
*/
|
|
if (!create)
|
|
return (find_result);
|
|
|
|
new_parent = new_node(rpzs, tgt_ip, tgt_prefix, cur);
|
|
if (new_parent == NULL)
|
|
return (ISC_R_NOMEMORY);
|
|
new_parent->parent = parent;
|
|
if (parent == NULL)
|
|
rpzs->cidr = new_parent;
|
|
else
|
|
parent->child[cur_num] = new_parent;
|
|
child_num = DNS_RPZ_IP_BIT(&cur->ip, tgt_prefix);
|
|
new_parent->child[child_num] = cur;
|
|
cur->parent = new_parent;
|
|
new_parent->set = *tgt_set;
|
|
set_sum_pair(new_parent);
|
|
*found = new_parent;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
if (dbit == cur->prefix) {
|
|
if ((cur->set.client_ip & set.client_ip) != 0 ||
|
|
(cur->set.ip & set.ip) != 0 ||
|
|
(cur->set.nsip & set.nsip) != 0) {
|
|
/*
|
|
* We have a partial match between of all of the
|
|
* current node but only part of the target.
|
|
* Continue searching for other hits in the
|
|
* same or lower numbered trees.
|
|
*/
|
|
find_result = DNS_R_PARTIALMATCH;
|
|
*found = cur;
|
|
set.client_ip = trim_zbits(set.client_ip,
|
|
cur->set.client_ip);
|
|
set.ip = trim_zbits(set.ip,
|
|
cur->set.ip);
|
|
set.nsip = trim_zbits(set.nsip,
|
|
cur->set.nsip);
|
|
}
|
|
parent = cur;
|
|
cur_num = DNS_RPZ_IP_BIT(tgt_ip, dbit);
|
|
cur = cur->child[cur_num];
|
|
continue;
|
|
}
|
|
|
|
|
|
/*
|
|
* dbit < tgt_prefix and dbit < cur->prefix,
|
|
* so we failed to match both the target and the current node.
|
|
* Insert a fork of a parent above the current node and
|
|
* add the target as a sibling of the current node
|
|
*/
|
|
if (!create)
|
|
return (find_result);
|
|
|
|
sibling = new_node(rpzs, tgt_ip, tgt_prefix, NULL);
|
|
if (sibling == NULL)
|
|
return (ISC_R_NOMEMORY);
|
|
new_parent = new_node(rpzs, tgt_ip, dbit, cur);
|
|
if (new_parent == NULL) {
|
|
isc_mem_put(rpzs->mctx, sibling, sizeof(*sibling));
|
|
return (ISC_R_NOMEMORY);
|
|
}
|
|
new_parent->parent = parent;
|
|
if (parent == NULL)
|
|
rpzs->cidr = new_parent;
|
|
else
|
|
parent->child[cur_num] = new_parent;
|
|
child_num = DNS_RPZ_IP_BIT(tgt_ip, dbit);
|
|
new_parent->child[child_num] = sibling;
|
|
new_parent->child[1-child_num] = cur;
|
|
cur->parent = new_parent;
|
|
sibling->parent = new_parent;
|
|
sibling->set = *tgt_set;
|
|
set_sum_pair(sibling);
|
|
*found = sibling;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add an IP address to the radix tree.
|
|
*/
|
|
static isc_result_t
|
|
add_cidr(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type, dns_name_t *src_name)
|
|
{
|
|
dns_rpz_cidr_key_t tgt_ip;
|
|
dns_rpz_prefix_t tgt_prefix;
|
|
dns_rpz_addr_zbits_t set;
|
|
dns_rpz_cidr_node_t *found;
|
|
isc_result_t result;
|
|
|
|
result = name2ipkey(DNS_RPZ_ERROR_LEVEL, rpzs, rpz_num, rpz_type,
|
|
src_name, &tgt_ip, &tgt_prefix, &set);
|
|
/*
|
|
* Log complaints about bad owner names but let the zone load.
|
|
*/
|
|
if (result != ISC_R_SUCCESS)
|
|
return (ISC_R_SUCCESS);
|
|
|
|
result = search(rpzs, &tgt_ip, tgt_prefix, &set, true, &found);
|
|
if (result != ISC_R_SUCCESS) {
|
|
char namebuf[DNS_NAME_FORMATSIZE];
|
|
|
|
/*
|
|
* Do not worry if the radix tree already exists,
|
|
* because diff_apply() likes to add nodes before deleting.
|
|
*/
|
|
if (result == ISC_R_EXISTS)
|
|
return (ISC_R_SUCCESS);
|
|
|
|
/*
|
|
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
|
|
*/
|
|
dns_name_format(src_name, namebuf, sizeof(namebuf));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"rpz add_cidr(%s) failed: %s",
|
|
namebuf, isc_result_totext(result));
|
|
return (result);
|
|
}
|
|
|
|
adj_trigger_cnt(rpzs, rpz_num, rpz_type, &tgt_ip, tgt_prefix, true);
|
|
return (result);
|
|
}
|
|
|
|
static isc_result_t
|
|
add_nm(dns_rpz_zones_t *rpzs, dns_name_t *trig_name,
|
|
const dns_rpz_nm_data_t *new_data)
|
|
{
|
|
dns_rbtnode_t *nmnode;
|
|
dns_rpz_nm_data_t *nm_data;
|
|
isc_result_t result;
|
|
|
|
nmnode = NULL;
|
|
result = dns_rbt_addnode(rpzs->rbt, trig_name, &nmnode);
|
|
switch (result) {
|
|
case ISC_R_SUCCESS:
|
|
case ISC_R_EXISTS:
|
|
nm_data = nmnode->data;
|
|
if (nm_data == NULL) {
|
|
nm_data = isc_mem_get(rpzs->mctx, sizeof(*nm_data));
|
|
if (nm_data == NULL)
|
|
return (ISC_R_NOMEMORY);
|
|
*nm_data = *new_data;
|
|
nmnode->data = nm_data;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
break;
|
|
default:
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Do not count bits that are already present
|
|
*/
|
|
if ((nm_data->set.qname & new_data->set.qname) != 0 ||
|
|
(nm_data->set.ns & new_data->set.ns) != 0 ||
|
|
(nm_data->wild.qname & new_data->wild.qname) != 0 ||
|
|
(nm_data->wild.ns & new_data->wild.ns) != 0)
|
|
return (ISC_R_EXISTS);
|
|
|
|
nm_data->set.qname |= new_data->set.qname;
|
|
nm_data->set.ns |= new_data->set.ns;
|
|
nm_data->wild.qname |= new_data->wild.qname;
|
|
nm_data->wild.ns |= new_data->wild.ns;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
static isc_result_t
|
|
add_name(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type, dns_name_t *src_name)
|
|
{
|
|
dns_rpz_nm_data_t new_data;
|
|
dns_fixedname_t trig_namef;
|
|
dns_name_t *trig_name;
|
|
isc_result_t result;
|
|
|
|
/*
|
|
* We need a summary database of names even with 1 policy zone,
|
|
* because wildcard triggers are handled differently.
|
|
*/
|
|
|
|
trig_name = dns_fixedname_initname(&trig_namef);
|
|
name2data(rpzs, rpz_num, rpz_type, src_name, trig_name, &new_data);
|
|
|
|
result = add_nm(rpzs, trig_name, &new_data);
|
|
|
|
/*
|
|
* Do not worry if the node already exists,
|
|
* because diff_apply() likes to add nodes before deleting.
|
|
*/
|
|
if (result == ISC_R_EXISTS)
|
|
return (ISC_R_SUCCESS);
|
|
if (result == ISC_R_SUCCESS)
|
|
adj_trigger_cnt(rpzs, rpz_num, rpz_type, NULL, 0, true);
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Callback to free the data for a node in the summary RBT database.
|
|
*/
|
|
static void
|
|
rpz_node_deleter(void *nm_data, void *mctx) {
|
|
isc_mem_put(mctx, nm_data, sizeof(dns_rpz_nm_data_t));
|
|
}
|
|
|
|
/*
|
|
* Get ready for a new set of policy zones for a view.
|
|
*/
|
|
isc_result_t
|
|
dns_rpz_new_zones(dns_rpz_zones_t **rpzsp, isc_mem_t *mctx) {
|
|
dns_rpz_zones_t *new;
|
|
isc_result_t result;
|
|
|
|
REQUIRE(rpzsp != NULL && *rpzsp == NULL);
|
|
|
|
*rpzsp = NULL;
|
|
|
|
new = isc_mem_get(mctx, sizeof(*new));
|
|
if (new == NULL)
|
|
return (ISC_R_NOMEMORY);
|
|
memset(new, 0, sizeof(*new));
|
|
|
|
result = isc_rwlock_init(&new->search_lock, 0, 0);
|
|
if (result != ISC_R_SUCCESS) {
|
|
isc_mem_put(mctx, new, sizeof(*new));
|
|
return (result);
|
|
}
|
|
|
|
result = isc_mutex_init(&new->maint_lock);
|
|
if (result != ISC_R_SUCCESS) {
|
|
isc_rwlock_destroy(&new->search_lock);
|
|
isc_mem_put(mctx, new, sizeof(*new));
|
|
return (result);
|
|
}
|
|
|
|
result = isc_refcount_init(&new->refs, 1);
|
|
if (result != ISC_R_SUCCESS) {
|
|
DESTROYLOCK(&new->maint_lock);
|
|
isc_rwlock_destroy(&new->search_lock);
|
|
isc_mem_put(mctx, new, sizeof(*new));
|
|
return (result);
|
|
}
|
|
|
|
result = dns_rbt_create(mctx, rpz_node_deleter, mctx, &new->rbt);
|
|
if (result != ISC_R_SUCCESS) {
|
|
isc_refcount_decrement(&new->refs, NULL);
|
|
isc_refcount_destroy(&new->refs);
|
|
DESTROYLOCK(&new->maint_lock);
|
|
isc_rwlock_destroy(&new->search_lock);
|
|
isc_mem_put(mctx, new, sizeof(*new));
|
|
return (result);
|
|
}
|
|
|
|
isc_mem_attach(mctx, &new->mctx);
|
|
|
|
*rpzsp = new;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Free the radix tree of a response policy database.
|
|
*/
|
|
static void
|
|
cidr_free(dns_rpz_zones_t *rpzs) {
|
|
dns_rpz_cidr_node_t *cur, *child, *parent;
|
|
|
|
cur = rpzs->cidr;
|
|
while (cur != NULL) {
|
|
/* Depth first. */
|
|
child = cur->child[0];
|
|
if (child != NULL) {
|
|
cur = child;
|
|
continue;
|
|
}
|
|
child = cur->child[1];
|
|
if (child != NULL) {
|
|
cur = child;
|
|
continue;
|
|
}
|
|
|
|
/* Delete this leaf and go up. */
|
|
parent = cur->parent;
|
|
if (parent == NULL)
|
|
rpzs->cidr = NULL;
|
|
else
|
|
parent->child[parent->child[1] == cur] = NULL;
|
|
isc_mem_put(rpzs->mctx, cur, sizeof(*cur));
|
|
cur = parent;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Discard a response policy zone blob
|
|
* before discarding the overall rpz structure.
|
|
*/
|
|
static void
|
|
rpz_detach(dns_rpz_zone_t **rpzp, dns_rpz_zones_t *rpzs) {
|
|
dns_rpz_zone_t *rpz;
|
|
unsigned int refs;
|
|
|
|
rpz = *rpzp;
|
|
*rpzp = NULL;
|
|
isc_refcount_decrement(&rpz->refs, &refs);
|
|
if (refs != 0)
|
|
return;
|
|
isc_refcount_destroy(&rpz->refs);
|
|
|
|
if (dns_name_dynamic(&rpz->origin))
|
|
dns_name_free(&rpz->origin, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->client_ip))
|
|
dns_name_free(&rpz->client_ip, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->ip))
|
|
dns_name_free(&rpz->ip, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->nsdname))
|
|
dns_name_free(&rpz->nsdname, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->nsip))
|
|
dns_name_free(&rpz->nsip, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->passthru))
|
|
dns_name_free(&rpz->passthru, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->drop))
|
|
dns_name_free(&rpz->drop, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->tcp_only))
|
|
dns_name_free(&rpz->tcp_only, rpzs->mctx);
|
|
if (dns_name_dynamic(&rpz->cname))
|
|
dns_name_free(&rpz->cname, rpzs->mctx);
|
|
|
|
isc_mem_put(rpzs->mctx, rpz, sizeof(*rpz));
|
|
}
|
|
|
|
void
|
|
dns_rpz_attach_rpzs(dns_rpz_zones_t *rpzs, dns_rpz_zones_t **rpzsp) {
|
|
REQUIRE(rpzsp != NULL && *rpzsp == NULL);
|
|
isc_refcount_increment(&rpzs->refs, NULL);
|
|
*rpzsp = rpzs;
|
|
}
|
|
|
|
/*
|
|
* Forget a view's policy zones.
|
|
*/
|
|
void
|
|
dns_rpz_detach_rpzs(dns_rpz_zones_t **rpzsp) {
|
|
dns_rpz_zones_t *rpzs;
|
|
dns_rpz_zone_t *rpz;
|
|
dns_rpz_num_t rpz_num;
|
|
unsigned int refs;
|
|
|
|
REQUIRE(rpzsp != NULL);
|
|
rpzs = *rpzsp;
|
|
REQUIRE(rpzs != NULL);
|
|
|
|
*rpzsp = NULL;
|
|
isc_refcount_decrement(&rpzs->refs, &refs);
|
|
if (refs > 0)
|
|
return;
|
|
|
|
/*
|
|
* Forget the last of view's rpz machinery after the last
|
|
* reference.
|
|
*/
|
|
for (rpz_num = 0; rpz_num < DNS_RPZ_MAX_ZONES; ++rpz_num) {
|
|
rpz = rpzs->zones[rpz_num];
|
|
rpzs->zones[rpz_num] = NULL;
|
|
if (rpz != NULL)
|
|
rpz_detach(&rpz, rpzs);
|
|
}
|
|
|
|
cidr_free(rpzs);
|
|
dns_rbt_destroy(&rpzs->rbt);
|
|
DESTROYLOCK(&rpzs->maint_lock);
|
|
isc_rwlock_destroy(&rpzs->search_lock);
|
|
isc_refcount_destroy(&rpzs->refs);
|
|
isc_mem_putanddetach(&rpzs->mctx, rpzs, sizeof(*rpzs));
|
|
}
|
|
|
|
/*
|
|
* Create empty summary database to load one zone.
|
|
* The RBTDB write tree lock must be held.
|
|
*/
|
|
isc_result_t
|
|
dns_rpz_beginload(dns_rpz_zones_t **load_rpzsp,
|
|
dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num)
|
|
{
|
|
dns_rpz_zones_t *load_rpzs;
|
|
dns_rpz_zone_t *rpz;
|
|
dns_rpz_zbits_t tgt;
|
|
isc_result_t result;
|
|
|
|
REQUIRE(rpz_num < rpzs->p.num_zones);
|
|
rpz = rpzs->zones[rpz_num];
|
|
REQUIRE(rpz != NULL);
|
|
|
|
/*
|
|
* When reloading a zone, there are usually records among the summary
|
|
* data for the zone. Some of those records might be deleted by the
|
|
* reloaded zone data. To deal with that case:
|
|
* reload the new zone data into a new blank summary database
|
|
* if the reload fails, discard the new summary database
|
|
* if the new zone data is acceptable, copy the records for the
|
|
* other zones into the new summary CIDR and RBT databases
|
|
* and replace the old summary databases with the new, and
|
|
* correct the triggers and have values for the updated
|
|
* zone.
|
|
*
|
|
* At the first attempt to load a zone, there is no summary data
|
|
* for the zone and so no records that need to be deleted.
|
|
* This is also the most common case of policy zone loading.
|
|
* Most policy zone maintenance should be by incremental changes
|
|
* and so by the addition and deletion of individual records.
|
|
* Detect that case and load records the first time into the
|
|
* operational summary database
|
|
*/
|
|
tgt = DNS_RPZ_ZBIT(rpz_num);
|
|
LOCK(&rpzs->maint_lock);
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
if ((rpzs->load_begun & tgt) == 0) {
|
|
/*
|
|
* There is no existing version of the target zone.
|
|
*/
|
|
rpzs->load_begun |= tgt;
|
|
dns_rpz_attach_rpzs(rpzs, load_rpzsp);
|
|
} else {
|
|
/*
|
|
* Setup the new RPZ struct with empty summary trees.
|
|
*/
|
|
result = dns_rpz_new_zones(load_rpzsp, rpzs->mctx);
|
|
if (result != ISC_R_SUCCESS)
|
|
return (result);
|
|
load_rpzs = *load_rpzsp;
|
|
/*
|
|
* Initialize some members so that dns_rpz_add() works.
|
|
*/
|
|
load_rpzs->p.num_zones = rpzs->p.num_zones;
|
|
memset(&load_rpzs->triggers, 0, sizeof(load_rpzs->triggers));
|
|
load_rpzs->zones[rpz_num] = rpz;
|
|
isc_refcount_increment(&rpz->refs, NULL);
|
|
}
|
|
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
UNLOCK(&rpzs->maint_lock);
|
|
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* This function updates "have" bits and also the qname_skip_recurse
|
|
* mask. It must be called when holding a write lock on rpzs->search_lock.
|
|
*/
|
|
static void
|
|
fix_triggers(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num) {
|
|
dns_rpz_num_t n;
|
|
dns_rpz_triggers_t old_totals;
|
|
dns_rpz_zbits_t zbit;
|
|
char namebuf[DNS_NAME_FORMATSIZE];
|
|
|
|
/*
|
|
* rpzs->total_triggers is only used to log a message below.
|
|
*/
|
|
|
|
memmove(&old_totals, &rpzs->total_triggers, sizeof(old_totals));
|
|
memset(&rpzs->total_triggers, 0, sizeof(rpzs->total_triggers));
|
|
|
|
#define SET_TRIG(n, zbit, type) \
|
|
if (rpzs->triggers[n].type == 0U) { \
|
|
rpzs->have.type &= ~zbit; \
|
|
} else { \
|
|
rpzs->total_triggers.type += rpzs->triggers[n].type; \
|
|
rpzs->have.type |= zbit; \
|
|
}
|
|
|
|
for (n = 0; n < rpzs->p.num_zones; ++n) {
|
|
zbit = DNS_RPZ_ZBIT(n);
|
|
SET_TRIG(n, zbit, client_ipv4);
|
|
SET_TRIG(n, zbit, client_ipv6);
|
|
SET_TRIG(n, zbit, qname);
|
|
SET_TRIG(n, zbit, ipv4);
|
|
SET_TRIG(n, zbit, ipv6);
|
|
SET_TRIG(n, zbit, nsdname);
|
|
SET_TRIG(n, zbit, nsipv4);
|
|
SET_TRIG(n, zbit, nsipv6);
|
|
}
|
|
|
|
#undef SET_TRIG
|
|
|
|
fix_qname_skip_recurse(rpzs);
|
|
|
|
dns_name_format(&rpzs->zones[rpz_num]->origin,
|
|
namebuf, sizeof(namebuf));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_INFO_LEVEL,
|
|
"(re)loading policy zone '%s' changed from"
|
|
" %lu to %lu qname, %lu to %lu nsdname,"
|
|
" %lu to %lu IP, %lu to %lu NSIP,"
|
|
" %lu to %lu CLIENTIP entries",
|
|
namebuf,
|
|
(unsigned long) old_totals.qname,
|
|
(unsigned long) rpzs->total_triggers.qname,
|
|
(unsigned long) old_totals.nsdname,
|
|
(unsigned long) rpzs->total_triggers.nsdname,
|
|
(unsigned long) old_totals.ipv4 + old_totals.ipv6,
|
|
(unsigned long) (rpzs->total_triggers.ipv4 +
|
|
rpzs->total_triggers.ipv6),
|
|
(unsigned long) old_totals.nsipv4 + old_totals.nsipv6,
|
|
(unsigned long) (rpzs->total_triggers.nsipv4 +
|
|
rpzs->total_triggers.nsipv6),
|
|
(unsigned long) old_totals.client_ipv4 +
|
|
old_totals.client_ipv6,
|
|
(unsigned long) (rpzs->total_triggers.client_ipv4 +
|
|
rpzs->total_triggers.client_ipv6));
|
|
}
|
|
|
|
/*
|
|
* Finish loading one zone. This function is called during a commit when
|
|
* a RPZ zone loading is complete. The RBTDB write tree lock must be
|
|
* held.
|
|
*
|
|
* Here, rpzs is a pointer to the view's common rpzs
|
|
* structure. *load_rpzsp is a rpzs structure that is local to the
|
|
* RBTDB, which is used during a single zone's load.
|
|
*
|
|
* During the zone load, i.e., between dns_rpz_beginload() and
|
|
* dns_rpz_ready(), only the zone that is being loaded updates
|
|
* *load_rpzsp. These updates in the summary databases inside load_rpzsp
|
|
* are made only for the rpz_num (and corresponding bit) of that
|
|
* zone. Nothing else reads or writes *load_rpzsp. The view's common
|
|
* rpzs is used during this time for queries.
|
|
*
|
|
* When zone loading is complete and we arrive here, the parts of the
|
|
* summary databases (CIDR and nsdname+qname RBT trees) from the view's
|
|
* common rpzs struct have to be merged into the summary databases of
|
|
* *load_rpzsp, as the summary databases of the view's common rpzs
|
|
* struct may have changed during the time the zone was being loaded.
|
|
*
|
|
* The function below carries out the merge. During the merge, it holds
|
|
* the maint_lock of the view's common rpzs struct so that it is not
|
|
* updated while the merging is taking place.
|
|
*
|
|
* After the merging is carried out, *load_rpzsp contains the most
|
|
* current state of the rpzs structure, i.e., the summary trees contain
|
|
* data for the new zone that was just loaded, as well as all other
|
|
* zones.
|
|
*
|
|
* Pointers to the summary databases of *load_rpzsp (CIDR and
|
|
* nsdname+qname RBT trees) are then swapped into the view's common rpz
|
|
* struct, so that the query path can continue using it. During the
|
|
* swap, the search_lock of the view's common rpz struct is acquired so
|
|
* that queries are paused while this swap occurs.
|
|
*
|
|
* The trigger counts for the new zone are also copied into the view's
|
|
* common rpz struct, and some other summary counts and masks are
|
|
* updated.
|
|
*/
|
|
isc_result_t
|
|
dns_rpz_ready(dns_rpz_zones_t *rpzs,
|
|
dns_rpz_zones_t **load_rpzsp, dns_rpz_num_t rpz_num)
|
|
{
|
|
dns_rpz_zones_t *load_rpzs;
|
|
const dns_rpz_cidr_node_t *cnode, *next_cnode, *parent_cnode;
|
|
dns_rpz_cidr_node_t *found;
|
|
dns_rpz_zbits_t new_bit;
|
|
dns_rpz_addr_zbits_t new_ip;
|
|
dns_rbt_t *rbt;
|
|
dns_rbtnodechain_t chain;
|
|
dns_rbtnode_t *nmnode;
|
|
dns_rpz_nm_data_t *nm_data, new_data;
|
|
dns_fixedname_t labelf, originf, namef;
|
|
dns_name_t *label, *origin, *name;
|
|
isc_result_t result;
|
|
|
|
INSIST(rpzs != NULL);
|
|
LOCK(&rpzs->maint_lock);
|
|
load_rpzs = *load_rpzsp;
|
|
INSIST(load_rpzs != NULL);
|
|
|
|
if (load_rpzs == rpzs) {
|
|
/*
|
|
* This is a successful initial zone loading, perhaps
|
|
* for a new instance of a view.
|
|
*/
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
fix_triggers(rpzs, rpz_num);
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
UNLOCK(&rpzs->maint_lock);
|
|
dns_rpz_detach_rpzs(load_rpzsp);
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
LOCK(&load_rpzs->maint_lock);
|
|
RWLOCK(&load_rpzs->search_lock, isc_rwlocktype_write);
|
|
|
|
/*
|
|
* Unless there is only one policy zone, copy the other policy zones
|
|
* from the old policy structure to the new summary databases.
|
|
*/
|
|
if (rpzs->p.num_zones > 1) {
|
|
new_bit = ~DNS_RPZ_ZBIT(rpz_num);
|
|
|
|
/*
|
|
* Copy to the radix tree.
|
|
*/
|
|
for (cnode = rpzs->cidr; cnode != NULL; cnode = next_cnode) {
|
|
new_ip.ip = cnode->set.ip & new_bit;
|
|
new_ip.client_ip = cnode->set.client_ip & new_bit;
|
|
new_ip.nsip = cnode->set.nsip & new_bit;
|
|
if (new_ip.client_ip != 0 ||
|
|
new_ip.ip != 0 ||
|
|
new_ip.nsip != 0) {
|
|
result = search(load_rpzs,
|
|
&cnode->ip, cnode->prefix,
|
|
&new_ip, true, &found);
|
|
if (result == ISC_R_NOMEMORY)
|
|
goto unlock_and_detach;
|
|
INSIST(result == ISC_R_SUCCESS);
|
|
}
|
|
/*
|
|
* Do down and to the left as far as possible.
|
|
*/
|
|
next_cnode = cnode->child[0];
|
|
if (next_cnode != NULL)
|
|
continue;
|
|
/*
|
|
* Go up until we find a branch to the right where
|
|
* we previously took the branch to the left.
|
|
*/
|
|
for (;;) {
|
|
parent_cnode = cnode->parent;
|
|
if (parent_cnode == NULL)
|
|
break;
|
|
if (parent_cnode->child[0] == cnode) {
|
|
next_cnode = parent_cnode->child[1];
|
|
if (next_cnode != NULL)
|
|
break;
|
|
}
|
|
cnode = parent_cnode;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy to the summary RBT.
|
|
*/
|
|
dns_fixedname_init(&namef);
|
|
name = dns_fixedname_name(&namef);
|
|
dns_fixedname_init(&labelf);
|
|
label = dns_fixedname_name(&labelf);
|
|
dns_fixedname_init(&originf);
|
|
origin = dns_fixedname_name(&originf);
|
|
dns_rbtnodechain_init(&chain, NULL);
|
|
result = dns_rbtnodechain_first(&chain, rpzs->rbt, NULL, NULL);
|
|
while (result == DNS_R_NEWORIGIN || result == ISC_R_SUCCESS) {
|
|
result = dns_rbtnodechain_current(&chain, label, origin,
|
|
&nmnode);
|
|
INSIST(result == ISC_R_SUCCESS);
|
|
nm_data = nmnode->data;
|
|
if (nm_data != NULL) {
|
|
new_data.set.qname = (nm_data->set.qname &
|
|
new_bit);
|
|
new_data.set.ns = nm_data->set.ns & new_bit;
|
|
new_data.wild.qname = (nm_data->wild.qname &
|
|
new_bit);
|
|
new_data.wild.ns = nm_data->wild.ns & new_bit;
|
|
if (new_data.set.qname != 0 ||
|
|
new_data.set.ns != 0 ||
|
|
new_data.wild.qname != 0 ||
|
|
new_data.wild.ns != 0) {
|
|
result = dns_name_concatenate(label,
|
|
origin, name, NULL);
|
|
INSIST(result == ISC_R_SUCCESS);
|
|
result = add_nm(load_rpzs, name,
|
|
&new_data);
|
|
if (result != ISC_R_SUCCESS)
|
|
goto unlock_and_detach;
|
|
}
|
|
}
|
|
result = dns_rbtnodechain_next(&chain, NULL, NULL);
|
|
}
|
|
if (result != ISC_R_NOMORE && result != ISC_R_NOTFOUND) {
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"dns_rpz_ready(): unexpected %s",
|
|
isc_result_totext(result));
|
|
goto unlock_and_detach;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Exchange the summary databases.
|
|
*/
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
|
|
rpzs->triggers[rpz_num] = load_rpzs->triggers[rpz_num];
|
|
fix_triggers(rpzs, rpz_num);
|
|
|
|
found = rpzs->cidr;
|
|
rpzs->cidr = load_rpzs->cidr;
|
|
load_rpzs->cidr = found;
|
|
|
|
rbt = rpzs->rbt;
|
|
rpzs->rbt = load_rpzs->rbt;
|
|
load_rpzs->rbt = rbt;
|
|
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
|
|
result = ISC_R_SUCCESS;
|
|
|
|
unlock_and_detach:
|
|
UNLOCK(&rpzs->maint_lock);
|
|
RWUNLOCK(&load_rpzs->search_lock, isc_rwlocktype_write);
|
|
UNLOCK(&load_rpzs->maint_lock);
|
|
dns_rpz_detach_rpzs(load_rpzsp);
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Add an IP address to the radix tree or a name to the summary database.
|
|
*/
|
|
isc_result_t
|
|
dns_rpz_add(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num, dns_name_t *src_name)
|
|
{
|
|
dns_rpz_zone_t *rpz;
|
|
dns_rpz_type_t rpz_type;
|
|
isc_result_t result = ISC_R_FAILURE;
|
|
|
|
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
|
|
rpz = rpzs->zones[rpz_num];
|
|
REQUIRE(rpz != NULL);
|
|
|
|
rpz_type = type_from_name(rpz, src_name);
|
|
|
|
LOCK(&rpzs->maint_lock);
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
|
|
switch (rpz_type) {
|
|
case DNS_RPZ_TYPE_QNAME:
|
|
case DNS_RPZ_TYPE_NSDNAME:
|
|
result = add_name(rpzs, rpz_num, rpz_type, src_name);
|
|
break;
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
case DNS_RPZ_TYPE_IP:
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
result = add_cidr(rpzs, rpz_num, rpz_type, src_name);
|
|
break;
|
|
case DNS_RPZ_TYPE_BAD:
|
|
break;
|
|
}
|
|
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
UNLOCK(&rpzs->maint_lock);
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Remove an IP address from the radix tree.
|
|
*/
|
|
static void
|
|
del_cidr(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type, dns_name_t *src_name)
|
|
{
|
|
isc_result_t result;
|
|
dns_rpz_cidr_key_t tgt_ip;
|
|
dns_rpz_prefix_t tgt_prefix;
|
|
dns_rpz_addr_zbits_t tgt_set;
|
|
dns_rpz_cidr_node_t *tgt, *parent, *child;
|
|
|
|
/*
|
|
* Do not worry about invalid rpz IP address names. If we
|
|
* are here, then something relevant was added and so was
|
|
* valid. Invalid names here are usually internal RBTDB nodes.
|
|
*/
|
|
result = name2ipkey(DNS_RPZ_DEBUG_QUIET, rpzs, rpz_num, rpz_type,
|
|
src_name, &tgt_ip, &tgt_prefix, &tgt_set);
|
|
if (result != ISC_R_SUCCESS)
|
|
return;
|
|
|
|
result = search(rpzs, &tgt_ip, tgt_prefix, &tgt_set, false, &tgt);
|
|
if (result != ISC_R_SUCCESS) {
|
|
INSIST(result == ISC_R_NOTFOUND ||
|
|
result == DNS_R_PARTIALMATCH);
|
|
/*
|
|
* Do not worry about missing summary RBT nodes that probably
|
|
* correspond to RBTDB nodes that were implicit RBT nodes
|
|
* that were later added for (often empty) wildcards
|
|
* and then to the RBTDB deferred cleanup list.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Mark the node and its parents to reflect the deleted IP address.
|
|
* Do not count bits that are already clear for internal RBTDB nodes.
|
|
*/
|
|
tgt_set.client_ip &= tgt->set.client_ip;
|
|
tgt_set.ip &= tgt->set.ip;
|
|
tgt_set.nsip &= tgt->set.nsip;
|
|
tgt->set.client_ip &= ~tgt_set.client_ip;
|
|
tgt->set.ip &= ~tgt_set.ip;
|
|
tgt->set.nsip &= ~tgt_set.nsip;
|
|
set_sum_pair(tgt);
|
|
|
|
adj_trigger_cnt(rpzs, rpz_num, rpz_type, &tgt_ip, tgt_prefix, false);
|
|
|
|
/*
|
|
* We might need to delete 2 nodes.
|
|
*/
|
|
do {
|
|
/*
|
|
* The node is now useless if it has no data of its own
|
|
* and 0 or 1 children. We are finished if it is not useless.
|
|
*/
|
|
if ((child = tgt->child[0]) != NULL) {
|
|
if (tgt->child[1] != NULL)
|
|
break;
|
|
} else {
|
|
child = tgt->child[1];
|
|
}
|
|
if (tgt->set.client_ip != 0 ||
|
|
tgt->set.ip != 0 ||
|
|
tgt->set.nsip != 0)
|
|
break;
|
|
|
|
/*
|
|
* Replace the pointer to this node in the parent with
|
|
* the remaining child or NULL.
|
|
*/
|
|
parent = tgt->parent;
|
|
if (parent == NULL) {
|
|
rpzs->cidr = child;
|
|
} else {
|
|
parent->child[parent->child[1] == tgt] = child;
|
|
}
|
|
/*
|
|
* If the child exists fix up its parent pointer.
|
|
*/
|
|
if (child != NULL)
|
|
child->parent = parent;
|
|
isc_mem_put(rpzs->mctx, tgt, sizeof(*tgt));
|
|
|
|
tgt = parent;
|
|
} while (tgt != NULL);
|
|
}
|
|
|
|
static void
|
|
del_name(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_rpz_type_t rpz_type, dns_name_t *src_name)
|
|
{
|
|
char namebuf[DNS_NAME_FORMATSIZE];
|
|
dns_fixedname_t trig_namef;
|
|
dns_name_t *trig_name;
|
|
dns_rbtnode_t *nmnode;
|
|
dns_rpz_nm_data_t *nm_data, del_data;
|
|
isc_result_t result;
|
|
bool exists;
|
|
|
|
/*
|
|
* We need a summary database of names even with 1 policy zone,
|
|
* because wildcard triggers are handled differently.
|
|
*/
|
|
|
|
trig_name = dns_fixedname_initname(&trig_namef);
|
|
name2data(rpzs, rpz_num, rpz_type, src_name, trig_name, &del_data);
|
|
|
|
nmnode = NULL;
|
|
result = dns_rbt_findnode(rpzs->rbt, trig_name, NULL, &nmnode, NULL, 0,
|
|
NULL, NULL);
|
|
if (result != ISC_R_SUCCESS) {
|
|
/*
|
|
* Do not worry about missing summary RBT nodes that probably
|
|
* correspond to RBTDB nodes that were implicit RBT nodes
|
|
* that were later added for (often empty) wildcards
|
|
* and then to the RBTDB deferred cleanup list.
|
|
*/
|
|
if (result == ISC_R_NOTFOUND ||
|
|
result == DNS_R_PARTIALMATCH)
|
|
return;
|
|
dns_name_format(src_name, namebuf, sizeof(namebuf));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"rpz del_name(%s) node search failed: %s",
|
|
namebuf, isc_result_totext(result));
|
|
return;
|
|
}
|
|
|
|
nm_data = nmnode->data;
|
|
INSIST(nm_data != NULL);
|
|
|
|
/*
|
|
* Do not count bits that next existed for RBT nodes that would we
|
|
* would not have found in a summary for a single RBTDB tree.
|
|
*/
|
|
del_data.set.qname &= nm_data->set.qname;
|
|
del_data.set.ns &= nm_data->set.ns;
|
|
del_data.wild.qname &= nm_data->wild.qname;
|
|
del_data.wild.ns &= nm_data->wild.ns;
|
|
|
|
exists = (del_data.set.qname != 0 ||
|
|
del_data.set.ns != 0 ||
|
|
del_data.wild.qname != 0 ||
|
|
del_data.wild.ns != 0);
|
|
|
|
nm_data->set.qname &= ~del_data.set.qname;
|
|
nm_data->set.ns &= ~del_data.set.ns;
|
|
nm_data->wild.qname &= ~del_data.wild.qname;
|
|
nm_data->wild.ns &= ~del_data.wild.ns;
|
|
|
|
if (nm_data->set.qname == 0 && nm_data->set.ns == 0 &&
|
|
nm_data->wild.qname == 0 && nm_data->wild.ns == 0) {
|
|
result = dns_rbt_deletenode(rpzs->rbt, nmnode, false);
|
|
if (result != ISC_R_SUCCESS) {
|
|
/*
|
|
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
|
|
*/
|
|
dns_name_format(src_name, namebuf, sizeof(namebuf));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"rpz del_name(%s) node delete failed: %s",
|
|
namebuf, isc_result_totext(result));
|
|
}
|
|
}
|
|
|
|
if (exists)
|
|
adj_trigger_cnt(rpzs, rpz_num, rpz_type, NULL, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Remove an IP address from the radix tree or a name from the summary database.
|
|
*/
|
|
void
|
|
dns_rpz_delete(dns_rpz_zones_t *rpzs, dns_rpz_num_t rpz_num,
|
|
dns_name_t *src_name) {
|
|
dns_rpz_zone_t *rpz;
|
|
dns_rpz_type_t rpz_type;
|
|
|
|
REQUIRE(rpzs != NULL && rpz_num < rpzs->p.num_zones);
|
|
rpz = rpzs->zones[rpz_num];
|
|
REQUIRE(rpz != NULL);
|
|
|
|
rpz_type = type_from_name(rpz, src_name);
|
|
|
|
LOCK(&rpzs->maint_lock);
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
|
|
switch (rpz_type) {
|
|
case DNS_RPZ_TYPE_QNAME:
|
|
case DNS_RPZ_TYPE_NSDNAME:
|
|
del_name(rpzs, rpz_num, rpz_type, src_name);
|
|
break;
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
case DNS_RPZ_TYPE_IP:
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
del_cidr(rpzs, rpz_num, rpz_type, src_name);
|
|
break;
|
|
case DNS_RPZ_TYPE_BAD:
|
|
break;
|
|
}
|
|
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_write);
|
|
UNLOCK(&rpzs->maint_lock);
|
|
}
|
|
|
|
/*
|
|
* Search the summary radix tree to get a relative owner name in a
|
|
* policy zone relevant to a triggering IP address.
|
|
* rpz_type and zbits limit the search for IP address netaddr
|
|
* return the policy zone's number or DNS_RPZ_INVALID_NUM
|
|
* ip_name is the relative owner name found and
|
|
* *prefixp is its prefix length.
|
|
*/
|
|
dns_rpz_num_t
|
|
dns_rpz_find_ip(dns_rpz_zones_t *rpzs, dns_rpz_type_t rpz_type,
|
|
dns_rpz_zbits_t zbits, const isc_netaddr_t *netaddr,
|
|
dns_name_t *ip_name, dns_rpz_prefix_t *prefixp)
|
|
{
|
|
dns_rpz_cidr_key_t tgt_ip;
|
|
dns_rpz_addr_zbits_t tgt_set;
|
|
dns_rpz_cidr_node_t *found;
|
|
isc_result_t result;
|
|
dns_rpz_num_t rpz_num = 0;
|
|
dns_rpz_have_t have;
|
|
int i;
|
|
|
|
LOCK(&rpzs->maint_lock);
|
|
have = rpzs->have;
|
|
UNLOCK(&rpzs->maint_lock);
|
|
|
|
/*
|
|
* Convert IP address to CIDR tree key.
|
|
*/
|
|
if (netaddr->family == AF_INET) {
|
|
tgt_ip.w[0] = 0;
|
|
tgt_ip.w[1] = 0;
|
|
tgt_ip.w[2] = ADDR_V4MAPPED;
|
|
tgt_ip.w[3] = ntohl(netaddr->type.in.s_addr);
|
|
switch (rpz_type) {
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
zbits &= have.client_ipv4;
|
|
break;
|
|
case DNS_RPZ_TYPE_IP:
|
|
zbits &= have.ipv4;
|
|
break;
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
zbits &= have.nsipv4;
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
} else if (netaddr->family == AF_INET6) {
|
|
dns_rpz_cidr_key_t src_ip6;
|
|
|
|
/*
|
|
* Given the int aligned struct in_addr member of netaddr->type
|
|
* one could cast netaddr->type.in6 to dns_rpz_cidr_key_t *,
|
|
* but some people object.
|
|
*/
|
|
memmove(src_ip6.w, &netaddr->type.in6, sizeof(src_ip6.w));
|
|
for (i = 0; i < 4; i++) {
|
|
tgt_ip.w[i] = ntohl(src_ip6.w[i]);
|
|
}
|
|
switch (rpz_type) {
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
zbits &= have.client_ipv6;
|
|
break;
|
|
case DNS_RPZ_TYPE_IP:
|
|
zbits &= have.ipv6;
|
|
break;
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
zbits &= have.nsipv6;
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
} else {
|
|
return (DNS_RPZ_INVALID_NUM);
|
|
}
|
|
|
|
if (zbits == 0)
|
|
return (DNS_RPZ_INVALID_NUM);
|
|
make_addr_set(&tgt_set, zbits, rpz_type);
|
|
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_read);
|
|
result = search(rpzs, &tgt_ip, 128, &tgt_set, false, &found);
|
|
if (result == ISC_R_NOTFOUND) {
|
|
/*
|
|
* There are no eligible zones for this IP address.
|
|
*/
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_read);
|
|
return (DNS_RPZ_INVALID_NUM);
|
|
}
|
|
|
|
/*
|
|
* Construct the trigger name for the longest matching trigger
|
|
* in the first eligible zone with a match.
|
|
*/
|
|
*prefixp = found->prefix;
|
|
switch (rpz_type) {
|
|
case DNS_RPZ_TYPE_CLIENT_IP:
|
|
rpz_num = zbit_to_num(found->set.client_ip & tgt_set.client_ip);
|
|
break;
|
|
case DNS_RPZ_TYPE_IP:
|
|
rpz_num = zbit_to_num(found->set.ip & tgt_set.ip);
|
|
break;
|
|
case DNS_RPZ_TYPE_NSIP:
|
|
rpz_num = zbit_to_num(found->set.nsip & tgt_set.nsip);
|
|
break;
|
|
default:
|
|
INSIST(0);
|
|
ISC_UNREACHABLE();
|
|
}
|
|
result = ip2name(&found->ip, found->prefix, dns_rootname, ip_name);
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_read);
|
|
if (result != ISC_R_SUCCESS) {
|
|
/*
|
|
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
|
|
*/
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"rpz ip2name() failed: %s",
|
|
isc_result_totext(result));
|
|
return (DNS_RPZ_INVALID_NUM);
|
|
}
|
|
return (rpz_num);
|
|
}
|
|
|
|
/*
|
|
* Search the summary radix tree for policy zones with triggers matching
|
|
* a name.
|
|
*/
|
|
dns_rpz_zbits_t
|
|
dns_rpz_find_name(dns_rpz_zones_t *rpzs, dns_rpz_type_t rpz_type,
|
|
dns_rpz_zbits_t zbits, dns_name_t *trig_name)
|
|
{
|
|
char namebuf[DNS_NAME_FORMATSIZE];
|
|
dns_rbtnode_t *nmnode;
|
|
const dns_rpz_nm_data_t *nm_data;
|
|
dns_rpz_zbits_t found_zbits;
|
|
dns_rbtnodechain_t chain;
|
|
isc_result_t result;
|
|
int i;
|
|
|
|
if (zbits == 0) {
|
|
return (0);
|
|
}
|
|
|
|
found_zbits = 0;
|
|
|
|
dns_rbtnodechain_init(&chain, NULL);
|
|
|
|
RWLOCK(&rpzs->search_lock, isc_rwlocktype_read);
|
|
|
|
nmnode = NULL;
|
|
result = dns_rbt_findnode(rpzs->rbt, trig_name, NULL, &nmnode,
|
|
&chain, DNS_RBTFIND_EMPTYDATA, NULL, NULL);
|
|
switch (result) {
|
|
case ISC_R_SUCCESS:
|
|
nm_data = nmnode->data;
|
|
if (nm_data != NULL) {
|
|
if (rpz_type == DNS_RPZ_TYPE_QNAME) {
|
|
found_zbits = nm_data->set.qname;
|
|
} else {
|
|
found_zbits = nm_data->set.ns;
|
|
}
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case DNS_R_PARTIALMATCH:
|
|
i = chain.level_matches;
|
|
while (i >= 0 && (nmnode = chain.levels[i]) != NULL) {
|
|
nm_data = nmnode->data;
|
|
if (nm_data != NULL) {
|
|
if (rpz_type == DNS_RPZ_TYPE_QNAME) {
|
|
found_zbits |= nm_data->wild.qname;
|
|
} else {
|
|
found_zbits |= nm_data->wild.ns;
|
|
}
|
|
}
|
|
i--;
|
|
}
|
|
break;
|
|
|
|
case ISC_R_NOTFOUND:
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* bin/tests/system/rpz/tests.sh looks for "rpz.*failed".
|
|
*/
|
|
dns_name_format(trig_name, namebuf, sizeof(namebuf));
|
|
isc_log_write(dns_lctx, DNS_LOGCATEGORY_RPZ,
|
|
DNS_LOGMODULE_RBTDB, DNS_RPZ_ERROR_LEVEL,
|
|
"dns_rpz_find_name(%s) failed: %s",
|
|
namebuf, isc_result_totext(result));
|
|
break;
|
|
}
|
|
|
|
RWUNLOCK(&rpzs->search_lock, isc_rwlocktype_read);
|
|
|
|
dns_rbtnodechain_invalidate(&chain);
|
|
|
|
return (zbits & found_zbits);
|
|
}
|
|
|
|
/*
|
|
* Translate CNAME rdata to a QNAME response policy action.
|
|
*/
|
|
dns_rpz_policy_t
|
|
dns_rpz_decode_cname(dns_rpz_zone_t *rpz, dns_rdataset_t *rdataset,
|
|
dns_name_t *selfname)
|
|
{
|
|
dns_rdata_t rdata = DNS_RDATA_INIT;
|
|
dns_rdata_cname_t cname;
|
|
isc_result_t result;
|
|
|
|
result = dns_rdataset_first(rdataset);
|
|
INSIST(result == ISC_R_SUCCESS);
|
|
dns_rdataset_current(rdataset, &rdata);
|
|
result = dns_rdata_tostruct(&rdata, &cname, NULL);
|
|
INSIST(result == ISC_R_SUCCESS);
|
|
dns_rdata_reset(&rdata);
|
|
|
|
/*
|
|
* CNAME . means NXDOMAIN
|
|
*/
|
|
if (dns_name_equal(&cname.cname, dns_rootname))
|
|
return (DNS_RPZ_POLICY_NXDOMAIN);
|
|
|
|
if (dns_name_iswildcard(&cname.cname)) {
|
|
/*
|
|
* CNAME *. means NODATA
|
|
*/
|
|
if (dns_name_countlabels(&cname.cname) == 2)
|
|
return (DNS_RPZ_POLICY_NODATA);
|
|
|
|
/*
|
|
* A qname of www.evil.com and a policy of
|
|
* *.evil.com CNAME *.garden.net
|
|
* gives a result of
|
|
* evil.com CNAME evil.com.garden.net
|
|
*/
|
|
if (dns_name_countlabels(&cname.cname) > 2)
|
|
return (DNS_RPZ_POLICY_WILDCNAME);
|
|
}
|
|
|
|
/*
|
|
* CNAME rpz-tcp-only. means "send truncated UDP responses."
|
|
*/
|
|
if (dns_name_equal(&cname.cname, &rpz->tcp_only))
|
|
return (DNS_RPZ_POLICY_TCP_ONLY);
|
|
|
|
/*
|
|
* CNAME rpz-drop. means "do not respond."
|
|
*/
|
|
if (dns_name_equal(&cname.cname, &rpz->drop))
|
|
return (DNS_RPZ_POLICY_DROP);
|
|
|
|
/*
|
|
* CNAME rpz-passthru. means "do not rewrite."
|
|
*/
|
|
if (dns_name_equal(&cname.cname, &rpz->passthru))
|
|
return (DNS_RPZ_POLICY_PASSTHRU);
|
|
|
|
/*
|
|
* 128.1.0.127.rpz-ip CNAME 128.1.0.0.127. is obsolete PASSTHRU
|
|
*/
|
|
if (selfname != NULL && dns_name_equal(&cname.cname, selfname))
|
|
return (DNS_RPZ_POLICY_PASSTHRU);
|
|
|
|
/*
|
|
* Any other rdata gives a response consisting of the rdata.
|
|
*/
|
|
return (DNS_RPZ_POLICY_RECORD);
|
|
}
|