bluez/ell/cipher.c

1115 lines
25 KiB
C

/*
*
* Embedded Linux library
*
* Copyright (C) 2015 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define _GNU_SOURCE
#include <unistd.h>
#include <stdbool.h>
#include <stdint.h>
#include <errno.h>
#include <sys/socket.h>
#include <alloca.h>
#include "useful.h"
#include "cipher.h"
#include "private.h"
#include "random.h"
#include "missing.h"
#ifndef HAVE_LINUX_IF_ALG_H
#ifndef HAVE_LINUX_TYPES_H
typedef uint8_t __u8;
typedef uint16_t __u16;
typedef uint32_t __u32;
#else
#include <linux/types.h>
#endif
#ifndef AF_ALG
#define AF_ALG 38
#define PF_ALG AF_ALG
#endif
struct sockaddr_alg {
__u16 salg_family;
__u8 salg_type[14];
__u32 salg_feat;
__u32 salg_mask;
__u8 salg_name[64];
};
struct af_alg_iv {
__u32 ivlen;
__u8 iv[0];
};
/* Socket options */
#define ALG_SET_KEY 1
#define ALG_SET_IV 2
#define ALG_SET_OP 3
/* Operations */
#define ALG_OP_DECRYPT 0
#define ALG_OP_ENCRYPT 1
#else
#include <linux/if_alg.h>
#endif
#ifndef SOL_ALG
#define SOL_ALG 279
#endif
#ifndef ALG_SET_AEAD_ASSOCLEN
#define ALG_SET_AEAD_ASSOCLEN 4
#endif
#ifndef ALG_SET_AEAD_AUTHSIZE
#define ALG_SET_AEAD_AUTHSIZE 5
#endif
#define is_valid_type(type) ((type) <= L_CIPHER_RC2_CBC)
static uint32_t supported_ciphers;
static uint32_t supported_aead_ciphers;
struct l_cipher {
int type;
const struct local_impl *local;
union {
int sk;
void *local_data;
};
};
struct l_aead_cipher {
int type;
int sk;
};
struct local_impl {
void *(*cipher_new)(enum l_cipher_type,
const void *key, size_t key_length);
void (*cipher_free)(void *data);
bool (*set_iv)(void *data, const uint8_t *iv, size_t iv_length);
ssize_t (*operate)(void *data, __u32 operation,
const struct iovec *in, size_t in_cnt,
const struct iovec *out, size_t out_cnt);
};
static int create_alg(const char *alg_type, const char *alg_name,
const void *key, size_t key_length, size_t tag_length)
{
struct sockaddr_alg salg;
int sk;
int ret;
sk = socket(PF_ALG, SOCK_SEQPACKET | SOCK_CLOEXEC, 0);
if (sk < 0)
return -errno;
memset(&salg, 0, sizeof(salg));
salg.salg_family = AF_ALG;
strcpy((char *) salg.salg_type, alg_type);
strcpy((char *) salg.salg_name, alg_name);
if (bind(sk, (struct sockaddr *) &salg, sizeof(salg)) < 0) {
close(sk);
return -1;
}
if (setsockopt(sk, SOL_ALG, ALG_SET_KEY, key, key_length) < 0) {
close(sk);
return -1;
}
if (tag_length && setsockopt(sk, SOL_ALG, ALG_SET_AEAD_AUTHSIZE, NULL,
tag_length)) {
close(sk);
return -1;
}
ret = accept4(sk, NULL, 0, SOCK_CLOEXEC);
close(sk);
return ret;
}
static const char *cipher_type_to_name(enum l_cipher_type type)
{
switch (type) {
case L_CIPHER_AES:
return "ecb(aes)";
case L_CIPHER_AES_CBC:
return "cbc(aes)";
case L_CIPHER_AES_CTR:
return "ctr(aes)";
case L_CIPHER_ARC4:
return NULL;
case L_CIPHER_DES:
return "ecb(des)";
case L_CIPHER_DES_CBC:
return "cbc(des)";
case L_CIPHER_DES3_EDE_CBC:
return "cbc(des3_ede)";
case L_CIPHER_RC2_CBC:
return NULL;
}
return NULL;
}
static const struct local_impl local_arc4;
static const struct local_impl local_rc2_cbc;
static const struct local_impl *local_impl_ciphers[] = {
[L_CIPHER_ARC4] = &local_arc4,
[L_CIPHER_RC2_CBC] = &local_rc2_cbc,
};
#define HAVE_LOCAL_IMPLEMENTATION(type) \
((type) < L_ARRAY_SIZE(local_impl_ciphers) && \
local_impl_ciphers[(type)])
LIB_EXPORT struct l_cipher *l_cipher_new(enum l_cipher_type type,
const void *key,
size_t key_length)
{
struct l_cipher *cipher;
const char *alg_name;
if (unlikely(!key))
return NULL;
if (!is_valid_type(type))
return NULL;
cipher = l_new(struct l_cipher, 1);
cipher->type = type;
alg_name = cipher_type_to_name(type);
if (HAVE_LOCAL_IMPLEMENTATION(type)) {
cipher->local = local_impl_ciphers[type];
cipher->local_data = cipher->local->cipher_new(type,
key, key_length);
if (!cipher->local_data)
goto error_free;
return cipher;
}
cipher->sk = create_alg("skcipher", alg_name, key, key_length, 0);
if (cipher->sk < 0)
goto error_free;
return cipher;
error_free:
l_free(cipher);
return NULL;
}
static const char *aead_cipher_type_to_name(enum l_aead_cipher_type type)
{
switch (type) {
case L_AEAD_CIPHER_AES_CCM:
return "ccm(aes)";
case L_AEAD_CIPHER_AES_GCM:
return "gcm(aes)";
}
return NULL;
}
LIB_EXPORT struct l_aead_cipher *l_aead_cipher_new(enum l_aead_cipher_type type,
const void *key,
size_t key_length,
size_t tag_length)
{
struct l_aead_cipher *cipher;
const char *alg_name;
if (unlikely(!key))
return NULL;
if (type != L_AEAD_CIPHER_AES_CCM && type != L_AEAD_CIPHER_AES_GCM)
return NULL;
cipher = l_new(struct l_aead_cipher, 1);
cipher->type = type;
alg_name = aead_cipher_type_to_name(type);
cipher->sk = create_alg("aead", alg_name, key, key_length, tag_length);
if (cipher->sk >= 0)
return cipher;
l_free(cipher);
return NULL;
}
LIB_EXPORT void l_cipher_free(struct l_cipher *cipher)
{
if (unlikely(!cipher))
return;
if (cipher->local)
cipher->local->cipher_free(cipher->local_data);
else
close(cipher->sk);
l_free(cipher);
}
LIB_EXPORT void l_aead_cipher_free(struct l_aead_cipher *cipher)
{
if (unlikely(!cipher))
return;
close(cipher->sk);
l_free(cipher);
}
static ssize_t operate_cipher(int sk, __u32 operation,
const void *in, size_t in_len,
const void *ad, size_t ad_len,
const void *iv, size_t iv_len,
void *out, size_t out_len)
{
char *c_msg_buf;
size_t c_msg_size;
struct msghdr msg;
struct cmsghdr *c_msg;
struct iovec iov[2];
ssize_t result;
c_msg_size = CMSG_SPACE(sizeof(operation));
c_msg_size += ad_len ? CMSG_SPACE(sizeof(uint32_t)) : 0;
c_msg_size += iv_len ?
CMSG_SPACE(sizeof(struct af_alg_iv) + iv_len) : 0;
c_msg_buf = alloca(c_msg_size);
memset(c_msg_buf, 0, c_msg_size);
memset(&msg, 0, sizeof(msg));
msg.msg_iov = iov;
msg.msg_control = c_msg_buf;
msg.msg_controllen = c_msg_size;
c_msg = CMSG_FIRSTHDR(&msg);
c_msg->cmsg_level = SOL_ALG;
c_msg->cmsg_type = ALG_SET_OP;
c_msg->cmsg_len = CMSG_LEN(sizeof(operation));
memcpy(CMSG_DATA(c_msg), &operation, sizeof(operation));
if (ad_len) {
uint32_t *ad_data;
c_msg = CMSG_NXTHDR(&msg, c_msg);
c_msg->cmsg_level = SOL_ALG;
c_msg->cmsg_type = ALG_SET_AEAD_ASSOCLEN;
c_msg->cmsg_len = CMSG_LEN(sizeof(*ad_data));
ad_data = (void *) CMSG_DATA(c_msg);
*ad_data = ad_len;
iov[0].iov_base = (void *) ad;
iov[0].iov_len = ad_len;
iov[1].iov_base = (void *) in;
iov[1].iov_len = in_len;
msg.msg_iovlen = 2;
} else {
iov[0].iov_base = (void *) in;
iov[0].iov_len = in_len;
msg.msg_iovlen = 1;
}
if (iv_len) {
struct af_alg_iv *algiv;
c_msg = CMSG_NXTHDR(&msg, c_msg);
c_msg->cmsg_level = SOL_ALG;
c_msg->cmsg_type = ALG_SET_IV;
c_msg->cmsg_len = CMSG_LEN(sizeof(*algiv) + iv_len);
algiv = (void *)CMSG_DATA(c_msg);
algiv->ivlen = iv_len;
memcpy(algiv->iv, iv, iv_len);
}
result = sendmsg(sk, &msg, 0);
if (result < 0)
return -errno;
if (ad_len) {
/*
* When AEAD additional data is passed to sendmsg() for
* use in computing the tag, those bytes also appear at
* the beginning of the encrypt or decrypt results. Rather
* than force the caller to pad their result buffer with
* the correct number of bytes for the additional data,
* the necessary space is allocated here and then the
* duplicate AAD is discarded.
*/
iov[0].iov_base = l_malloc(ad_len);
iov[0].iov_len = ad_len;
iov[1].iov_base = (void *) out;
iov[1].iov_len = out_len;
msg.msg_iovlen = 2;
msg.msg_control = NULL;
msg.msg_controllen = 0;
result = recvmsg(sk, &msg, 0);
if (result >= (ssize_t) ad_len)
result -= ad_len;
else if (result > 0)
result = 0;
l_free(iov[0].iov_base);
} else {
result = read(sk, out, out_len);
}
if (result < 0)
return -errno;
return result;
}
static ssize_t operate_cipherv(int sk, __u32 operation,
const struct iovec *in, size_t in_cnt,
const struct iovec *out, size_t out_cnt)
{
char *c_msg_buf;
size_t c_msg_size;
struct msghdr msg;
struct cmsghdr *c_msg;
ssize_t result;
c_msg_size = CMSG_SPACE(sizeof(operation));
c_msg_buf = alloca(c_msg_size);
memset(c_msg_buf, 0, c_msg_size);
memset(&msg, 0, sizeof(msg));
msg.msg_iov = (struct iovec *) in;
msg.msg_iovlen = in_cnt;
msg.msg_control = c_msg_buf;
msg.msg_controllen = c_msg_size;
c_msg = CMSG_FIRSTHDR(&msg);
c_msg->cmsg_level = SOL_ALG;
c_msg->cmsg_type = ALG_SET_OP;
c_msg->cmsg_len = CMSG_LEN(sizeof(operation));
memcpy(CMSG_DATA(c_msg), &operation, sizeof(operation));
result = sendmsg(sk, &msg, 0);
if (result < 0)
return -errno;
result = readv(sk, out, out_cnt);
if (result < 0)
return -errno;
return result;
}
LIB_EXPORT bool l_cipher_encrypt(struct l_cipher *cipher,
const void *in, void *out, size_t len)
{
if (unlikely(!cipher))
return false;
if (unlikely(!in) || unlikely(!out))
return false;
if (cipher->local) {
struct iovec in_iov = { (void *) in, len };
struct iovec out_iov = { out, len };
return cipher->local->operate(cipher->local_data,
ALG_OP_ENCRYPT,
&in_iov, 1, &out_iov, 1) >= 0;
}
return operate_cipher(cipher->sk, ALG_OP_ENCRYPT, in, len,
NULL, 0, NULL, 0, out, len) >= 0;
}
LIB_EXPORT bool l_cipher_encryptv(struct l_cipher *cipher,
const struct iovec *in, size_t in_cnt,
const struct iovec *out, size_t out_cnt)
{
if (unlikely(!cipher))
return false;
if (unlikely(!in) || unlikely(!out))
return false;
if (cipher->local)
return cipher->local->operate(cipher->local_data,
ALG_OP_ENCRYPT,
in, in_cnt, out, out_cnt) >= 0;
return operate_cipherv(cipher->sk, ALG_OP_ENCRYPT, in, in_cnt,
out, out_cnt) >= 0;
}
LIB_EXPORT bool l_cipher_decrypt(struct l_cipher *cipher,
const void *in, void *out, size_t len)
{
if (unlikely(!cipher))
return false;
if (unlikely(!in) || unlikely(!out))
return false;
if (cipher->local) {
struct iovec in_iov = { (void *) in, len };
struct iovec out_iov = { out, len };
return cipher->local->operate(cipher->local_data,
ALG_OP_DECRYPT,
&in_iov, 1, &out_iov, 1) >= 0;
}
return operate_cipher(cipher->sk, ALG_OP_DECRYPT, in, len,
NULL, 0, NULL, 0, out, len) >= 0;
}
LIB_EXPORT bool l_cipher_decryptv(struct l_cipher *cipher,
const struct iovec *in, size_t in_cnt,
const struct iovec *out, size_t out_cnt)
{
if (unlikely(!cipher))
return false;
if (unlikely(!in) || unlikely(!out))
return false;
if (cipher->local)
return cipher->local->operate(cipher->local_data,
ALG_OP_DECRYPT,
in, in_cnt, out, out_cnt) >= 0;
return operate_cipherv(cipher->sk, ALG_OP_DECRYPT, in, in_cnt,
out, out_cnt) >= 0;
}
LIB_EXPORT bool l_cipher_set_iv(struct l_cipher *cipher, const uint8_t *iv,
size_t iv_length)
{
char c_msg_buf[CMSG_SPACE(4 + iv_length)];
struct msghdr msg;
struct cmsghdr *c_msg;
uint32_t len = iv_length;
if (unlikely(!cipher))
return false;
if (cipher->local) {
if (!cipher->local->set_iv)
return false;
return cipher->local->set_iv(cipher->local_data, iv, iv_length);
}
memset(&c_msg_buf, 0, sizeof(c_msg_buf));
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_control = c_msg_buf;
msg.msg_controllen = sizeof(c_msg_buf);
c_msg = CMSG_FIRSTHDR(&msg);
c_msg->cmsg_level = SOL_ALG;
c_msg->cmsg_type = ALG_SET_IV;
c_msg->cmsg_len = CMSG_LEN(4 + iv_length);
memcpy(CMSG_DATA(c_msg) + 0, &len, 4);
memcpy(CMSG_DATA(c_msg) + 4, iv, iv_length);
msg.msg_iov = NULL;
msg.msg_iovlen = 0;
if (sendmsg(cipher->sk, &msg, MSG_MORE) < 0)
return false;
return true;
}
#define CCM_IV_SIZE 16
static size_t l_aead_cipher_get_ivlen(struct l_aead_cipher *cipher)
{
switch (cipher->type) {
case L_AEAD_CIPHER_AES_CCM:
return CCM_IV_SIZE;
case L_AEAD_CIPHER_AES_GCM:
return 12;
}
return 0;
}
/* RFC3610 Section 2.3 */
static ssize_t build_ccm_iv(const void *nonce, uint8_t nonce_len,
uint8_t (*iv)[CCM_IV_SIZE])
{
const size_t iv_overhead = 2;
int lprime = 15 - nonce_len - 1;
if (unlikely(nonce_len + iv_overhead > CCM_IV_SIZE || lprime > 7))
return -EINVAL;
(*iv)[0] = lprime;
memcpy(*iv + 1, nonce, nonce_len);
memset(*iv + 1 + nonce_len, 0, lprime + 1);
return CCM_IV_SIZE;
}
LIB_EXPORT bool l_aead_cipher_encrypt(struct l_aead_cipher *cipher,
const void *in, size_t in_len,
const void *ad, size_t ad_len,
const void *nonce, size_t nonce_len,
void *out, size_t out_len)
{
uint8_t ccm_iv[CCM_IV_SIZE];
const uint8_t *iv;
ssize_t iv_len;
if (unlikely(!cipher))
return false;
if (unlikely(!in && !ad) || unlikely(!out))
return false;
if (unlikely(!in && in_len) || unlikely(!ad && ad_len))
return false;
if (cipher->type == L_AEAD_CIPHER_AES_CCM) {
iv_len = build_ccm_iv(nonce, nonce_len, &ccm_iv);
if (unlikely(iv_len < 0))
return false;
iv = ccm_iv;
} else {
if (unlikely(nonce_len != l_aead_cipher_get_ivlen(cipher)))
return false;
iv = nonce;
iv_len = nonce_len;
}
return operate_cipher(cipher->sk, ALG_OP_ENCRYPT, in, in_len,
ad, ad_len, iv, iv_len, out, out_len) ==
(ssize_t)out_len;
}
LIB_EXPORT bool l_aead_cipher_decrypt(struct l_aead_cipher *cipher,
const void *in, size_t in_len,
const void *ad, size_t ad_len,
const void *nonce, size_t nonce_len,
void *out, size_t out_len)
{
uint8_t ccm_iv[CCM_IV_SIZE];
const uint8_t *iv;
ssize_t iv_len;
if (unlikely(!cipher))
return false;
if (unlikely(!in) || unlikely(!out))
return false;
if (cipher->type == L_AEAD_CIPHER_AES_CCM) {
iv_len = build_ccm_iv(nonce, nonce_len, &ccm_iv);
if (unlikely(iv_len < 0))
return false;
iv = ccm_iv;
} else {
if (unlikely(nonce_len != l_aead_cipher_get_ivlen(cipher)))
return false;
iv = nonce;
iv_len = nonce_len;
}
return operate_cipher(cipher->sk, ALG_OP_DECRYPT, in, in_len,
ad, ad_len, iv, iv_len, out, out_len) ==
(ssize_t)out_len;
}
static void init_supported()
{
static bool initialized = false;
struct sockaddr_alg salg;
int sk;
enum l_cipher_type c;
enum l_aead_cipher_type a;
if (likely(initialized))
return;
initialized = true;
for (c = 0; c < L_ARRAY_SIZE(local_impl_ciphers); c++)
if (HAVE_LOCAL_IMPLEMENTATION(c))
supported_ciphers |= 1 << c;
sk = socket(PF_ALG, SOCK_SEQPACKET | SOCK_CLOEXEC, 0);
if (sk < 0)
return;
memset(&salg, 0, sizeof(salg));
salg.salg_family = AF_ALG;
strcpy((char *) salg.salg_type, "skcipher");
for (c = L_CIPHER_AES; c <= L_CIPHER_DES3_EDE_CBC; c++) {
const char *name = cipher_type_to_name(c);
if (!name)
continue;
strcpy((char *) salg.salg_name, name);
if (bind(sk, (struct sockaddr *) &salg, sizeof(salg)) < 0)
continue;
supported_ciphers |= 1 << c;
}
strcpy((char *) salg.salg_type, "aead");
for (a = L_AEAD_CIPHER_AES_CCM; a <= L_AEAD_CIPHER_AES_GCM; a++) {
strcpy((char *) salg.salg_name, aead_cipher_type_to_name(a));
if (bind(sk, (struct sockaddr *) &salg, sizeof(salg)) < 0)
continue;
supported_aead_ciphers |= 1 << a;
}
close(sk);
}
LIB_EXPORT bool l_cipher_is_supported(enum l_cipher_type type)
{
if (!is_valid_type(type))
return false;
init_supported();
return supported_ciphers & (1 << type);
}
LIB_EXPORT bool l_aead_cipher_is_supported(enum l_aead_cipher_type type)
{
if (type != L_AEAD_CIPHER_AES_CCM && type != L_AEAD_CIPHER_AES_GCM)
return false;
init_supported();
return supported_aead_ciphers & (1 << type);
}
/* ARC4 implementation copyright (c) 2001 Niels Möller */
#define SWAP(a, b) do { uint8_t _t = a; a = b; b = _t; } while (0)
static void arc4_set_key(uint8_t *S, const uint8_t *key, size_t key_length)
{
unsigned int i;
uint8_t j;
for (i = 0; i < 256; i++)
S[i] = i;
for (i = j = 0; i < 256; i++) {
j += S[i] + key[i % key_length];
SWAP(S[i], S[j]);
}
}
struct arc4_state {
struct arc4_state_ctx {
uint8_t S[256];
uint8_t i;
uint8_t j;
} ctx[2];
};
static void *local_arc4_new(enum l_cipher_type type,
const void *key, size_t key_length)
{
struct arc4_state *s;
if (unlikely(key_length == 0 || key_length > 256))
return NULL;
s = l_new(struct arc4_state, 1);
arc4_set_key(s->ctx[0].S, key, key_length);
s->ctx[1] = s->ctx[0];
return s;
}
static void local_arc4_free(void *data)
{
explicit_bzero(data, sizeof(struct arc4_state));
l_free(data);
}
static ssize_t local_arc4_operate(void *data, __u32 operation,
const struct iovec *in, size_t in_cnt,
const struct iovec *out, size_t out_cnt)
{
struct arc4_state *s = data;
struct iovec cur_in;
struct iovec cur_out;
struct arc4_state_ctx *ctx =
&s->ctx[operation == ALG_OP_ENCRYPT ? 1 : 0];
if (!in_cnt || !out_cnt)
return 0;
cur_in = *in;
cur_out = *out;
while (1) {
while (!cur_in.iov_len) {
cur_in = *in++;
if (!--in_cnt)
return 0;
}
while (!cur_out.iov_len) {
cur_out = *out++;
if (!--out_cnt)
return 0;
}
ctx->j += ctx->S[++ctx->i];
SWAP(ctx->S[ctx->i], ctx->S[ctx->j]);
*(uint8_t *) cur_out.iov_base++ =
*(uint8_t *) cur_in.iov_base++ ^
ctx->S[(ctx->S[ctx->i] + ctx->S[ctx->j]) & 0xff];
cur_in.iov_len--;
cur_out.iov_len--;
}
}
static const struct local_impl local_arc4 = {
local_arc4_new,
local_arc4_free,
NULL,
local_arc4_operate,
};
struct rc2_state {
union {
uint16_t xkey[64];
uint8_t xkey8[128];
};
struct rc2_state_ctx {
union {
uint16_t x[4];
uint64_t x64;
};
} ctx[2];
};
/* Simplified from the 1996 public-domain implementation */
static void rc2_keyschedule(struct rc2_state *s,
const uint8_t *key, size_t key_len,
size_t bits)
{
static const uint8_t permute[256] = {
217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
};
uint8_t x;
unsigned int i;
memcpy(&s->xkey8, key, key_len);
/* Step 1: expand input key to 128 bytes */
x = s->xkey8[key_len - 1];
for (i = 0; key_len < 128; key_len++, i++)
s->xkey8[key_len] = x = permute[(x + s->xkey8[i]) & 255];
/* Step 2: reduce effective key size to "bits" */
key_len = (bits + 7) >> 3;
i = 128 - key_len;
s->xkey8[i] = x = permute[s->xkey8[i] & (255 >> (7 & -bits))];
while (i--)
s->xkey8[i] = x = permute[x ^ s->xkey8[i + key_len]];
/* Step 3: copy to xkey in little-endian order */
for (i = 0; i < 64; i++)
s->xkey[i] = L_CPU_TO_LE16(s->xkey[i]);
}
static uint64_t rc2_operate(struct rc2_state *s, uint64_t in, __u32 operation)
{
int i;
union {
uint16_t x16[4];
uint64_t x64;
} x;
x.x64 = in;
if (operation == ALG_OP_ENCRYPT) {
const uint16_t *xkey = s->xkey;
for (i = 0; i < 16; i++) {
x.x16[0] += (x.x16[1] & ~x.x16[3]) +
(x.x16[2] & x.x16[3]) + *xkey++;
x.x16[0] = (x.x16[0] << 1) | (x.x16[0] >> 15);
x.x16[1] += (x.x16[2] & ~x.x16[0]) +
(x.x16[3] & x.x16[0]) + *xkey++;
x.x16[1] = (x.x16[1] << 2) | (x.x16[1] >> 14);
x.x16[2] += (x.x16[3] & ~x.x16[1]) +
(x.x16[0] & x.x16[1]) + *xkey++;
x.x16[2] = (x.x16[2] << 3) | (x.x16[2] >> 13);
x.x16[3] += (x.x16[0] & ~x.x16[2]) +
(x.x16[1] & x.x16[2]) + *xkey++;
x.x16[3] = (x.x16[3] << 5) | (x.x16[3] >> 11);
if (i == 4 || i == 10) {
x.x16[0] += s->xkey[x.x16[3] & 63];
x.x16[1] += s->xkey[x.x16[0] & 63];
x.x16[2] += s->xkey[x.x16[1] & 63];
x.x16[3] += s->xkey[x.x16[2] & 63];
}
}
} else {
const uint16_t *xkey = s->xkey + 63;
for (i = 0; i < 16; i++) {
x.x16[3] = (x.x16[3] << 11) | (x.x16[3] >> 5);
x.x16[3] -= (x.x16[0] & ~x.x16[2]) +
(x.x16[1] & x.x16[2]) + *xkey--;
x.x16[2] = (x.x16[2] << 13) | (x.x16[2] >> 3);
x.x16[2] -= (x.x16[3] & ~x.x16[1]) +
(x.x16[0] & x.x16[1]) + *xkey--;
x.x16[1] = (x.x16[1] << 14) | (x.x16[1] >> 2);
x.x16[1] -= (x.x16[2] & ~x.x16[0]) +
(x.x16[3] & x.x16[0]) + *xkey--;
x.x16[0] = (x.x16[0] << 15) | (x.x16[0] >> 1);
x.x16[0] -= (x.x16[1] & ~x.x16[3]) +
(x.x16[2] & x.x16[3]) + *xkey--;
if (i == 4 || i == 10) {
x.x16[3] -= s->xkey[x.x16[2] & 63];
x.x16[2] -= s->xkey[x.x16[1] & 63];
x.x16[1] -= s->xkey[x.x16[0] & 63];
x.x16[0] -= s->xkey[x.x16[3] & 63];
}
}
}
return x.x64;
}
static void *local_rc2_cbc_new(enum l_cipher_type type,
const void *key, size_t key_length)
{
struct rc2_state *s;
if (unlikely(key_length == 0 || key_length > 128))
return NULL;
/*
* The key length and the effective "strength" bits are separate
* parameters but they match in our current use cases.
*/
s = l_new(struct rc2_state, 1);
rc2_keyschedule(s, key, key_length, key_length * 8);
return s;
}
static void local_rc2_cbc_free(void *data)
{
explicit_bzero(data, sizeof(struct rc2_state));
l_free(data);
}
static bool local_rc2_cbc_set_iv(void *data,
const uint8_t *iv, size_t iv_length)
{
struct rc2_state *s = data;
if (unlikely(iv_length != 8))
return false;
s->ctx[0].x[0] = l_get_le16(iv + 0);
s->ctx[0].x[1] = l_get_le16(iv + 2);
s->ctx[0].x[2] = l_get_le16(iv + 4);
s->ctx[0].x[3] = l_get_le16(iv + 6);
s->ctx[1].x64 = s->ctx[0].x64;
return true;
}
static ssize_t local_rc2_cbc_operate(void *data, __u32 operation,
const struct iovec *in, size_t in_cnt,
const struct iovec *out, size_t out_cnt)
{
struct rc2_state *s = data;
struct iovec cur_in = {};
struct iovec cur_out = {};
struct rc2_state_ctx *ctx =
&s->ctx[operation == ALG_OP_ENCRYPT ? 1 : 0];
#define CONSUME_IN(bytes, eof_ok) \
cur_in.iov_len -= (bytes); \
while (!cur_in.iov_len) { \
if (!in_cnt) { \
if (eof_ok) \
break; \
else \
return -1; \
} \
\
cur_in = *in++; \
in_cnt--; \
}
#define CONSUME_OUT(bytes) \
cur_out.iov_len -= (bytes); \
while (!cur_out.iov_len) { \
if (!out_cnt) \
return 0; \
\
cur_out = *out++; \
out_cnt--; \
}
CONSUME_IN(0, true)
CONSUME_OUT(0)
while (cur_in.iov_len) {
union {
uint16_t x16[4];
uint64_t x64;
} inblk;
if (cur_in.iov_len >= 8) {
#define CUR_IN16 (*(uint16_t **) &cur_in.iov_base)
inblk.x16[0] = l_get_le16(CUR_IN16++);
inblk.x16[1] = l_get_le16(CUR_IN16++);
inblk.x16[2] = l_get_le16(CUR_IN16++);
inblk.x16[3] = l_get_le16(CUR_IN16++);
CONSUME_IN(8, true)
} else {
inblk.x16[0] = *(uint8_t *) cur_in.iov_base++;
CONSUME_IN(1, false)
inblk.x16[0] |= (*(uint8_t *) cur_in.iov_base++) << 8;
CONSUME_IN(1, false)
inblk.x16[1] = *(uint8_t *) cur_in.iov_base++;
CONSUME_IN(1, false)
inblk.x16[1] |= (*(uint8_t *) cur_in.iov_base++) << 8;
CONSUME_IN(1, false)
inblk.x16[2] = *(uint8_t *) cur_in.iov_base++;
CONSUME_IN(1, false)
inblk.x16[2] |= (*(uint8_t *) cur_in.iov_base++) << 8;
CONSUME_IN(1, false)
inblk.x16[3] = *(uint8_t *) cur_in.iov_base++;
CONSUME_IN(1, false)
inblk.x16[3] |= (*(uint8_t *) cur_in.iov_base++) << 8;
CONSUME_IN(1, true)
}
if (operation == ALG_OP_ENCRYPT)
ctx->x64 = rc2_operate(s, inblk.x64 ^ ctx->x64,
operation);
else
ctx->x64 ^= rc2_operate(s, inblk.x64, operation);
if (cur_out.iov_len >= 8) {
#define CUR_OUT16 (*(uint16_t **) &cur_out.iov_base)
l_put_le16(ctx->x[0], CUR_OUT16++);
l_put_le16(ctx->x[1], CUR_OUT16++);
l_put_le16(ctx->x[2], CUR_OUT16++);
l_put_le16(ctx->x[3], CUR_OUT16++);
CONSUME_OUT(8)
} else {
*(uint8_t *) cur_out.iov_base++ = ctx->x[0];
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[0] >> 8;
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[1];
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[1] >> 8;
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[2];
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[2] >> 8;
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[3];
CONSUME_OUT(1)
*(uint8_t *) cur_out.iov_base++ = ctx->x[3] >> 8;
CONSUME_OUT(1)
}
/* Save ciphertext as IV for next CBC block */
if (operation == ALG_OP_DECRYPT)
ctx->x64 = inblk.x64;
inblk.x64 = 0;
}
return 0;
}
static const struct local_impl local_rc2_cbc = {
local_rc2_cbc_new,
local_rc2_cbc_free,
local_rc2_cbc_set_iv,
local_rc2_cbc_operate,
};