cryptsetup/lib/setup.c

6565 lines
168 KiB
C

/*
* libcryptsetup - cryptsetup library
*
* Copyright (C) 2004 Jana Saout <jana@saout.de>
* Copyright (C) 2004-2007 Clemens Fruhwirth <clemens@endorphin.org>
* Copyright (C) 2009-2023 Red Hat, Inc. All rights reserved.
* Copyright (C) 2009-2023 Milan Broz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <sys/utsname.h>
#include <errno.h>
#include "libcryptsetup.h"
#include "luks1/luks.h"
#include "luks2/luks2.h"
#include "loopaes/loopaes.h"
#include "verity/verity.h"
#include "tcrypt/tcrypt.h"
#include "integrity/integrity.h"
#include "bitlk/bitlk.h"
#include "fvault2/fvault2.h"
#include "utils_device_locking.h"
#include "internal.h"
#include "keyslot_context.h"
#define CRYPT_CD_UNRESTRICTED (1 << 0)
#define CRYPT_CD_QUIET (1 << 1)
struct crypt_device {
char *type;
struct device *device;
struct device *metadata_device;
struct volume_key *volume_key;
int rng_type;
uint32_t compatibility;
struct crypt_pbkdf_type pbkdf;
/* global context scope settings */
unsigned key_in_keyring:1;
uint64_t data_offset;
uint64_t metadata_size; /* Used in LUKS2 format */
uint64_t keyslots_size; /* Used in LUKS2 format */
/* Workaround for OOM during parallel activation (like in systemd) */
bool memory_hard_pbkdf_lock_enabled;
struct crypt_lock_handle *pbkdf_memory_hard_lock;
union {
struct { /* used in CRYPT_LUKS1 */
struct luks_phdr hdr;
char *cipher_spec;
} luks1;
struct { /* used in CRYPT_LUKS2 */
struct luks2_hdr hdr;
char cipher[MAX_CIPHER_LEN]; /* only for compatibility */
char cipher_mode[MAX_CIPHER_LEN]; /* only for compatibility */
char *keyslot_cipher;
unsigned int keyslot_key_size;
struct luks2_reencrypt *rh;
} luks2;
struct { /* used in CRYPT_PLAIN */
struct crypt_params_plain hdr;
char *cipher_spec;
char *cipher;
const char *cipher_mode;
unsigned int key_size;
} plain;
struct { /* used in CRYPT_LOOPAES */
struct crypt_params_loopaes hdr;
char *cipher_spec;
char *cipher;
const char *cipher_mode;
unsigned int key_size;
} loopaes;
struct { /* used in CRYPT_VERITY */
struct crypt_params_verity hdr;
const char *root_hash;
unsigned int root_hash_size;
char *uuid;
struct device *fec_device;
} verity;
struct { /* used in CRYPT_TCRYPT */
struct crypt_params_tcrypt params;
struct tcrypt_phdr hdr;
} tcrypt;
struct { /* used in CRYPT_INTEGRITY */
struct crypt_params_integrity params;
struct volume_key *journal_mac_key;
struct volume_key *journal_crypt_key;
uint32_t sb_flags;
} integrity;
struct { /* used in CRYPT_BITLK */
struct bitlk_metadata params;
char *cipher_spec;
} bitlk;
struct { /* used in CRYPT_FVAULT2 */
struct fvault2_params params;
} fvault2;
struct { /* used if initialized without header by name */
char *active_name;
/* buffers, must refresh from kernel on every query */
char cipher_spec[MAX_CIPHER_LEN*2+1];
char cipher[MAX_CIPHER_LEN];
const char *cipher_mode;
unsigned int key_size;
} none;
} u;
/* callbacks definitions */
void (*log)(int level, const char *msg, void *usrptr);
void *log_usrptr;
int (*confirm)(const char *msg, void *usrptr);
void *confirm_usrptr;
};
/* Just to suppress redundant messages about crypto backend */
static int _crypto_logged = 0;
/* Log helper */
static void (*_default_log)(int level, const char *msg, void *usrptr) = NULL;
static void *_default_log_usrptr = NULL;
static int _debug_level = 0;
/* Library can do metadata locking */
static int _metadata_locking = 1;
/* Library scope detection for kernel keyring support */
static int _kernel_keyring_supported;
/* Library allowed to use kernel keyring for loading VK in kernel crypto layer */
static int _vk_via_keyring = 1;
void crypt_set_debug_level(int level)
{
_debug_level = level;
}
int crypt_get_debug_level(void)
{
return _debug_level;
}
void crypt_log(struct crypt_device *cd, int level, const char *msg)
{
if (!msg)
return;
if (level < _debug_level)
return;
if (cd && cd->log)
cd->log(level, msg, cd->log_usrptr);
else if (_default_log)
_default_log(level, msg, _default_log_usrptr);
/* Default to stdout/stderr if there is no callback. */
else
fprintf(level == CRYPT_LOG_ERROR ? stderr : stdout, "%s", msg);
}
__attribute__((format(printf, 3, 4)))
void crypt_logf(struct crypt_device *cd, int level, const char *format, ...)
{
va_list argp;
char target[LOG_MAX_LEN + 2];
int len;
va_start(argp, format);
len = vsnprintf(&target[0], LOG_MAX_LEN, format, argp);
if (len > 0 && len < LOG_MAX_LEN) {
/* All verbose and error messages in tools end with EOL. */
if (level == CRYPT_LOG_VERBOSE || level == CRYPT_LOG_ERROR ||
level == CRYPT_LOG_DEBUG || level == CRYPT_LOG_DEBUG_JSON)
strncat(target, "\n", LOG_MAX_LEN);
crypt_log(cd, level, target);
}
va_end(argp);
}
static const char *mdata_device_path(struct crypt_device *cd)
{
return device_path(cd->metadata_device ?: cd->device);
}
static const char *data_device_path(struct crypt_device *cd)
{
return device_path(cd->device);
}
/* internal only */
struct device *crypt_metadata_device(struct crypt_device *cd)
{
return cd->metadata_device ?: cd->device;
}
struct device *crypt_data_device(struct crypt_device *cd)
{
return cd->device;
}
int init_crypto(struct crypt_device *ctx)
{
struct utsname uts;
int r;
r = crypt_random_init(ctx);
if (r < 0) {
log_err(ctx, _("Cannot initialize crypto RNG backend."));
return r;
}
r = crypt_backend_init(crypt_fips_mode());
if (r < 0)
log_err(ctx, _("Cannot initialize crypto backend."));
if (!r && !_crypto_logged) {
log_dbg(ctx, "Crypto backend (%s) initialized in cryptsetup library version %s.",
crypt_backend_version(), PACKAGE_VERSION);
if (!uname(&uts))
log_dbg(ctx, "Detected kernel %s %s %s.",
uts.sysname, uts.release, uts.machine);
_crypto_logged = 1;
}
return r;
}
static int process_key(struct crypt_device *cd, const char *hash_name,
size_t key_size, const char *pass, size_t passLen,
struct volume_key **vk)
{
int r;
if (!key_size)
return -EINVAL;
*vk = crypt_alloc_volume_key(key_size, NULL);
if (!*vk)
return -ENOMEM;
if (hash_name) {
r = crypt_plain_hash(cd, hash_name, (*vk)->key, key_size, pass, passLen);
if (r < 0) {
if (r == -ENOENT)
log_err(cd, _("Hash algorithm %s not supported."),
hash_name);
else
log_err(cd, _("Key processing error (using hash %s)."),
hash_name);
crypt_free_volume_key(*vk);
*vk = NULL;
return -EINVAL;
}
} else if (passLen > key_size) {
memcpy((*vk)->key, pass, key_size);
} else {
memcpy((*vk)->key, pass, passLen);
}
return 0;
}
static int isPLAIN(const char *type)
{
return (type && !strcmp(CRYPT_PLAIN, type));
}
static int isLUKS1(const char *type)
{
return (type && !strcmp(CRYPT_LUKS1, type));
}
static int isLUKS2(const char *type)
{
return (type && !strcmp(CRYPT_LUKS2, type));
}
static int isLUKS(const char *type)
{
return (isLUKS2(type) || isLUKS1(type));
}
static int isLOOPAES(const char *type)
{
return (type && !strcmp(CRYPT_LOOPAES, type));
}
static int isVERITY(const char *type)
{
return (type && !strcmp(CRYPT_VERITY, type));
}
static int isTCRYPT(const char *type)
{
return (type && !strcmp(CRYPT_TCRYPT, type));
}
static int isINTEGRITY(const char *type)
{
return (type && !strcmp(CRYPT_INTEGRITY, type));
}
static int isBITLK(const char *type)
{
return (type && !strcmp(CRYPT_BITLK, type));
}
static int isFVAULT2(const char *type)
{
return (type && !strcmp(CRYPT_FVAULT2, type));
}
static int _onlyLUKS(struct crypt_device *cd, uint32_t cdflags)
{
int r = 0;
if (cd && !cd->type) {
if (!(cdflags & CRYPT_CD_QUIET))
log_err(cd, _("Cannot determine device type. Incompatible activation of device?"));
r = -EINVAL;
}
if (!cd || !isLUKS(cd->type)) {
if (!(cdflags & CRYPT_CD_QUIET))
log_err(cd, _("This operation is supported only for LUKS device."));
r = -EINVAL;
}
if (r || (cdflags & CRYPT_CD_UNRESTRICTED) || isLUKS1(cd->type))
return r;
return LUKS2_unmet_requirements(cd, &cd->u.luks2.hdr, 0, cdflags & CRYPT_CD_QUIET);
}
static int onlyLUKS(struct crypt_device *cd)
{
return _onlyLUKS(cd, 0);
}
static int _onlyLUKS2(struct crypt_device *cd, uint32_t cdflags, uint32_t mask)
{
int r = 0;
if (cd && !cd->type) {
if (!(cdflags & CRYPT_CD_QUIET))
log_err(cd, _("Cannot determine device type. Incompatible activation of device?"));
r = -EINVAL;
}
if (!cd || !isLUKS2(cd->type)) {
if (!(cdflags & CRYPT_CD_QUIET))
log_err(cd, _("This operation is supported only for LUKS2 device."));
r = -EINVAL;
}
if (r || (cdflags & CRYPT_CD_UNRESTRICTED))
return r;
return LUKS2_unmet_requirements(cd, &cd->u.luks2.hdr, mask, cdflags & CRYPT_CD_QUIET);
}
/* Internal only */
int onlyLUKS2(struct crypt_device *cd)
{
return _onlyLUKS2(cd, 0, 0);
}
/* Internal only */
int onlyLUKS2mask(struct crypt_device *cd, uint32_t mask)
{
return _onlyLUKS2(cd, 0, mask);
}
static void crypt_set_null_type(struct crypt_device *cd)
{
free(cd->type);
cd->type = NULL;
cd->data_offset = 0;
cd->metadata_size = 0;
cd->keyslots_size = 0;
crypt_safe_memzero(&cd->u, sizeof(cd->u));
}
static void crypt_reset_null_type(struct crypt_device *cd)
{
if (cd->type)
return;
free(cd->u.none.active_name);
cd->u.none.active_name = NULL;
}
/* keyslot helpers */
static int keyslot_verify_or_find_empty(struct crypt_device *cd, int *keyslot)
{
crypt_keyslot_info ki;
if (*keyslot == CRYPT_ANY_SLOT) {
if (isLUKS1(cd->type))
*keyslot = LUKS_keyslot_find_empty(&cd->u.luks1.hdr);
else
*keyslot = LUKS2_keyslot_find_empty(cd, &cd->u.luks2.hdr, 0);
if (*keyslot < 0) {
log_err(cd, _("All key slots full."));
return -EINVAL;
}
}
if (isLUKS1(cd->type))
ki = LUKS_keyslot_info(&cd->u.luks1.hdr, *keyslot);
else
ki = LUKS2_keyslot_info(&cd->u.luks2.hdr, *keyslot);
switch (ki) {
case CRYPT_SLOT_INVALID:
log_err(cd, _("Key slot %d is invalid, please select between 0 and %d."),
*keyslot, crypt_keyslot_max(cd->type) - 1);
return -EINVAL;
case CRYPT_SLOT_INACTIVE:
break;
default:
log_err(cd, _("Key slot %d is full, please select another one."),
*keyslot);
return -EINVAL;
}
log_dbg(cd, "Selected keyslot %d.", *keyslot);
return 0;
}
/*
* compares UUIDs returned by device-mapper (striped by cryptsetup) and uuid in header
*/
int crypt_uuid_cmp(const char *dm_uuid, const char *hdr_uuid)
{
int i, j;
char *str;
if (!dm_uuid || !hdr_uuid)
return -EINVAL;
str = strchr(dm_uuid, '-');
if (!str)
return -EINVAL;
for (i = 0, j = 1; hdr_uuid[i]; i++) {
if (hdr_uuid[i] == '-')
continue;
if (!str[j] || str[j] == '-')
return -EINVAL;
if (str[j] != hdr_uuid[i])
return -EINVAL;
j++;
}
return 0;
}
/*
* compares type of active device to provided string (only if there is no explicit type)
*/
static int crypt_uuid_type_cmp(struct crypt_device *cd, const char *type)
{
struct crypt_dm_active_device dmd;
size_t len;
int r;
/* Must use header-on-disk if we know the type here */
if (cd->type || !cd->u.none.active_name)
return -EINVAL;
log_dbg(cd, "Checking if active device %s without header has UUID type %s.",
cd->u.none.active_name, type);
r = dm_query_device(cd, cd->u.none.active_name, DM_ACTIVE_UUID, &dmd);
if (r < 0)
return r;
r = -ENODEV;
len = strlen(type);
if (dmd.uuid && strlen(dmd.uuid) > len &&
!strncmp(dmd.uuid, type, len) && dmd.uuid[len] == '-')
r = 0;
free(CONST_CAST(void*)dmd.uuid);
return r;
}
int PLAIN_activate(struct crypt_device *cd,
const char *name,
struct volume_key *vk,
uint64_t size,
uint32_t flags)
{
int r;
struct crypt_dm_active_device dmd = {
.flags = flags,
.size = size,
};
log_dbg(cd, "Trying to activate PLAIN device %s using cipher %s.",
name, crypt_get_cipher_spec(cd));
if (MISALIGNED(size, device_block_size(cd, crypt_data_device(cd)) >> SECTOR_SHIFT)) {
log_err(cd, _("Device size is not aligned to device logical block size."));
return -EINVAL;
}
r = dm_crypt_target_set(&dmd.segment, 0, dmd.size, crypt_data_device(cd),
vk, crypt_get_cipher_spec(cd), crypt_get_iv_offset(cd),
crypt_get_data_offset(cd), crypt_get_integrity(cd),
crypt_get_integrity_tag_size(cd), crypt_get_sector_size(cd));
if (r < 0)
return r;
r = create_or_reload_device(cd, name, CRYPT_PLAIN, &dmd);
dm_targets_free(cd, &dmd);
return r;
}
int crypt_confirm(struct crypt_device *cd, const char *msg)
{
if (!cd || !cd->confirm)
return 1;
else
return cd->confirm(msg, cd->confirm_usrptr);
}
void crypt_set_log_callback(struct crypt_device *cd,
void (*log)(int level, const char *msg, void *usrptr),
void *usrptr)
{
if (!cd) {
_default_log = log;
_default_log_usrptr = usrptr;
} else {
cd->log = log;
cd->log_usrptr = usrptr;
}
}
void crypt_set_confirm_callback(struct crypt_device *cd,
int (*confirm)(const char *msg, void *usrptr),
void *usrptr)
{
if (cd) {
cd->confirm = confirm;
cd->confirm_usrptr = usrptr;
}
}
const char *crypt_get_dir(void)
{
return dm_get_dir();
}
int crypt_init(struct crypt_device **cd, const char *device)
{
struct crypt_device *h = NULL;
int r;
if (!cd)
return -EINVAL;
log_dbg(NULL, "Allocating context for crypt device %s.", device ?: "(none)");
#if !HAVE_DECL_O_CLOEXEC
log_dbg(NULL, "Running without O_CLOEXEC.");
#endif
if (!(h = malloc(sizeof(struct crypt_device))))
return -ENOMEM;
memset(h, 0, sizeof(*h));
r = device_alloc(NULL, &h->device, device);
if (r < 0) {
free(h);
return r;
}
dm_backend_init(NULL);
h->rng_type = crypt_random_default_key_rng();
*cd = h;
return 0;
}
static int crypt_check_data_device_size(struct crypt_device *cd)
{
int r;
uint64_t size, size_min;
/* Check data device size, require at least header or one sector */
size_min = crypt_get_data_offset(cd) << SECTOR_SHIFT ?: SECTOR_SIZE;
r = device_size(cd->device, &size);
if (r < 0)
return r;
if (size < size_min) {
log_err(cd, _("Header detected but device %s is too small."),
device_path(cd->device));
return -EINVAL;
}
return r;
}
static int _crypt_set_data_device(struct crypt_device *cd, const char *device)
{
struct device *dev = NULL;
int r;
r = device_alloc(cd, &dev, device);
if (r < 0)
return r;
if (!cd->metadata_device) {
cd->metadata_device = cd->device;
} else
device_free(cd, cd->device);
cd->device = dev;
r = crypt_check_data_device_size(cd);
if (!r && isLUKS2(cd->type))
device_set_block_size(crypt_data_device(cd), LUKS2_get_sector_size(&cd->u.luks2.hdr));
return r;
}
int crypt_set_data_device(struct crypt_device *cd, const char *device)
{
/* metadata device must be set */
if (!cd || !cd->device || !device)
return -EINVAL;
log_dbg(cd, "Setting ciphertext data device to %s.", device ?: "(none)");
if (!isLUKS1(cd->type) && !isLUKS2(cd->type) && !isVERITY(cd->type) &&
!isINTEGRITY(cd->type) && !isTCRYPT(cd->type)) {
log_err(cd, _("This operation is not supported for this device type."));
return -EINVAL;
}
if (isLUKS2(cd->type) && crypt_get_luks2_reencrypt(cd)) {
log_err(cd, _("Illegal operation with reencryption in-progress."));
return -EINVAL;
}
return _crypt_set_data_device(cd, device);
}
int crypt_init_data_device(struct crypt_device **cd, const char *device, const char *data_device)
{
int r;
if (!cd)
return -EINVAL;
r = crypt_init(cd, device);
if (r || !data_device || !strcmp(device, data_device))
return r;
log_dbg(NULL, "Setting ciphertext data device to %s.", data_device);
r = _crypt_set_data_device(*cd, data_device);
if (r) {
crypt_free(*cd);
*cd = NULL;
}
return r;
}
static void crypt_free_type(struct crypt_device *cd, const char *force_type)
{
const char *type = force_type ?: cd->type;
if (isPLAIN(type)) {
free(CONST_CAST(void*)cd->u.plain.hdr.hash);
free(cd->u.plain.cipher);
free(cd->u.plain.cipher_spec);
} else if (isLUKS2(type)) {
LUKS2_reencrypt_free(cd, cd->u.luks2.rh);
LUKS2_hdr_free(cd, &cd->u.luks2.hdr);
free(cd->u.luks2.keyslot_cipher);
} else if (isLUKS1(type)) {
free(cd->u.luks1.cipher_spec);
} else if (isLOOPAES(type)) {
free(CONST_CAST(void*)cd->u.loopaes.hdr.hash);
free(cd->u.loopaes.cipher);
free(cd->u.loopaes.cipher_spec);
} else if (isVERITY(type)) {
free(CONST_CAST(void*)cd->u.verity.hdr.hash_name);
free(CONST_CAST(void*)cd->u.verity.hdr.data_device);
free(CONST_CAST(void*)cd->u.verity.hdr.hash_device);
free(CONST_CAST(void*)cd->u.verity.hdr.fec_device);
free(CONST_CAST(void*)cd->u.verity.hdr.salt);
free(CONST_CAST(void*)cd->u.verity.root_hash);
free(cd->u.verity.uuid);
device_free(cd, cd->u.verity.fec_device);
} else if (isINTEGRITY(type)) {
free(CONST_CAST(void*)cd->u.integrity.params.integrity);
free(CONST_CAST(void*)cd->u.integrity.params.journal_integrity);
free(CONST_CAST(void*)cd->u.integrity.params.journal_crypt);
crypt_free_volume_key(cd->u.integrity.journal_crypt_key);
crypt_free_volume_key(cd->u.integrity.journal_mac_key);
} else if (isBITLK(type)) {
free(cd->u.bitlk.cipher_spec);
BITLK_bitlk_metadata_free(&cd->u.bitlk.params);
} else if (!type) {
free(cd->u.none.active_name);
cd->u.none.active_name = NULL;
}
crypt_set_null_type(cd);
}
/* internal only */
struct crypt_pbkdf_type *crypt_get_pbkdf(struct crypt_device *cd)
{
return &cd->pbkdf;
}
/*
* crypt_load() helpers
*/
static int _crypt_load_luks2(struct crypt_device *cd, int reload, int repair)
{
int r;
char *type = NULL;
struct luks2_hdr hdr2 = {};
log_dbg(cd, "%soading LUKS2 header (repair %sabled).", reload ? "Rel" : "L", repair ? "en" : "dis");
r = LUKS2_hdr_read(cd, &hdr2, repair);
if (r)
return r;
if (!reload && !(type = strdup(CRYPT_LUKS2))) {
r = -ENOMEM;
goto out;
}
if (verify_pbkdf_params(cd, &cd->pbkdf)) {
r = init_pbkdf_type(cd, NULL, CRYPT_LUKS2);
if (r)
goto out;
}
if (reload) {
LUKS2_hdr_free(cd, &cd->u.luks2.hdr);
free(cd->u.luks2.keyslot_cipher);
} else
cd->type = type;
r = 0;
memcpy(&cd->u.luks2.hdr, &hdr2, sizeof(hdr2));
cd->u.luks2.keyslot_cipher = NULL;
cd->u.luks2.rh = NULL;
out:
if (r) {
free(type);
LUKS2_hdr_free(cd, &hdr2);
}
return r;
}
static void _luks2_rollback(struct crypt_device *cd)
{
if (!cd || !isLUKS2(cd->type))
return;
if (LUKS2_hdr_rollback(cd, &cd->u.luks2.hdr)) {
log_err(cd, _("Failed to rollback LUKS2 metadata in memory."));
return;
}
free(cd->u.luks2.keyslot_cipher);
cd->u.luks2.keyslot_cipher = NULL;
}
static int _crypt_load_luks(struct crypt_device *cd, const char *requested_type,
bool quiet, bool repair)
{
char *cipher_spec;
struct luks_phdr hdr = {};
int r, version;
r = init_crypto(cd);
if (r < 0)
return r;
/* This will return 0 if primary LUKS2 header is damaged */
version = LUKS2_hdr_version_unlocked(cd, NULL);
if ((isLUKS1(requested_type) && version == 2) ||
(isLUKS2(requested_type) && version == 1))
return -EINVAL;
if (requested_type)
version = 0;
if (isLUKS1(requested_type) || version == 1) {
if (isLUKS2(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
if (verify_pbkdf_params(cd, &cd->pbkdf)) {
r = init_pbkdf_type(cd, NULL, CRYPT_LUKS1);
if (r)
return r;
}
r = LUKS_read_phdr(&hdr, !quiet, repair, cd);
if (r)
goto out;
if (!cd->type && !(cd->type = strdup(CRYPT_LUKS1))) {
r = -ENOMEM;
goto out;
}
/* Set hash to the same as in the loaded header */
if (!cd->pbkdf.hash || strcmp(cd->pbkdf.hash, hdr.hashSpec)) {
free(CONST_CAST(void*)cd->pbkdf.hash);
cd->pbkdf.hash = strdup(hdr.hashSpec);
if (!cd->pbkdf.hash) {
r = -ENOMEM;
goto out;
}
}
if (asprintf(&cipher_spec, "%s-%s", hdr.cipherName, hdr.cipherMode) < 0) {
r = -ENOMEM;
goto out;
}
free(cd->u.luks1.cipher_spec);
cd->u.luks1.cipher_spec = cipher_spec;
memcpy(&cd->u.luks1.hdr, &hdr, sizeof(hdr));
} else if (isLUKS2(requested_type) || version == 2 || version == 0) {
if (isLUKS1(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
/*
* Current LUKS2 repair just overrides blkid probes
* and perform auto-recovery if possible. This is safe
* unless future LUKS2 repair code do something more
* sophisticated. In such case we would need to check
* for LUKS2 requirements and decide if it's safe to
* perform repair.
*/
r = _crypt_load_luks2(cd, cd->type != NULL, repair);
if (!r)
device_set_block_size(crypt_data_device(cd), LUKS2_get_sector_size(&cd->u.luks2.hdr));
else if (!quiet)
log_err(cd, _("Device %s is not a valid LUKS device."), mdata_device_path(cd));
} else {
if (version > 2)
log_err(cd, _("Unsupported LUKS version %d."), version);
r = -EINVAL;
}
out:
crypt_safe_memzero(&hdr, sizeof(hdr));
return r;
}
static int _crypt_load_tcrypt(struct crypt_device *cd, struct crypt_params_tcrypt *params)
{
int r;
if (!params)
return -EINVAL;
r = init_crypto(cd);
if (r < 0)
return r;
memcpy(&cd->u.tcrypt.params, params, sizeof(*params));
r = TCRYPT_read_phdr(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
cd->u.tcrypt.params.passphrase = NULL;
cd->u.tcrypt.params.passphrase_size = 0;
cd->u.tcrypt.params.keyfiles = NULL;
cd->u.tcrypt.params.keyfiles_count = 0;
cd->u.tcrypt.params.veracrypt_pim = 0;
if (r < 0)
goto out;
if (!cd->type && !(cd->type = strdup(CRYPT_TCRYPT)))
r = -ENOMEM;
out:
if (r < 0)
crypt_free_type(cd, CRYPT_TCRYPT);
return r;
}
static int _crypt_load_verity(struct crypt_device *cd, struct crypt_params_verity *params)
{
int r;
uint64_t sb_offset = 0;
r = init_crypto(cd);
if (r < 0)
return r;
if (params && params->flags & CRYPT_VERITY_NO_HEADER)
return -EINVAL;
if (params)
sb_offset = params->hash_area_offset;
r = VERITY_read_sb(cd, sb_offset, &cd->u.verity.uuid, &cd->u.verity.hdr);
if (r < 0)
goto out;
if (!cd->type && !(cd->type = strdup(CRYPT_VERITY))) {
r = -ENOMEM;
goto out;
}
if (params)
cd->u.verity.hdr.flags = params->flags;
/* Hash availability checked in sb load */
cd->u.verity.root_hash_size = crypt_hash_size(cd->u.verity.hdr.hash_name);
if (cd->u.verity.root_hash_size > 4096) {
r = -EINVAL;
goto out;
}
if (params && params->data_device &&
(r = crypt_set_data_device(cd, params->data_device)) < 0)
goto out;
if (params && params->fec_device) {
r = device_alloc(cd, &cd->u.verity.fec_device, params->fec_device);
if (r < 0)
goto out;
cd->u.verity.hdr.fec_area_offset = params->fec_area_offset;
cd->u.verity.hdr.fec_roots = params->fec_roots;
}
out:
if (r < 0)
crypt_free_type(cd, CRYPT_VERITY);
return r;
}
static int _crypt_load_integrity(struct crypt_device *cd,
struct crypt_params_integrity *params)
{
int r;
r = init_crypto(cd);
if (r < 0)
return r;
r = INTEGRITY_read_sb(cd, &cd->u.integrity.params, &cd->u.integrity.sb_flags);
if (r < 0)
goto out;
// FIXME: add checks for fields in integrity sb vs params
r = -ENOMEM;
if (params) {
cd->u.integrity.params.journal_watermark = params->journal_watermark;
cd->u.integrity.params.journal_commit_time = params->journal_commit_time;
cd->u.integrity.params.buffer_sectors = params->buffer_sectors;
if (params->integrity &&
!(cd->u.integrity.params.integrity = strdup(params->integrity)))
goto out;
cd->u.integrity.params.integrity_key_size = params->integrity_key_size;
if (params->journal_integrity &&
!(cd->u.integrity.params.journal_integrity = strdup(params->journal_integrity)))
goto out;
if (params->journal_crypt &&
!(cd->u.integrity.params.journal_crypt = strdup(params->journal_crypt)))
goto out;
if (params->journal_crypt_key) {
cd->u.integrity.journal_crypt_key =
crypt_alloc_volume_key(params->journal_crypt_key_size,
params->journal_crypt_key);
if (!cd->u.integrity.journal_crypt_key)
goto out;
}
if (params->journal_integrity_key) {
cd->u.integrity.journal_mac_key =
crypt_alloc_volume_key(params->journal_integrity_key_size,
params->journal_integrity_key);
if (!cd->u.integrity.journal_mac_key)
goto out;
}
}
if (!cd->type && !(cd->type = strdup(CRYPT_INTEGRITY)))
goto out;
r = 0;
out:
if (r < 0)
crypt_free_type(cd, CRYPT_INTEGRITY);
return r;
}
static int _crypt_load_bitlk(struct crypt_device *cd)
{
int r;
r = init_crypto(cd);
if (r < 0)
return r;
r = BITLK_read_sb(cd, &cd->u.bitlk.params);
if (r < 0)
goto out;
if (asprintf(&cd->u.bitlk.cipher_spec, "%s-%s",
cd->u.bitlk.params.cipher, cd->u.bitlk.params.cipher_mode) < 0) {
cd->u.bitlk.cipher_spec = NULL;
r = -ENOMEM;
goto out;
}
if (!cd->type && !(cd->type = strdup(CRYPT_BITLK))) {
r = -ENOMEM;
goto out;
}
device_set_block_size(crypt_data_device(cd), cd->u.bitlk.params.sector_size);
out:
if (r < 0)
crypt_free_type(cd, CRYPT_BITLK);
return r;
}
static int _crypt_load_fvault2(struct crypt_device *cd)
{
int r;
r = init_crypto(cd);
if (r < 0)
return r;
r = FVAULT2_read_metadata(cd, &cd->u.fvault2.params);
if (r < 0)
goto out;
if (!cd->type && !(cd->type = strdup(CRYPT_FVAULT2)))
r = -ENOMEM;
out:
if (r < 0)
crypt_free_type(cd, CRYPT_FVAULT2);
return r;
}
int crypt_load(struct crypt_device *cd,
const char *requested_type,
void *params)
{
int r;
if (!cd)
return -EINVAL;
log_dbg(cd, "Trying to load %s crypt type from device %s.",
requested_type ?: "any", mdata_device_path(cd) ?: "(none)");
if (!crypt_metadata_device(cd))
return -EINVAL;
crypt_reset_null_type(cd);
cd->data_offset = 0;
cd->metadata_size = 0;
cd->keyslots_size = 0;
if (!requested_type || isLUKS1(requested_type) || isLUKS2(requested_type)) {
if (cd->type && !isLUKS1(cd->type) && !isLUKS2(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_luks(cd, requested_type, true, false);
} else if (isVERITY(requested_type)) {
if (cd->type && !isVERITY(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_verity(cd, params);
} else if (isTCRYPT(requested_type)) {
if (cd->type && !isTCRYPT(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_tcrypt(cd, params);
} else if (isINTEGRITY(requested_type)) {
if (cd->type && !isINTEGRITY(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_integrity(cd, params);
} else if (isBITLK(requested_type)) {
if (cd->type && !isBITLK(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_bitlk(cd);
} else if (isFVAULT2(requested_type)) {
if (cd->type && !isFVAULT2(cd->type)) {
log_dbg(cd, "Context is already initialized to type %s", cd->type);
return -EINVAL;
}
r = _crypt_load_fvault2(cd);
} else
return -EINVAL;
return r;
}
/*
* crypt_init() helpers
*/
static int _init_by_name_crypt_none(struct crypt_device *cd)
{
int r;
char _mode[MAX_CIPHER_LEN];
struct crypt_dm_active_device dmd;
struct dm_target *tgt = &dmd.segment;
if (cd->type || !cd->u.none.active_name)
return -EINVAL;
r = dm_query_device(cd, cd->u.none.active_name,
DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_CRYPT_KEYSIZE, &dmd);
if (r < 0)
return r;
if (!single_segment(&dmd) || tgt->type != DM_CRYPT)
r = -EINVAL;
if (r >= 0)
r = crypt_parse_name_and_mode(tgt->u.crypt.cipher,
cd->u.none.cipher, NULL,
_mode);
if (!r) {
r = snprintf(cd->u.none.cipher_spec, sizeof(cd->u.none.cipher_spec),
"%s-%s", cd->u.none.cipher, _mode);
if (r < 0 || (size_t)r >= sizeof(cd->u.none.cipher_spec))
r = -EINVAL;
else {
cd->u.none.cipher_mode = cd->u.none.cipher_spec + strlen(cd->u.none.cipher) + 1;
cd->u.none.key_size = tgt->u.crypt.vk->keylength;
r = 0;
}
}
dm_targets_free(cd, &dmd);
return r;
}
static const char *LUKS_UUID(struct crypt_device *cd)
{
if (!cd)
return NULL;
else if (isLUKS1(cd->type))
return cd->u.luks1.hdr.uuid;
else if (isLUKS2(cd->type))
return cd->u.luks2.hdr.uuid;
return NULL;
}
static int _init_by_name_crypt(struct crypt_device *cd, const char *name)
{
bool found = false;
char **dep, *cipher_spec = NULL, cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN];
char deps_uuid_prefix[40], *deps[MAX_DM_DEPS+1] = {};
const char *dev, *namei;
int key_nums, r;
struct crypt_dm_active_device dmd, dmdi = {}, dmdep = {};
struct dm_target *tgt = &dmd.segment, *tgti = &dmdi.segment;
r = dm_query_device(cd, name,
DM_ACTIVE_DEVICE |
DM_ACTIVE_UUID |
DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_CRYPT_KEYSIZE, &dmd);
if (r < 0)
return r;
if (tgt->type != DM_CRYPT && tgt->type != DM_LINEAR) {
log_dbg(cd, "Unsupported device table detected in %s.", name);
r = -EINVAL;
goto out;
}
r = -EINVAL;
if (dmd.uuid) {
r = snprintf(deps_uuid_prefix, sizeof(deps_uuid_prefix), CRYPT_SUBDEV "-%.32s", dmd.uuid + 6);
if (r < 0 || (size_t)r != (sizeof(deps_uuid_prefix) - 1))
r = -EINVAL;
}
if (r >= 0) {
r = dm_device_deps(cd, name, deps_uuid_prefix, deps, ARRAY_SIZE(deps));
if (r)
goto out;
}
r = crypt_parse_name_and_mode(tgt->type == DM_LINEAR ? "null" : tgt->u.crypt.cipher, cipher,
&key_nums, cipher_mode);
if (r < 0) {
log_dbg(cd, "Cannot parse cipher and mode from active device.");
goto out;
}
dep = deps;
if (tgt->type == DM_CRYPT && tgt->u.crypt.integrity && (namei = device_dm_name(tgt->data_device))) {
r = dm_query_device(cd, namei, DM_ACTIVE_DEVICE, &dmdi);
if (r < 0)
goto out;
if (!single_segment(&dmdi) || tgti->type != DM_INTEGRITY) {
log_dbg(cd, "Unsupported device table detected in %s.", namei);
r = -EINVAL;
goto out;
}
if (!cd->metadata_device) {
device_free(cd, cd->device);
MOVE_REF(cd->device, tgti->data_device);
}
}
/* do not try to lookup LUKS2 header in detached header mode */
if (dmd.uuid && !cd->metadata_device && !found) {
while (*dep && !found) {
r = dm_query_device(cd, *dep, DM_ACTIVE_DEVICE, &dmdep);
if (r < 0)
goto out;
tgt = &dmdep.segment;
while (tgt && !found) {
dev = device_path(tgt->data_device);
if (!dev) {
tgt = tgt->next;
continue;
}
if (!strstr(dev, dm_get_dir()) ||
!crypt_string_in(dev + strlen(dm_get_dir()) + 1, deps, ARRAY_SIZE(deps))) {
device_free(cd, cd->device);
MOVE_REF(cd->device, tgt->data_device);
found = true;
}
tgt = tgt->next;
}
dep++;
dm_targets_free(cd, &dmdep);
}
}
if (asprintf(&cipher_spec, "%s-%s", cipher, cipher_mode) < 0) {
cipher_spec = NULL;
r = -ENOMEM;
goto out;
}
tgt = &dmd.segment;
r = 0;
if (isPLAIN(cd->type) && single_segment(&dmd) && tgt->type == DM_CRYPT) {
cd->u.plain.hdr.hash = NULL; /* no way to get this */
cd->u.plain.hdr.offset = tgt->u.crypt.offset;
cd->u.plain.hdr.skip = tgt->u.crypt.iv_offset;
cd->u.plain.hdr.sector_size = tgt->u.crypt.sector_size;
cd->u.plain.key_size = tgt->u.crypt.vk->keylength;
cd->u.plain.cipher = strdup(cipher);
MOVE_REF(cd->u.plain.cipher_spec, cipher_spec);
cd->u.plain.cipher_mode = cd->u.plain.cipher_spec + strlen(cipher) + 1;
} else if (isLOOPAES(cd->type) && single_segment(&dmd) && tgt->type == DM_CRYPT) {
cd->u.loopaes.hdr.offset = tgt->u.crypt.offset;
cd->u.loopaes.cipher = strdup(cipher);
MOVE_REF(cd->u.loopaes.cipher_spec, cipher_spec);
cd->u.loopaes.cipher_mode = cd->u.loopaes.cipher_spec + strlen(cipher) + 1;
/* version 3 uses last key for IV */
if (tgt->u.crypt.vk->keylength % key_nums)
key_nums++;
cd->u.loopaes.key_size = tgt->u.crypt.vk->keylength / key_nums;
} else if (isLUKS1(cd->type) || isLUKS2(cd->type)) {
if (crypt_metadata_device(cd)) {
r = _crypt_load_luks(cd, cd->type, true, false);
if (r < 0) {
log_dbg(cd, "LUKS device header does not match active device.");
crypt_set_null_type(cd);
device_close(cd, cd->metadata_device);
device_close(cd, cd->device);
r = 0;
goto out;
}
/* check whether UUIDs match each other */
r = crypt_uuid_cmp(dmd.uuid, LUKS_UUID(cd));
if (r < 0) {
log_dbg(cd, "LUKS device header uuid: %s mismatches DM returned uuid %s",
LUKS_UUID(cd), dmd.uuid);
crypt_free_type(cd, NULL);
r = 0;
goto out;
}
} else {
log_dbg(cd, "LUKS device header not available.");
crypt_set_null_type(cd);
r = 0;
}
} else if (isTCRYPT(cd->type) && single_segment(&dmd) && tgt->type == DM_CRYPT) {
r = TCRYPT_init_by_name(cd, name, dmd.uuid, tgt, &cd->device,
&cd->u.tcrypt.params, &cd->u.tcrypt.hdr);
} else if (isBITLK(cd->type)) {
r = _crypt_load_bitlk(cd);
if (r < 0) {
log_dbg(cd, "BITLK device header not available.");
crypt_set_null_type(cd);
r = 0;
}
} else if (isFVAULT2(cd->type)) {
r = _crypt_load_fvault2(cd);
if (r < 0) {
log_dbg(cd, "FVAULT2 device header not available.");
crypt_set_null_type(cd);
r = 0;
}
}
out:
dm_targets_free(cd, &dmd);
dm_targets_free(cd, &dmdi);
dm_targets_free(cd, &dmdep);
free(CONST_CAST(void*)dmd.uuid);
free(cipher_spec);
dep = deps;
while (*dep)
free(*dep++);
return r;
}
static int _init_by_name_verity(struct crypt_device *cd, const char *name)
{
struct crypt_dm_active_device dmd;
struct dm_target *tgt = &dmd.segment;
int r;
r = dm_query_device(cd, name,
DM_ACTIVE_DEVICE |
DM_ACTIVE_VERITY_HASH_DEVICE |
DM_ACTIVE_VERITY_ROOT_HASH |
DM_ACTIVE_VERITY_PARAMS, &dmd);
if (r < 0)
return r;
if (!single_segment(&dmd) || tgt->type != DM_VERITY) {
log_dbg(cd, "Unsupported device table detected in %s.", name);
r = -EINVAL;
goto out;
}
if (r > 0)
r = 0;
if (isVERITY(cd->type)) {
cd->u.verity.uuid = NULL; // FIXME
cd->u.verity.hdr.flags = CRYPT_VERITY_NO_HEADER; //FIXME
cd->u.verity.hdr.data_size = tgt->u.verity.vp->data_size;
cd->u.verity.root_hash_size = tgt->u.verity.root_hash_size;
MOVE_REF(cd->u.verity.hdr.hash_name, tgt->u.verity.vp->hash_name);
cd->u.verity.hdr.data_device = NULL;
cd->u.verity.hdr.hash_device = NULL;
cd->u.verity.hdr.data_block_size = tgt->u.verity.vp->data_block_size;
cd->u.verity.hdr.hash_block_size = tgt->u.verity.vp->hash_block_size;
cd->u.verity.hdr.hash_area_offset = tgt->u.verity.hash_offset;
cd->u.verity.hdr.fec_area_offset = tgt->u.verity.fec_offset;
cd->u.verity.hdr.hash_type = tgt->u.verity.vp->hash_type;
cd->u.verity.hdr.flags = tgt->u.verity.vp->flags;
cd->u.verity.hdr.salt_size = tgt->u.verity.vp->salt_size;
MOVE_REF(cd->u.verity.hdr.salt, tgt->u.verity.vp->salt);
MOVE_REF(cd->u.verity.hdr.fec_device, tgt->u.verity.vp->fec_device);
cd->u.verity.hdr.fec_roots = tgt->u.verity.vp->fec_roots;
MOVE_REF(cd->u.verity.fec_device, tgt->u.verity.fec_device);
MOVE_REF(cd->metadata_device, tgt->u.verity.hash_device);
MOVE_REF(cd->u.verity.root_hash, tgt->u.verity.root_hash);
}
out:
dm_targets_free(cd, &dmd);
return r;
}
static int _init_by_name_integrity(struct crypt_device *cd, const char *name)
{
struct crypt_dm_active_device dmd;
struct dm_target *tgt = &dmd.segment;
int r;
r = dm_query_device(cd, name, DM_ACTIVE_DEVICE |
DM_ACTIVE_CRYPT_KEY |
DM_ACTIVE_CRYPT_KEYSIZE |
DM_ACTIVE_INTEGRITY_PARAMS, &dmd);
if (r < 0)
return r;
if (!single_segment(&dmd) || tgt->type != DM_INTEGRITY) {
log_dbg(cd, "Unsupported device table detected in %s.", name);
r = -EINVAL;
goto out;
}
if (r > 0)
r = 0;
if (isINTEGRITY(cd->type)) {
cd->u.integrity.params.tag_size = tgt->u.integrity.tag_size;
cd->u.integrity.params.sector_size = tgt->u.integrity.sector_size;
cd->u.integrity.params.journal_size = tgt->u.integrity.journal_size;
cd->u.integrity.params.journal_watermark = tgt->u.integrity.journal_watermark;
cd->u.integrity.params.journal_commit_time = tgt->u.integrity.journal_commit_time;
cd->u.integrity.params.interleave_sectors = tgt->u.integrity.interleave_sectors;
cd->u.integrity.params.buffer_sectors = tgt->u.integrity.buffer_sectors;
MOVE_REF(cd->u.integrity.params.integrity, tgt->u.integrity.integrity);
MOVE_REF(cd->u.integrity.params.journal_integrity, tgt->u.integrity.journal_integrity);
MOVE_REF(cd->u.integrity.params.journal_crypt, tgt->u.integrity.journal_crypt);
if (tgt->u.integrity.vk)
cd->u.integrity.params.integrity_key_size = tgt->u.integrity.vk->keylength;
if (tgt->u.integrity.journal_integrity_key)
cd->u.integrity.params.journal_integrity_key_size = tgt->u.integrity.journal_integrity_key->keylength;
if (tgt->u.integrity.journal_crypt_key)
cd->u.integrity.params.integrity_key_size = tgt->u.integrity.journal_crypt_key->keylength;
MOVE_REF(cd->metadata_device, tgt->u.integrity.meta_device);
}
out:
dm_targets_free(cd, &dmd);
return r;
}
int crypt_init_by_name_and_header(struct crypt_device **cd,
const char *name,
const char *header_device)
{
crypt_status_info ci;
struct crypt_dm_active_device dmd;
struct dm_target *tgt = &dmd.segment;
int r;
if (!cd || !name)
return -EINVAL;
log_dbg(NULL, "Allocating crypt device context by device %s.", name);
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -ENODEV;
if (ci < CRYPT_ACTIVE) {
log_err(NULL, _("Device %s is not active."), name);
return -ENODEV;
}
r = dm_query_device(NULL, name, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID, &dmd);
if (r < 0)
return r;
*cd = NULL;
if (header_device) {
r = crypt_init(cd, header_device);
} else {
r = crypt_init(cd, device_path(tgt->data_device));
/* Underlying device disappeared but mapping still active */
if (!tgt->data_device || r == -ENOTBLK)
log_verbose(NULL, _("Underlying device for crypt device %s disappeared."),
name);
/* Underlying device is not readable but crypt mapping exists */
if (r == -ENOTBLK)
r = crypt_init(cd, NULL);
}
if (r < 0)
goto out;
if (dmd.uuid) {
if (!strncmp(CRYPT_PLAIN, dmd.uuid, sizeof(CRYPT_PLAIN)-1))
(*cd)->type = strdup(CRYPT_PLAIN);
else if (!strncmp(CRYPT_LOOPAES, dmd.uuid, sizeof(CRYPT_LOOPAES)-1))
(*cd)->type = strdup(CRYPT_LOOPAES);
else if (!strncmp(CRYPT_LUKS1, dmd.uuid, sizeof(CRYPT_LUKS1)-1))
(*cd)->type = strdup(CRYPT_LUKS1);
else if (!strncmp(CRYPT_LUKS2, dmd.uuid, sizeof(CRYPT_LUKS2)-1))
(*cd)->type = strdup(CRYPT_LUKS2);
else if (!strncmp(CRYPT_VERITY, dmd.uuid, sizeof(CRYPT_VERITY)-1))
(*cd)->type = strdup(CRYPT_VERITY);
else if (!strncmp(CRYPT_TCRYPT, dmd.uuid, sizeof(CRYPT_TCRYPT)-1))
(*cd)->type = strdup(CRYPT_TCRYPT);
else if (!strncmp(CRYPT_INTEGRITY, dmd.uuid, sizeof(CRYPT_INTEGRITY)-1))
(*cd)->type = strdup(CRYPT_INTEGRITY);
else if (!strncmp(CRYPT_BITLK, dmd.uuid, sizeof(CRYPT_BITLK)-1))
(*cd)->type = strdup(CRYPT_BITLK);
else if (!strncmp(CRYPT_FVAULT2, dmd.uuid, sizeof(CRYPT_FVAULT2)-1))
(*cd)->type = strdup(CRYPT_FVAULT2);
else
log_dbg(NULL, "Unknown UUID set, some parameters are not set.");
} else
log_dbg(NULL, "Active device has no UUID set, some parameters are not set.");
if (header_device) {
r = crypt_set_data_device(*cd, device_path(tgt->data_device));
if (r < 0)
goto out;
}
/* Try to initialize basic parameters from active device */
if (tgt->type == DM_CRYPT || tgt->type == DM_LINEAR)
r = _init_by_name_crypt(*cd, name);
else if (tgt->type == DM_VERITY)
r = _init_by_name_verity(*cd, name);
else if (tgt->type == DM_INTEGRITY)
r = _init_by_name_integrity(*cd, name);
out:
if (r < 0) {
crypt_free(*cd);
*cd = NULL;
} else if (!(*cd)->type) {
/* For anonymous device (no header found) remember initialized name */
(*cd)->u.none.active_name = strdup(name);
}
free(CONST_CAST(void*)dmd.uuid);
dm_targets_free(NULL, &dmd);
return r;
}
int crypt_init_by_name(struct crypt_device **cd, const char *name)
{
return crypt_init_by_name_and_header(cd, name, NULL);
}
/*
* crypt_format() helpers
*/
static int _crypt_format_plain(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
size_t volume_key_size,
struct crypt_params_plain *params)
{
unsigned int sector_size = params ? params->sector_size : SECTOR_SIZE;
uint64_t dev_size;
if (!cipher || !cipher_mode) {
log_err(cd, _("Invalid plain crypt parameters."));
return -EINVAL;
}
if (volume_key_size > 1024) {
log_err(cd, _("Invalid key size."));
return -EINVAL;
}
if (uuid) {
log_err(cd, _("UUID is not supported for this crypt type."));
return -EINVAL;
}
if (cd->metadata_device) {
log_err(cd, _("Detached metadata device is not supported for this crypt type."));
return -EINVAL;
}
/* For compatibility with old params structure */
if (!sector_size)
sector_size = SECTOR_SIZE;
if (sector_size < SECTOR_SIZE || sector_size > MAX_SECTOR_SIZE ||
NOTPOW2(sector_size)) {
log_err(cd, _("Unsupported encryption sector size."));
return -EINVAL;
}
if (sector_size > SECTOR_SIZE && !device_size(cd->device, &dev_size)) {
if (params && params->offset)
dev_size -= (params->offset * SECTOR_SIZE);
if (dev_size % sector_size) {
log_err(cd, _("Device size is not aligned to requested sector size."));
return -EINVAL;
}
device_set_block_size(crypt_data_device(cd), sector_size);
}
if (!(cd->type = strdup(CRYPT_PLAIN)))
return -ENOMEM;
cd->u.plain.key_size = volume_key_size;
cd->volume_key = crypt_alloc_volume_key(volume_key_size, NULL);
if (!cd->volume_key)
return -ENOMEM;
if (asprintf(&cd->u.plain.cipher_spec, "%s-%s", cipher, cipher_mode) < 0) {
cd->u.plain.cipher_spec = NULL;
return -ENOMEM;
}
cd->u.plain.cipher = strdup(cipher);
cd->u.plain.cipher_mode = cd->u.plain.cipher_spec + strlen(cipher) + 1;
if (params && params->hash)
cd->u.plain.hdr.hash = strdup(params->hash);
cd->u.plain.hdr.offset = params ? params->offset : 0;
cd->u.plain.hdr.skip = params ? params->skip : 0;
cd->u.plain.hdr.size = params ? params->size : 0;
cd->u.plain.hdr.sector_size = sector_size;
if (!cd->u.plain.cipher)
return -ENOMEM;
return 0;
}
static int _crypt_format_luks1(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
struct crypt_params_luks1 *params)
{
int r;
unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT;
unsigned long alignment_offset = 0;
uint64_t dev_size;
if (!cipher || !cipher_mode)
return -EINVAL;
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format LUKS without device."));
return -EINVAL;
}
if (params && cd->data_offset && params->data_alignment &&
(cd->data_offset % params->data_alignment)) {
log_err(cd, _("Requested data alignment is not compatible with data offset."));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_LUKS1)))
return -ENOMEM;
if (volume_key)
cd->volume_key = crypt_alloc_volume_key(volume_key_size,
volume_key);
else
cd->volume_key = crypt_generate_volume_key(cd, volume_key_size);
if (!cd->volume_key)
return -ENOMEM;
if (verify_pbkdf_params(cd, &cd->pbkdf)) {
r = init_pbkdf_type(cd, NULL, CRYPT_LUKS1);
if (r)
return r;
}
if (params && params->hash && strcmp(params->hash, cd->pbkdf.hash)) {
free(CONST_CAST(void*)cd->pbkdf.hash);
cd->pbkdf.hash = strdup(params->hash);
if (!cd->pbkdf.hash)
return -ENOMEM;
}
if (params && params->data_device) {
if (!cd->metadata_device)
cd->metadata_device = cd->device;
else
device_free(cd, cd->device);
cd->device = NULL;
if (device_alloc(cd, &cd->device, params->data_device) < 0)
return -ENOMEM;
}
if (params && cd->metadata_device) {
/* For detached header the alignment is used directly as data offset */
if (!cd->data_offset)
cd->data_offset = params->data_alignment;
required_alignment = params->data_alignment * SECTOR_SIZE;
} else if (params && params->data_alignment) {
required_alignment = params->data_alignment * SECTOR_SIZE;
} else
device_topology_alignment(cd, cd->device,
&required_alignment,
&alignment_offset, DEFAULT_DISK_ALIGNMENT);
r = LUKS_check_cipher(cd, volume_key_size, cipher, cipher_mode);
if (r < 0)
return r;
r = LUKS_generate_phdr(&cd->u.luks1.hdr, cd->volume_key, cipher, cipher_mode,
cd->pbkdf.hash, uuid,
cd->data_offset * SECTOR_SIZE,
alignment_offset, required_alignment, cd);
if (r < 0)
return r;
r = device_check_access(cd, crypt_metadata_device(cd), DEV_EXCL);
if (r < 0)
return r;
if (asprintf(&cd->u.luks1.cipher_spec, "%s-%s", cipher, cipher_mode) < 0) {
cd->u.luks1.cipher_spec = NULL;
return -ENOMEM;
}
r = LUKS_wipe_header_areas(&cd->u.luks1.hdr, cd);
if (r < 0) {
free(cd->u.luks1.cipher_spec);
log_err(cd, _("Cannot wipe header on device %s."),
mdata_device_path(cd));
return r;
}
r = LUKS_write_phdr(&cd->u.luks1.hdr, cd);
if (r) {
free(cd->u.luks1.cipher_spec);
return r;
}
if (!device_size(crypt_data_device(cd), &dev_size) &&
dev_size <= (crypt_get_data_offset(cd) * SECTOR_SIZE))
log_std(cd, _("Device %s is too small for activation, there is no remaining space for data.\n"),
device_path(crypt_data_device(cd)));
return 0;
}
static int _crypt_format_luks2(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
struct crypt_params_luks2 *params,
bool sector_size_autodetect)
{
int r, integrity_key_size = 0;
unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT;
unsigned long alignment_offset = 0;
unsigned int sector_size;
const char *integrity = params ? params->integrity : NULL;
uint64_t dev_size;
uint32_t dmc_flags;
cd->u.luks2.hdr.jobj = NULL;
cd->u.luks2.keyslot_cipher = NULL;
if (!cipher || !cipher_mode)
return -EINVAL;
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format LUKS without device."));
return -EINVAL;
}
if (params && cd->data_offset && params->data_alignment &&
(cd->data_offset % params->data_alignment)) {
log_err(cd, _("Requested data alignment is not compatible with data offset."));
return -EINVAL;
}
if (params && params->sector_size)
sector_size_autodetect = false;
if (params && params->data_device) {
if (!cd->metadata_device)
cd->metadata_device = cd->device;
else
device_free(cd, cd->device);
cd->device = NULL;
if (device_alloc(cd, &cd->device, params->data_device) < 0)
return -ENOMEM;
}
if (sector_size_autodetect) {
sector_size = device_optimal_encryption_sector_size(cd, crypt_data_device(cd));
log_dbg(cd, "Auto-detected optimal encryption sector size for device %s is %d bytes.",
device_path(crypt_data_device(cd)), sector_size);
} else
sector_size = params ? params->sector_size : SECTOR_SIZE;
if (sector_size < SECTOR_SIZE || sector_size > MAX_SECTOR_SIZE ||
NOTPOW2(sector_size)) {
log_err(cd, _("Unsupported encryption sector size."));
return -EINVAL;
}
if (sector_size != SECTOR_SIZE && !dm_flags(cd, DM_CRYPT, &dmc_flags) &&
!(dmc_flags & DM_SECTOR_SIZE_SUPPORTED)) {
if (sector_size_autodetect) {
log_dbg(cd, "dm-crypt does not support encryption sector size option. Reverting to 512 bytes.");
sector_size = SECTOR_SIZE;
} else
log_std(cd, _("WARNING: The device activation will fail, dm-crypt is missing "
"support for requested encryption sector size.\n"));
}
if (integrity) {
if (params->integrity_params) {
/* Standalone dm-integrity must not be used */
if (params->integrity_params->integrity ||
params->integrity_params->integrity_key_size)
return -EINVAL;
/* FIXME: journal encryption and MAC is here not yet supported */
if (params->integrity_params->journal_crypt ||
params->integrity_params->journal_integrity)
return -ENOTSUP;
}
if (!INTEGRITY_tag_size(integrity, cipher, cipher_mode)) {
if (!strcmp(integrity, "none"))
integrity = NULL;
else
return -EINVAL;
}
integrity_key_size = INTEGRITY_key_size(integrity);
if ((integrity_key_size < 0) || (integrity_key_size >= (int)volume_key_size)) {
log_err(cd, _("Volume key is too small for encryption with integrity extensions."));
return -EINVAL;
}
}
r = device_check_access(cd, crypt_metadata_device(cd), DEV_EXCL);
if (r < 0)
return r;
if (!(cd->type = strdup(CRYPT_LUKS2)))
return -ENOMEM;
if (volume_key)
cd->volume_key = crypt_alloc_volume_key(volume_key_size,
volume_key);
else
cd->volume_key = crypt_generate_volume_key(cd, volume_key_size);
if (!cd->volume_key)
return -ENOMEM;
if (params && params->pbkdf)
r = crypt_set_pbkdf_type(cd, params->pbkdf);
else if (verify_pbkdf_params(cd, &cd->pbkdf))
r = init_pbkdf_type(cd, NULL, CRYPT_LUKS2);
if (r < 0)
return r;
if (params && cd->metadata_device) {
/* For detached header the alignment is used directly as data offset */
if (!cd->data_offset)
cd->data_offset = params->data_alignment;
required_alignment = params->data_alignment * SECTOR_SIZE;
} else if (params && params->data_alignment) {
required_alignment = params->data_alignment * SECTOR_SIZE;
} else
device_topology_alignment(cd, cd->device,
&required_alignment,
&alignment_offset, DEFAULT_DISK_ALIGNMENT);
r = device_size(crypt_data_device(cd), &dev_size);
if (r < 0)
goto out;
if (sector_size_autodetect) {
if (cd->data_offset && MISALIGNED(cd->data_offset, sector_size)) {
log_dbg(cd, "Data offset not aligned to sector size. Reverting to 512 bytes.");
sector_size = SECTOR_SIZE;
} else if (MISALIGNED(dev_size - (uint64_t)required_alignment - (uint64_t)alignment_offset, sector_size)) {
/* underflow does not affect misalignment checks */
log_dbg(cd, "Device size is not aligned to sector size. Reverting to 512 bytes.");
sector_size = SECTOR_SIZE;
}
}
/* FIXME: allow this later also for normal ciphers (check AF_ALG availability. */
if (integrity && !integrity_key_size) {
r = crypt_cipher_check_kernel(cipher, cipher_mode, integrity, volume_key_size);
if (r < 0) {
log_err(cd, _("Cipher %s-%s (key size %zd bits) is not available."),
cipher, cipher_mode, volume_key_size * 8);
goto out;
}
}
if ((!integrity || integrity_key_size) && !crypt_cipher_wrapped_key(cipher, cipher_mode) &&
!INTEGRITY_tag_size(NULL, cipher, cipher_mode)) {
r = LUKS_check_cipher(cd, volume_key_size - integrity_key_size,
cipher, cipher_mode);
if (r < 0)
goto out;
}
r = LUKS2_generate_hdr(cd, &cd->u.luks2.hdr, cd->volume_key,
cipher, cipher_mode,
integrity, uuid,
sector_size,
cd->data_offset * SECTOR_SIZE,
alignment_offset,
required_alignment,
cd->metadata_size, cd->keyslots_size);
if (r < 0)
goto out;
if (cd->metadata_size && (cd->metadata_size != LUKS2_metadata_size(&cd->u.luks2.hdr)))
log_std(cd, _("WARNING: LUKS2 metadata size changed to %" PRIu64 " bytes.\n"),
LUKS2_metadata_size(&cd->u.luks2.hdr));
if (cd->keyslots_size && (cd->keyslots_size != LUKS2_keyslots_size(&cd->u.luks2.hdr)))
log_std(cd, _("WARNING: LUKS2 keyslots area size changed to %" PRIu64 " bytes.\n"),
LUKS2_keyslots_size(&cd->u.luks2.hdr));
if (!integrity && sector_size > SECTOR_SIZE) {
dev_size -= (crypt_get_data_offset(cd) * SECTOR_SIZE);
if (dev_size % sector_size) {
log_err(cd, _("Device size is not aligned to requested sector size."));
r = -EINVAL;
goto out;
}
}
if (params && (params->label || params->subsystem)) {
r = LUKS2_hdr_labels(cd, &cd->u.luks2.hdr,
params->label, params->subsystem, 0);
if (r < 0)
goto out;
}
device_set_block_size(crypt_data_device(cd), sector_size);
r = LUKS2_wipe_header_areas(cd, &cd->u.luks2.hdr, cd->metadata_device != NULL);
if (r < 0) {
log_err(cd, _("Cannot wipe header on device %s."),
mdata_device_path(cd));
if (dev_size < LUKS2_hdr_and_areas_size(&cd->u.luks2.hdr))
log_err(cd, _("Device %s is too small."), device_path(crypt_metadata_device(cd)));
goto out;
}
/* Wipe integrity superblock and create integrity superblock */
if (crypt_get_integrity_tag_size(cd)) {
r = crypt_wipe_device(cd, crypt_data_device(cd), CRYPT_WIPE_ZERO,
crypt_get_data_offset(cd) * SECTOR_SIZE,
8 * SECTOR_SIZE, 8 * SECTOR_SIZE, NULL, NULL);
if (r < 0) {
if (r == -EBUSY)
log_err(cd, _("Cannot format device %s in use."),
data_device_path(cd));
else if (r == -EACCES) {
log_err(cd, _("Cannot format device %s, permission denied."),
data_device_path(cd));
r = -EINVAL;
} else
log_err(cd, _("Cannot wipe header on device %s."),
data_device_path(cd));
goto out;
}
r = INTEGRITY_format(cd, params ? params->integrity_params : NULL, NULL, NULL);
if (r)
log_err(cd, _("Cannot format integrity for device %s."),
data_device_path(cd));
}
if (r < 0)
goto out;
/* override sequence id check with format */
r = LUKS2_hdr_write_force(cd, &cd->u.luks2.hdr);
if (r < 0) {
if (r == -EBUSY)
log_err(cd, _("Cannot format device %s in use."),
mdata_device_path(cd));
else if (r == -EACCES) {
log_err(cd, _("Cannot format device %s, permission denied."),
mdata_device_path(cd));
r = -EINVAL;
} else
log_err(cd, _("Cannot format device %s."),
mdata_device_path(cd));
}
out:
if (r) {
LUKS2_hdr_free(cd, &cd->u.luks2.hdr);
return r;
}
/* Device size can be larger now if it is a file container */
if (!device_size(crypt_data_device(cd), &dev_size) &&
dev_size <= (crypt_get_data_offset(cd) * SECTOR_SIZE))
log_std(cd, _("Device %s is too small for activation, there is no remaining space for data.\n"),
device_path(crypt_data_device(cd)));
return 0;
}
static int _crypt_format_loopaes(struct crypt_device *cd,
const char *cipher,
const char *uuid,
size_t volume_key_size,
struct crypt_params_loopaes *params)
{
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format LOOPAES without device."));
return -EINVAL;
}
if (volume_key_size > 1024) {
log_err(cd, _("Invalid key size."));
return -EINVAL;
}
if (uuid) {
log_err(cd, _("UUID is not supported for this crypt type."));
return -EINVAL;
}
if (cd->metadata_device) {
log_err(cd, _("Detached metadata device is not supported for this crypt type."));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_LOOPAES)))
return -ENOMEM;
cd->u.loopaes.key_size = volume_key_size;
cd->u.loopaes.cipher = strdup(cipher ?: DEFAULT_LOOPAES_CIPHER);
if (params && params->hash)
cd->u.loopaes.hdr.hash = strdup(params->hash);
cd->u.loopaes.hdr.offset = params ? params->offset : 0;
cd->u.loopaes.hdr.skip = params ? params->skip : 0;
return 0;
}
static int _crypt_format_verity(struct crypt_device *cd,
const char *uuid,
struct crypt_params_verity *params)
{
int r = 0, hash_size;
uint64_t data_device_size, hash_blocks_size;
struct device *fec_device = NULL;
char *fec_device_path = NULL, *hash_name = NULL, *root_hash = NULL, *salt = NULL;
if (!crypt_metadata_device(cd)) {
log_err(cd, _("Can't format VERITY without device."));
return -EINVAL;
}
if (!params)
return -EINVAL;
if (!params->data_device && !cd->metadata_device)
return -EINVAL;
if (params->hash_type > VERITY_MAX_HASH_TYPE) {
log_err(cd, _("Unsupported VERITY hash type %d."), params->hash_type);
return -EINVAL;
}
if (VERITY_BLOCK_SIZE_OK(params->data_block_size) ||
VERITY_BLOCK_SIZE_OK(params->hash_block_size)) {
log_err(cd, _("Unsupported VERITY block size."));
return -EINVAL;
}
if (MISALIGNED_512(params->hash_area_offset)) {
log_err(cd, _("Unsupported VERITY hash offset."));
return -EINVAL;
}
if (MISALIGNED_512(params->fec_area_offset)) {
log_err(cd, _("Unsupported VERITY FEC offset."));
return -EINVAL;
}
if (!(cd->type = strdup(CRYPT_VERITY)))
return -ENOMEM;
if (params->data_device) {
r = crypt_set_data_device(cd, params->data_device);
if (r)
return r;
}
if (!params->data_size) {
r = device_size(cd->device, &data_device_size);
if (r < 0)
return r;
cd->u.verity.hdr.data_size = data_device_size / params->data_block_size;
} else
cd->u.verity.hdr.data_size = params->data_size;
if (device_is_identical(crypt_metadata_device(cd), crypt_data_device(cd)) > 0 &&
(cd->u.verity.hdr.data_size * params->data_block_size) > params->hash_area_offset) {
log_err(cd, _("Data area overlaps with hash area."));
return -EINVAL;
}
hash_size = crypt_hash_size(params->hash_name);
if (hash_size <= 0) {
log_err(cd, _("Hash algorithm %s not supported."),
params->hash_name);
return -EINVAL;
}
cd->u.verity.root_hash_size = hash_size;
if (params->fec_device) {
fec_device_path = strdup(params->fec_device);
if (!fec_device_path)
return -ENOMEM;
r = device_alloc(cd, &fec_device, params->fec_device);
if (r < 0) {
r = -ENOMEM;
goto out;
}
hash_blocks_size = VERITY_hash_blocks(cd, params) * params->hash_block_size;
if (device_is_identical(crypt_metadata_device(cd), fec_device) > 0 &&
(params->hash_area_offset + hash_blocks_size) > params->fec_area_offset) {
log_err(cd, _("Hash area overlaps with FEC area."));
r = -EINVAL;
goto out;
}
if (device_is_identical(crypt_data_device(cd), fec_device) > 0 &&
(cd->u.verity.hdr.data_size * params->data_block_size) > params->fec_area_offset) {
log_err(cd, _("Data area overlaps with FEC area."));
r = -EINVAL;
goto out;
}
}
root_hash = malloc(cd->u.verity.root_hash_size);
hash_name = strdup(params->hash_name);
salt = malloc(params->salt_size);
if (!root_hash || !hash_name || !salt) {
r = -ENOMEM;
goto out;
}
cd->u.verity.hdr.flags = params->flags;
cd->u.verity.root_hash = root_hash;
cd->u.verity.hdr.hash_name = hash_name;
cd->u.verity.hdr.data_device = NULL;
cd->u.verity.fec_device = fec_device;
cd->u.verity.hdr.fec_device = fec_device_path;
cd->u.verity.hdr.fec_roots = params->fec_roots;
cd->u.verity.hdr.data_block_size = params->data_block_size;
cd->u.verity.hdr.hash_block_size = params->hash_block_size;
cd->u.verity.hdr.hash_area_offset = params->hash_area_offset;
cd->u.verity.hdr.fec_area_offset = params->fec_area_offset;
cd->u.verity.hdr.hash_type = params->hash_type;
cd->u.verity.hdr.flags = params->flags;
cd->u.verity.hdr.salt_size = params->salt_size;
cd->u.verity.hdr.salt = salt;
if (params->salt)
memcpy(salt, params->salt, params->salt_size);
else
r = crypt_random_get(cd, salt, params->salt_size, CRYPT_RND_SALT);
if (r)
goto out;
if (params->flags & CRYPT_VERITY_CREATE_HASH) {
r = VERITY_create(cd, &cd->u.verity.hdr,
cd->u.verity.root_hash, cd->u.verity.root_hash_size);
if (!r && params->fec_device)
r = VERITY_FEC_process(cd, &cd->u.verity.hdr, cd->u.verity.fec_device, 0, NULL);
if (r)
goto out;
}
if (!(params->flags & CRYPT_VERITY_NO_HEADER)) {
if (uuid) {
if (!(cd->u.verity.uuid = strdup(uuid)))
r = -ENOMEM;
} else
r = VERITY_UUID_generate(&cd->u.verity.uuid);
if (!r)
r = VERITY_write_sb(cd, cd->u.verity.hdr.hash_area_offset,
cd->u.verity.uuid,
&cd->u.verity.hdr);
}
out:
if (r) {
device_free(cd, fec_device);
free(root_hash);
free(hash_name);
free(fec_device_path);
free(salt);
}
return r;
}
static int _crypt_format_integrity(struct crypt_device *cd,
const char *uuid,
struct crypt_params_integrity *params)
{
int r;
uint32_t integrity_tag_size;
char *integrity = NULL, *journal_integrity = NULL, *journal_crypt = NULL;
struct volume_key *journal_crypt_key = NULL, *journal_mac_key = NULL;
if (!params)
return -EINVAL;
if (uuid) {
log_err(cd, _("UUID is not supported for this crypt type."));
return -EINVAL;
}
r = device_check_access(cd, crypt_metadata_device(cd), DEV_EXCL);
if (r < 0)
return r;
/* Wipe first 8 sectors - fs magic numbers etc. */
r = crypt_wipe_device(cd, crypt_metadata_device(cd), CRYPT_WIPE_ZERO, 0,
8 * SECTOR_SIZE, 8 * SECTOR_SIZE, NULL, NULL);
if (r < 0) {
log_err(cd, _("Cannot wipe header on device %s."),
mdata_device_path(cd));
return r;
}
if (!(cd->type = strdup(CRYPT_INTEGRITY)))
return -ENOMEM;
if (params->journal_crypt_key) {
journal_crypt_key = crypt_alloc_volume_key(params->journal_crypt_key_size,
params->journal_crypt_key);
if (!journal_crypt_key)
return -ENOMEM;
}
if (params->journal_integrity_key) {
journal_mac_key = crypt_alloc_volume_key(params->journal_integrity_key_size,
params->journal_integrity_key);
if (!journal_mac_key) {
r = -ENOMEM;
goto out;
}
}
if (params->integrity && !(integrity = strdup(params->integrity))) {
r = -ENOMEM;
goto out;
}
if (params->journal_integrity && !(journal_integrity = strdup(params->journal_integrity))) {
r = -ENOMEM;
goto out;
}
if (params->journal_crypt && !(journal_crypt = strdup(params->journal_crypt))) {
r = -ENOMEM;
goto out;
}
integrity_tag_size = INTEGRITY_hash_tag_size(integrity);
if (integrity_tag_size > 0 && params->tag_size && integrity_tag_size != params->tag_size)
log_std(cd, _("WARNING: Requested tag size %d bytes differs from %s size output (%d bytes).\n"),
params->tag_size, integrity, integrity_tag_size);
if (params->tag_size)
integrity_tag_size = params->tag_size;
cd->u.integrity.journal_crypt_key = journal_crypt_key;
cd->u.integrity.journal_mac_key = journal_mac_key;
cd->u.integrity.params.journal_size = params->journal_size;
cd->u.integrity.params.journal_watermark = params->journal_watermark;
cd->u.integrity.params.journal_commit_time = params->journal_commit_time;
cd->u.integrity.params.interleave_sectors = params->interleave_sectors;
cd->u.integrity.params.buffer_sectors = params->buffer_sectors;
cd->u.integrity.params.sector_size = params->sector_size;
cd->u.integrity.params.tag_size = integrity_tag_size;
cd->u.integrity.params.integrity = integrity;
cd->u.integrity.params.journal_integrity = journal_integrity;
cd->u.integrity.params.journal_crypt = journal_crypt;
r = INTEGRITY_format(cd, params, cd->u.integrity.journal_crypt_key, cd->u.integrity.journal_mac_key);
if (r)
log_err(cd, _("Cannot format integrity for device %s."),
mdata_device_path(cd));
out:
if (r) {
crypt_free_volume_key(journal_crypt_key);
crypt_free_volume_key(journal_mac_key);
free(integrity);
free(journal_integrity);
free(journal_crypt);
}
return r;
}
static int _crypt_format(struct crypt_device *cd,
const char *type,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
void *params,
bool sector_size_autodetect)
{
int r;
if (!cd || !type)
return -EINVAL;
if (cd->type) {
log_dbg(cd, "Context already formatted as %s.", cd->type);
return -EINVAL;
}
log_dbg(cd, "Formatting device %s as type %s.", mdata_device_path(cd) ?: "(none)", type);
crypt_reset_null_type(cd);
r = init_crypto(cd);
if (r < 0)
return r;
if (isPLAIN(type))
r = _crypt_format_plain(cd, cipher, cipher_mode,
uuid, volume_key_size, params);
else if (isLUKS1(type))
r = _crypt_format_luks1(cd, cipher, cipher_mode,
uuid, volume_key, volume_key_size, params);
else if (isLUKS2(type))
r = _crypt_format_luks2(cd, cipher, cipher_mode,
uuid, volume_key, volume_key_size, params, sector_size_autodetect);
else if (isLOOPAES(type))
r = _crypt_format_loopaes(cd, cipher, uuid, volume_key_size, params);
else if (isVERITY(type))
r = _crypt_format_verity(cd, uuid, params);
else if (isINTEGRITY(type))
r = _crypt_format_integrity(cd, uuid, params);
else {
log_err(cd, _("Unknown crypt device type %s requested."), type);
r = -EINVAL;
}
if (r < 0) {
crypt_set_null_type(cd);
crypt_free_volume_key(cd->volume_key);
cd->volume_key = NULL;
}
return r;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_format, 2, 4,
/* crypt_format parameters follows */
struct crypt_device *cd,
const char *type,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
void *params)
{
return _crypt_format(cd, type, cipher, cipher_mode, uuid, volume_key, volume_key_size, params, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_format, 2, 0,
/* crypt_format parameters follows */
struct crypt_device *cd,
const char *type,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
void *params)
{
return _crypt_format(cd, type, cipher, cipher_mode, uuid, volume_key, volume_key_size, params, false);
}
int crypt_repair(struct crypt_device *cd,
const char *requested_type,
void *params __attribute__((unused)))
{
int r;
if (!cd)
return -EINVAL;
log_dbg(cd, "Trying to repair %s crypt type from device %s.",
requested_type ?: "any", mdata_device_path(cd) ?: "(none)");
if (!crypt_metadata_device(cd))
return -EINVAL;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
/* Load with repair */
r = _crypt_load_luks(cd, requested_type, false, true);
if (r < 0)
return r;
/* cd->type and header must be set in context */
r = crypt_check_data_device_size(cd);
if (r < 0)
crypt_set_null_type(cd);
return r;
}
/* compare volume keys */
static int _compare_volume_keys(struct volume_key *svk, unsigned skeyring_only,
struct volume_key *tvk, unsigned tkeyring_only)
{
if (!svk && !tvk)
return 0;
else if (!svk || !tvk)
return 1;
if (svk->keylength != tvk->keylength)
return 1;
if (!skeyring_only && !tkeyring_only)
return crypt_backend_memeq(svk->key, tvk->key, svk->keylength);
if (svk->key_description && tvk->key_description)
return strcmp(svk->key_description, tvk->key_description);
return 0;
}
static int _compare_device_types(struct crypt_device *cd,
const struct crypt_dm_active_device *src,
const struct crypt_dm_active_device *tgt)
{
if (!tgt->uuid) {
log_dbg(cd, "Missing device uuid in target device.");
return -EINVAL;
}
if (isLUKS2(cd->type) && !strncmp("INTEGRITY-", tgt->uuid, strlen("INTEGRITY-"))) {
if (crypt_uuid_cmp(tgt->uuid, src->uuid)) {
log_dbg(cd, "LUKS UUID mismatch.");
return -EINVAL;
}
} else if (isLUKS(cd->type)) {
if (!src->uuid || strncmp(cd->type, tgt->uuid, strlen(cd->type)) ||
crypt_uuid_cmp(tgt->uuid, src->uuid)) {
log_dbg(cd, "LUKS UUID mismatch.");
return -EINVAL;
}
} else if (isPLAIN(cd->type) || isLOOPAES(cd->type)) {
if (strncmp(cd->type, tgt->uuid, strlen(cd->type))) {
log_dbg(cd, "Unexpected uuid prefix %s in target device.", tgt->uuid);
return -EINVAL;
}
} else if (!isINTEGRITY(cd->type)) {
log_dbg(cd, "Unsupported device type %s for reload.", cd->type ?: "<empty>");
return -ENOTSUP;
}
return 0;
}
static int _compare_crypt_devices(struct crypt_device *cd,
const struct dm_target *src,
const struct dm_target *tgt)
{
char *src_cipher = NULL, *src_integrity = NULL;
int r = -EINVAL;
/* for crypt devices keys are mandatory */
if (!src->u.crypt.vk || !tgt->u.crypt.vk)
return -EINVAL;
/* CIPHER checks */
if (!src->u.crypt.cipher || !tgt->u.crypt.cipher)
return -EINVAL;
/*
* dm_query_target converts capi cipher specification to dm-crypt format.
* We need to do same for cipher specification requested in source
* device.
*/
if (crypt_capi_to_cipher(&src_cipher, &src_integrity, src->u.crypt.cipher, src->u.crypt.integrity))
return -EINVAL;
if (strcmp(src_cipher, tgt->u.crypt.cipher)) {
log_dbg(cd, "Cipher specs do not match.");
goto out;
}
if (tgt->u.crypt.vk->keylength == 0 && crypt_is_cipher_null(tgt->u.crypt.cipher))
log_dbg(cd, "Existing device uses cipher null. Skipping key comparison.");
else if (_compare_volume_keys(src->u.crypt.vk, 0, tgt->u.crypt.vk, tgt->u.crypt.vk->key_description != NULL)) {
log_dbg(cd, "Keys in context and target device do not match.");
goto out;
}
if (crypt_strcmp(src_integrity, tgt->u.crypt.integrity)) {
log_dbg(cd, "Integrity parameters do not match.");
goto out;
}
if (src->u.crypt.offset != tgt->u.crypt.offset ||
src->u.crypt.sector_size != tgt->u.crypt.sector_size ||
src->u.crypt.iv_offset != tgt->u.crypt.iv_offset ||
src->u.crypt.tag_size != tgt->u.crypt.tag_size) {
log_dbg(cd, "Integer parameters do not match.");
goto out;
}
if (device_is_identical(src->data_device, tgt->data_device) <= 0)
log_dbg(cd, "Data devices do not match.");
else
r = 0;
out:
free(src_cipher);
free(src_integrity);
return r;
}
static int _compare_integrity_devices(struct crypt_device *cd,
const struct dm_target *src,
const struct dm_target *tgt)
{
/*
* some parameters may be implicit (and set in dm-integrity ctor)
*
* journal_size
* journal_watermark
* journal_commit_time
* buffer_sectors
* interleave_sectors
*/
/* check remaining integer values that makes sense */
if (src->u.integrity.tag_size != tgt->u.integrity.tag_size ||
src->u.integrity.offset != tgt->u.integrity.offset ||
src->u.integrity.sector_size != tgt->u.integrity.sector_size) {
log_dbg(cd, "Integer parameters do not match.");
return -EINVAL;
}
if (crypt_strcmp(src->u.integrity.integrity, tgt->u.integrity.integrity) ||
crypt_strcmp(src->u.integrity.journal_integrity, tgt->u.integrity.journal_integrity) ||
crypt_strcmp(src->u.integrity.journal_crypt, tgt->u.integrity.journal_crypt)) {
log_dbg(cd, "Journal parameters do not match.");
return -EINVAL;
}
/* unfortunately dm-integrity doesn't support keyring */
if (_compare_volume_keys(src->u.integrity.vk, 0, tgt->u.integrity.vk, 0) ||
_compare_volume_keys(src->u.integrity.journal_integrity_key, 0, tgt->u.integrity.journal_integrity_key, 0) ||
_compare_volume_keys(src->u.integrity.journal_crypt_key, 0, tgt->u.integrity.journal_crypt_key, 0)) {
log_dbg(cd, "Journal keys do not match.");
return -EINVAL;
}
if (device_is_identical(src->data_device, tgt->data_device) <= 0) {
log_dbg(cd, "Data devices do not match.");
return -EINVAL;
}
return 0;
}
int crypt_compare_dm_devices(struct crypt_device *cd,
const struct crypt_dm_active_device *src,
const struct crypt_dm_active_device *tgt)
{
int r;
const struct dm_target *s, *t;
if (!src || !tgt)
return -EINVAL;
r = _compare_device_types(cd, src, tgt);
if (r)
return r;
s = &src->segment;
t = &tgt->segment;
while (s || t) {
if (!s || !t) {
log_dbg(cd, "segments count mismatch.");
return -EINVAL;
}
if (s->type != t->type) {
log_dbg(cd, "segment type mismatch.");
r = -EINVAL;
break;
}
switch (s->type) {
case DM_CRYPT:
r = _compare_crypt_devices(cd, s, t);
break;
case DM_INTEGRITY:
r = _compare_integrity_devices(cd, s, t);
break;
case DM_LINEAR:
r = (s->u.linear.offset == t->u.linear.offset) ? 0 : -EINVAL;
break;
default:
r = -ENOTSUP;
}
if (r)
break;
s = s->next;
t = t->next;
}
return r;
}
static int _reload_device(struct crypt_device *cd, const char *name,
struct crypt_dm_active_device *sdmd)
{
int r;
struct crypt_dm_active_device tdmd;
struct dm_target *src, *tgt = &tdmd.segment;
if (!cd || !cd->type || !name || !(sdmd->flags & CRYPT_ACTIVATE_REFRESH))
return -EINVAL;
r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_KEYSIZE |
DM_ACTIVE_CRYPT_KEY | DM_ACTIVE_INTEGRITY_PARAMS |
DM_ACTIVE_JOURNAL_CRYPT_KEY | DM_ACTIVE_JOURNAL_MAC_KEY, &tdmd);
if (r < 0) {
log_err(cd, _("Device %s is not active."), name);
return -EINVAL;
}
if (!single_segment(&tdmd) ||
(tgt->type != DM_CRYPT && tgt->type != DM_INTEGRITY) ||
(tgt->type == DM_CRYPT && tgt->u.crypt.tag_size)) {
r = -ENOTSUP;
log_err(cd, _("Unsupported parameters on device %s."), name);
goto out;
}
r = crypt_compare_dm_devices(cd, sdmd, &tdmd);
if (r) {
log_err(cd, _("Mismatching parameters on device %s."), name);
goto out;
}
src = &sdmd->segment;
/* Changing read only flag for active device makes no sense */
if (tdmd.flags & CRYPT_ACTIVATE_READONLY)
sdmd->flags |= CRYPT_ACTIVATE_READONLY;
else
sdmd->flags &= ~CRYPT_ACTIVATE_READONLY;
if (tgt->type == DM_CRYPT && sdmd->flags & CRYPT_ACTIVATE_KEYRING_KEY) {
r = crypt_volume_key_set_description(tgt->u.crypt.vk, src->u.crypt.vk->key_description);
if (r)
goto out;
} else if (tgt->type == DM_CRYPT) {
crypt_free_volume_key(tgt->u.crypt.vk);
tgt->u.crypt.vk = crypt_alloc_volume_key(src->u.crypt.vk->keylength, src->u.crypt.vk->key);
if (!tgt->u.crypt.vk) {
r = -ENOMEM;
goto out;
}
}
if (tgt->type == DM_CRYPT)
r = device_block_adjust(cd, src->data_device, DEV_OK,
src->u.crypt.offset, &sdmd->size, NULL);
else if (tgt->type == DM_INTEGRITY)
r = device_block_adjust(cd, src->data_device, DEV_OK,
src->u.integrity.offset, &sdmd->size, NULL);
else
r = -EINVAL;
if (r)
goto out;
tdmd.flags = sdmd->flags;
tgt->size = tdmd.size = sdmd->size;
r = dm_reload_device(cd, name, &tdmd, 0, 1);
out:
dm_targets_free(cd, &tdmd);
free(CONST_CAST(void*)tdmd.uuid);
return r;
}
static int _reload_device_with_integrity(struct crypt_device *cd,
const char *name,
const char *iname,
const char *ipath,
struct crypt_dm_active_device *sdmd,
struct crypt_dm_active_device *sdmdi)
{
int r;
struct crypt_dm_active_device tdmd, tdmdi = {};
struct dm_target *src, *srci, *tgt = &tdmd.segment, *tgti = &tdmdi.segment;
struct device *data_device = NULL;
bool clear = false;
if (!cd || !cd->type || !name || !iname || !(sdmd->flags & CRYPT_ACTIVATE_REFRESH))
return -EINVAL;
r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_CRYPT_CIPHER |
DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_KEYSIZE |
DM_ACTIVE_CRYPT_KEY, &tdmd);
if (r < 0) {
log_err(cd, _("Device %s is not active."), name);
return -EINVAL;
}
if (!single_segment(&tdmd) || tgt->type != DM_CRYPT || !tgt->u.crypt.tag_size) {
log_err(cd, _("Unsupported parameters on device %s."), name);
r = -ENOTSUP;
goto out;
}
r = dm_query_device(cd, iname, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID, &tdmdi);
if (r < 0) {
log_err(cd, _("Device %s is not active."), iname);
r = -EINVAL;
goto out;
}
if (!single_segment(&tdmdi) || tgti->type != DM_INTEGRITY) {
log_err(cd, _("Unsupported parameters on device %s."), iname);
r = -ENOTSUP;
goto out;
}
r = crypt_compare_dm_devices(cd, sdmdi, &tdmdi);
if (r) {
log_err(cd, _("Mismatching parameters on device %s."), iname);
goto out;
}
/* unsupported underneath dm-crypt with auth. encryption */
if (sdmdi->segment.u.integrity.meta_device || tdmdi.segment.u.integrity.meta_device)
return -ENOTSUP;
src = &sdmd->segment;
srci = &sdmdi->segment;
r = device_alloc(cd, &data_device, ipath);
if (r < 0)
goto out;
r = device_block_adjust(cd, srci->data_device, DEV_OK,
srci->u.integrity.offset, &sdmdi->size, NULL);
if (r)
goto out;
src->data_device = data_device;
r = crypt_compare_dm_devices(cd, sdmd, &tdmd);
if (r) {
log_err(cd, _("Crypt devices mismatch."));
goto out;
}
/* Changing read only flag for active device makes no sense */
if (tdmd.flags & CRYPT_ACTIVATE_READONLY)
sdmd->flags |= CRYPT_ACTIVATE_READONLY;
else
sdmd->flags &= ~CRYPT_ACTIVATE_READONLY;
if (tdmdi.flags & CRYPT_ACTIVATE_READONLY)
sdmdi->flags |= CRYPT_ACTIVATE_READONLY;
else
sdmdi->flags &= ~CRYPT_ACTIVATE_READONLY;
if (sdmd->flags & CRYPT_ACTIVATE_KEYRING_KEY) {
r = crypt_volume_key_set_description(tgt->u.crypt.vk, src->u.crypt.vk->key_description);
if (r)
goto out;
} else {
crypt_free_volume_key(tgt->u.crypt.vk);
tgt->u.crypt.vk = crypt_alloc_volume_key(src->u.crypt.vk->keylength, src->u.crypt.vk->key);
if (!tgt->u.crypt.vk) {
r = -ENOMEM;
goto out;
}
}
r = device_block_adjust(cd, src->data_device, DEV_OK,
src->u.crypt.offset, &sdmd->size, NULL);
if (r)
goto out;
tdmd.flags = sdmd->flags;
tdmd.size = sdmd->size;
if ((r = dm_reload_device(cd, iname, sdmdi, 0, 0))) {
log_err(cd, _("Failed to reload device %s."), iname);
goto out;
}
if ((r = dm_reload_device(cd, name, &tdmd, 0, 0))) {
log_err(cd, _("Failed to reload device %s."), name);
clear = true;
goto out;
}
if ((r = dm_suspend_device(cd, name, 0))) {
log_err(cd, _("Failed to suspend device %s."), name);
clear = true;
goto out;
}
if ((r = dm_suspend_device(cd, iname, 0))) {
log_err(cd, _("Failed to suspend device %s."), iname);
clear = true;
goto out;
}
if ((r = dm_resume_device(cd, iname, act2dmflags(sdmdi->flags)))) {
log_err(cd, _("Failed to resume device %s."), iname);
clear = true;
goto out;
}
r = dm_resume_device(cd, name, act2dmflags(tdmd.flags));
if (!r)
goto out;
/*
* This is worst case scenario. We have active underlying dm-integrity device with
* new table but dm-crypt resume failed for some reason. Tear everything down and
* burn it for good.
*/
log_err(cd, _("Fatal error while reloading device %s (on top of device %s)."), name, iname);
if (dm_error_device(cd, name))
log_err(cd, _("Failed to switch device %s to dm-error."), name);
if (dm_error_device(cd, iname))
log_err(cd, _("Failed to switch device %s to dm-error."), iname);
out:
if (clear) {
dm_clear_device(cd, name);
dm_clear_device(cd, iname);
if (dm_status_suspended(cd, name) > 0)
dm_resume_device(cd, name, 0);
if (dm_status_suspended(cd, iname) > 0)
dm_resume_device(cd, iname, 0);
}
dm_targets_free(cd, &tdmd);
dm_targets_free(cd, &tdmdi);
free(CONST_CAST(void*)tdmdi.uuid);
free(CONST_CAST(void*)tdmd.uuid);
device_free(cd, data_device);
return r;
}
int crypt_resize(struct crypt_device *cd, const char *name, uint64_t new_size)
{
struct crypt_dm_active_device dmdq, dmd = {};
struct dm_target *tgt = &dmdq.segment;
struct crypt_params_integrity params = {};
uint32_t supported_flags = 0;
uint64_t old_size;
int r;
/*
* FIXME: Also with LUKS2 we must not allow resize when there's
* explicit size stored in metadata (length != "dynamic")
*/
/* Device context type must be initialized */
if (!cd || !cd->type || !name)
return -EINVAL;
if (isTCRYPT(cd->type) || isBITLK(cd->type)) {
log_err(cd, _("This operation is not supported for this device type."));
return -ENOTSUP;
}
log_dbg(cd, "Resizing device %s to %" PRIu64 " sectors.", name, new_size);
r = dm_query_device(cd, name, DM_ACTIVE_CRYPT_KEYSIZE | DM_ACTIVE_CRYPT_KEY |
DM_ACTIVE_INTEGRITY_PARAMS | DM_ACTIVE_JOURNAL_CRYPT_KEY |
DM_ACTIVE_JOURNAL_MAC_KEY, &dmdq);
if (r < 0) {
log_err(cd, _("Device %s is not active."), name);
return -EINVAL;
}
if (!single_segment(&dmdq) || (tgt->type != DM_CRYPT && tgt->type != DM_INTEGRITY)) {
log_dbg(cd, "Unsupported device table detected in %s.", name);
r = -EINVAL;
goto out;
}
if ((dmdq.flags & CRYPT_ACTIVATE_KEYRING_KEY) && !crypt_key_in_keyring(cd)) {
r = -EPERM;
goto out;
}
if (crypt_key_in_keyring(cd)) {
if (!isLUKS2(cd->type)) {
r = -EINVAL;
goto out;
}
r = LUKS2_key_description_by_segment(cd, &cd->u.luks2.hdr,
tgt->u.crypt.vk, CRYPT_DEFAULT_SEGMENT);
if (r)
goto out;
dmdq.flags |= CRYPT_ACTIVATE_KEYRING_KEY;
}
if (crypt_loop_device(crypt_get_device_name(cd))) {
log_dbg(cd, "Trying to resize underlying loop device %s.",
crypt_get_device_name(cd));
/* Here we always use default size not new_size */
if (crypt_loop_resize(crypt_get_device_name(cd)))
log_err(cd, _("Cannot resize loop device."));
}
/*
* Integrity device metadata are maintained by the kernel. We need to
* reload the device (with the same parameters) and let the kernel
* calculate the maximum size of integrity device and store it in the
* superblock.
*/
if (!new_size && tgt->type == DM_INTEGRITY) {
r = INTEGRITY_data_sectors(cd, crypt_metadata_device(cd),
crypt_get_data_offset(cd) * SECTOR_SIZE, &old_size);
if (r < 0)
return r;
dmd.size = dmdq.size;
dmd.flags = dmdq.flags | CRYPT_ACTIVATE_REFRESH | CRYPT_ACTIVATE_PRIVATE;
r = crypt_get_integrity_info(cd, &params);
if (r)
goto out;
r = dm_integrity_target_set(cd, &dmd.segment, 0, dmdq.segment.size,
crypt_metadata_device(cd), crypt_data_device(cd),
crypt_get_integrity_tag_size(cd), crypt_get_data_offset(cd),
crypt_get_sector_size(cd), tgt->u.integrity.vk, tgt->u.integrity.journal_crypt_key,
tgt->u.integrity.journal_integrity_key, &params);
if (r)
goto out;
r = _reload_device(cd, name, &dmd);
if (r)
goto out;
r = INTEGRITY_data_sectors(cd, crypt_metadata_device(cd),
crypt_get_data_offset(cd) * SECTOR_SIZE, &new_size);
if (r < 0)
return r;
log_dbg(cd, "Maximum integrity device size from kernel %" PRIu64, new_size);
if (old_size == new_size && new_size == dmdq.size &&
!dm_flags(cd, tgt->type, &supported_flags) &&
!(supported_flags & DM_INTEGRITY_RESIZE_SUPPORTED))
log_std(cd, _("WARNING: Maximum size already set or kernel doesn't support resize.\n"));
}
r = device_block_adjust(cd, crypt_data_device(cd), DEV_OK,
crypt_get_data_offset(cd), &new_size, &dmdq.flags);
if (r)
goto out;
if (MISALIGNED(new_size, (tgt->type == DM_CRYPT ? tgt->u.crypt.sector_size : tgt->u.integrity.sector_size) >> SECTOR_SHIFT)) {
log_err(cd, _("Device size is not aligned to requested sector size."));
r = -EINVAL;
goto out;
}
if (MISALIGNED(new_size, device_block_size(cd, crypt_data_device(cd)) >> SECTOR_SHIFT)) {
log_err(cd, _("Device size is not aligned to device logical block size."));
r = -EINVAL;
goto out;
}
dmd.uuid = crypt_get_uuid(cd);
dmd.size = new_size;
dmd.flags = dmdq.flags | CRYPT_ACTIVATE_REFRESH;
if (tgt->type == DM_CRYPT) {
r = dm_crypt_target_set(&dmd.segment, 0, new_size, crypt_data_device(cd),
tgt->u.crypt.vk, crypt_get_cipher_spec(cd),
crypt_get_iv_offset(cd), crypt_get_data_offset(cd),
crypt_get_integrity(cd), crypt_get_integrity_tag_size(cd),
crypt_get_sector_size(cd));
if (r < 0)
goto out;
} else if (tgt->type == DM_INTEGRITY) {
r = crypt_get_integrity_info(cd, &params);
if (r)
goto out;
r = dm_integrity_target_set(cd, &dmd.segment, 0, new_size,
crypt_metadata_device(cd), crypt_data_device(cd),
crypt_get_integrity_tag_size(cd), crypt_get_data_offset(cd),
crypt_get_sector_size(cd), tgt->u.integrity.vk, tgt->u.integrity.journal_crypt_key,
tgt->u.integrity.journal_integrity_key, &params);
if (r)
goto out;
}
if (new_size == dmdq.size) {
log_dbg(cd, "Device has already requested size %" PRIu64
" sectors.", dmdq.size);
r = 0;
} else {
if (isTCRYPT(cd->type))
r = -ENOTSUP;
else if (isLUKS2(cd->type))
r = LUKS2_unmet_requirements(cd, &cd->u.luks2.hdr, 0, 0);
if (!r)
r = _reload_device(cd, name, &dmd);
if (r && tgt->type == DM_INTEGRITY &&
!dm_flags(cd, tgt->type, &supported_flags) &&
!(supported_flags & DM_INTEGRITY_RESIZE_SUPPORTED))
log_err(cd, _("Resize failed, the kernel doesn't support it."));
}
out:
dm_targets_free(cd, &dmd);
dm_targets_free(cd, &dmdq);
return r;
}
int crypt_set_uuid(struct crypt_device *cd, const char *uuid)
{
const char *active_uuid;
int r;
log_dbg(cd, "%s device uuid.", uuid ? "Setting new" : "Refreshing");
if ((r = onlyLUKS(cd)))
return r;
active_uuid = crypt_get_uuid(cd);
if (uuid && active_uuid && !strncmp(uuid, active_uuid, UUID_STRING_L)) {
log_dbg(cd, "UUID is the same as requested (%s) for device %s.",
uuid, mdata_device_path(cd));
return 0;
}
if (uuid)
log_dbg(cd, "Requested new UUID change to %s for %s.", uuid, mdata_device_path(cd));
else
log_dbg(cd, "Requested new UUID refresh for %s.", mdata_device_path(cd));
if (!crypt_confirm(cd, _("Do you really want to change UUID of device?")))
return -EPERM;
if (isLUKS1(cd->type))
return LUKS_hdr_uuid_set(&cd->u.luks1.hdr, uuid, cd);
else
return LUKS2_hdr_uuid(cd, &cd->u.luks2.hdr, uuid);
}
int crypt_set_label(struct crypt_device *cd, const char *label, const char *subsystem)
{
int r;
log_dbg(cd, "Setting new labels.");
if ((r = onlyLUKS2(cd)))
return r;
return LUKS2_hdr_labels(cd, &cd->u.luks2.hdr, label, subsystem, 1);
}
const char *crypt_get_label(struct crypt_device *cd)
{
if (_onlyLUKS2(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED, 0))
return NULL;
return cd->u.luks2.hdr.label;
}
const char *crypt_get_subsystem(struct crypt_device *cd)
{
if (_onlyLUKS2(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED, 0))
return NULL;
return cd->u.luks2.hdr.subsystem;
}
int crypt_header_backup(struct crypt_device *cd,
const char *requested_type,
const char *backup_file)
{
int r;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
if (!backup_file)
return -EINVAL;
/* Load with repair */
r = _crypt_load_luks(cd, requested_type, false, false);
if (r < 0)
return r;
log_dbg(cd, "Requested header backup of device %s (%s) to "
"file %s.", mdata_device_path(cd), requested_type ?: "any type", backup_file);
if (isLUKS1(cd->type) && (!requested_type || isLUKS1(requested_type)))
r = LUKS_hdr_backup(backup_file, cd);
else if (isLUKS2(cd->type) && (!requested_type || isLUKS2(requested_type)))
r = LUKS2_hdr_backup(cd, &cd->u.luks2.hdr, backup_file);
else
r = -EINVAL;
return r;
}
int crypt_header_restore(struct crypt_device *cd,
const char *requested_type,
const char *backup_file)
{
struct luks_phdr hdr1;
struct luks2_hdr hdr2;
int r, version;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
if (!cd || (cd->type && !isLUKS(cd->type)) || !backup_file)
return -EINVAL;
r = init_crypto(cd);
if (r < 0)
return r;
log_dbg(cd, "Requested header restore to device %s (%s) from "
"file %s.", mdata_device_path(cd), requested_type ?: "any type", backup_file);
version = LUKS2_hdr_version_unlocked(cd, backup_file);
if (!version ||
(requested_type && version == 1 && !isLUKS1(requested_type)) ||
(requested_type && version == 2 && !isLUKS2(requested_type))) {
log_err(cd, _("Header backup file does not contain compatible LUKS header."));
return -EINVAL;
}
memset(&hdr2, 0, sizeof(hdr2));
if (!cd->type) {
if (version == 1)
r = LUKS_hdr_restore(backup_file, &hdr1, cd);
else
r = LUKS2_hdr_restore(cd, &hdr2, backup_file);
crypt_safe_memzero(&hdr1, sizeof(hdr1));
crypt_safe_memzero(&hdr2, sizeof(hdr2));
} else if (isLUKS2(cd->type) && (!requested_type || isLUKS2(requested_type))) {
r = LUKS2_hdr_restore(cd, &cd->u.luks2.hdr, backup_file);
if (r)
(void) _crypt_load_luks2(cd, 1, 0);
} else if (isLUKS1(cd->type) && (!requested_type || isLUKS1(requested_type)))
r = LUKS_hdr_restore(backup_file, &cd->u.luks1.hdr, cd);
else
r = -EINVAL;
if (!r)
r = _crypt_load_luks(cd, version == 1 ? CRYPT_LUKS1 : CRYPT_LUKS2, false, true);
return r;
}
int crypt_header_is_detached(struct crypt_device *cd)
{
int r;
if (!cd || (cd->type && !isLUKS(cd->type)))
return -EINVAL;
r = device_is_identical(crypt_data_device(cd), crypt_metadata_device(cd));
if (r < 0) {
log_dbg(cd, "Failed to compare data and metadata devices path.");
return r;
}
return r ? 0 : 1;
}
void crypt_free(struct crypt_device *cd)
{
if (!cd)
return;
log_dbg(cd, "Releasing crypt device %s context.", mdata_device_path(cd) ?: "empty");
dm_backend_exit(cd);
crypt_free_volume_key(cd->volume_key);
crypt_free_type(cd, NULL);
device_free(cd, cd->device);
device_free(cd, cd->metadata_device);
free(CONST_CAST(void*)cd->pbkdf.type);
free(CONST_CAST(void*)cd->pbkdf.hash);
/* Some structures can contain keys (TCRYPT), wipe it */
crypt_safe_memzero(cd, sizeof(*cd));
free(cd);
}
static char *crypt_get_device_key_description(struct crypt_device *cd, const char *name)
{
char *desc = NULL;
struct crypt_dm_active_device dmd;
struct dm_target *tgt = &dmd.segment;
if (dm_query_device(cd, name, DM_ACTIVE_CRYPT_KEY | DM_ACTIVE_CRYPT_KEYSIZE, &dmd) < 0)
return NULL;
if (single_segment(&dmd) && tgt->type == DM_CRYPT &&
(dmd.flags & CRYPT_ACTIVATE_KEYRING_KEY) && tgt->u.crypt.vk->key_description)
desc = strdup(tgt->u.crypt.vk->key_description);
dm_targets_free(cd, &dmd);
return desc;
}
int crypt_suspend(struct crypt_device *cd,
const char *name)
{
char *key_desc;
crypt_status_info ci;
int r;
uint32_t dmflags = DM_SUSPEND_WIPE_KEY;
/* FIXME: check context uuid matches the dm-crypt device uuid (onlyLUKS branching) */
if (!cd || !name)
return -EINVAL;
log_dbg(cd, "Suspending volume %s.", name);
if (cd->type)
r = onlyLUKS(cd);
else {
r = crypt_uuid_type_cmp(cd, CRYPT_LUKS1);
if (r < 0)
r = crypt_uuid_type_cmp(cd, CRYPT_LUKS2);
if (r < 0)
log_err(cd, _("This operation is supported only for LUKS device."));
}
if (r < 0)
return r;
ci = crypt_status(NULL, name);
if (ci < CRYPT_ACTIVE) {
log_err(cd, _("Volume %s is not active."), name);
return -EINVAL;
}
dm_backend_init(cd);
r = dm_status_suspended(cd, name);
if (r < 0)
goto out;
if (r) {
log_err(cd, _("Volume %s is already suspended."), name);
r = -EINVAL;
goto out;
}
key_desc = crypt_get_device_key_description(cd, name);
/* we can't simply wipe wrapped keys */
if (crypt_cipher_wrapped_key(crypt_get_cipher(cd), crypt_get_cipher_mode(cd)))
dmflags &= ~DM_SUSPEND_WIPE_KEY;
r = dm_suspend_device(cd, name, dmflags);
if (r == -ENOTSUP)
log_err(cd, _("Suspend is not supported for device %s."), name);
else if (r)
log_err(cd, _("Error during suspending device %s."), name);
else
crypt_drop_keyring_key_by_description(cd, key_desc, LOGON_KEY);
free(key_desc);
out:
dm_backend_exit(cd);
return r;
}
/* key must be properly verified */
static int resume_by_volume_key(struct crypt_device *cd,
struct volume_key *vk,
const char *name)
{
int digest, r;
struct volume_key *zerokey = NULL;
if (crypt_is_cipher_null(crypt_get_cipher_spec(cd))) {
zerokey = crypt_alloc_volume_key(0, NULL);
if (!zerokey)
return -ENOMEM;
vk = zerokey;
} else if (crypt_use_keyring_for_vk(cd)) {
/* LUKS2 path only */
digest = LUKS2_digest_by_segment(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
if (digest < 0)
return -EINVAL;
r = LUKS2_volume_key_load_in_keyring_by_digest(cd, vk, digest);
if (r < 0)
return r;
}
r = dm_resume_and_reinstate_key(cd, name, vk);
if (r == -ENOTSUP)
log_err(cd, _("Resume is not supported for device %s."), name);
else if (r)
log_err(cd, _("Error during resuming device %s."), name);
if (r < 0)
crypt_drop_keyring_key(cd, vk);
crypt_free_volume_key(zerokey);
return r;
}
int crypt_resume_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
int r;
/* FIXME: check context uuid matches the dm-crypt device uuid */
if (!passphrase || !name)
return -EINVAL;
log_dbg(cd, "Resuming volume %s.", name);
if ((r = onlyLUKS(cd)))
return r;
r = dm_status_suspended(cd, name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended."), name);
return -EINVAL;
}
if (isLUKS1(cd->type))
r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size,
&cd->u.luks1.hdr, &vk, cd);
else
r = LUKS2_keyslot_open(cd, keyslot, CRYPT_DEFAULT_SEGMENT, passphrase, passphrase_size, &vk);
if (r < 0)
return r;
keyslot = r;
r = resume_by_volume_key(cd, vk, name);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_resume_by_keyfile_device_offset(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset)
{
struct volume_key *vk = NULL;
char *passphrase_read = NULL;
size_t passphrase_size_read;
int r;
/* FIXME: check context uuid matches the dm-crypt device uuid */
if (!name || !keyfile)
return -EINVAL;
log_dbg(cd, "Resuming volume %s.", name);
if ((r = onlyLUKS(cd)))
return r;
r = dm_status_suspended(cd, name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended."), name);
return -EINVAL;
}
r = crypt_keyfile_device_read(cd, keyfile,
&passphrase_read, &passphrase_size_read,
keyfile_offset, keyfile_size, 0);
if (r < 0)
return r;
if (isLUKS1(cd->type))
r = LUKS_open_key_with_hdr(keyslot, passphrase_read, passphrase_size_read,
&cd->u.luks1.hdr, &vk, cd);
else
r = LUKS2_keyslot_open(cd, keyslot, CRYPT_DEFAULT_SEGMENT,
passphrase_read, passphrase_size_read, &vk);
crypt_safe_free(passphrase_read);
if (r < 0)
return r;
keyslot = r;
r = resume_by_volume_key(cd, vk, name);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_resume_by_keyfile(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size)
{
return crypt_resume_by_keyfile_device_offset(cd, name, keyslot,
keyfile, keyfile_size, 0);
}
int crypt_resume_by_keyfile_offset(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
size_t keyfile_offset)
{
return crypt_resume_by_keyfile_device_offset(cd, name, keyslot,
keyfile, keyfile_size, keyfile_offset);
}
int crypt_resume_by_volume_key(struct crypt_device *cd,
const char *name,
const char *volume_key,
size_t volume_key_size)
{
struct volume_key *vk = NULL;
int r;
if (!name || !volume_key)
return -EINVAL;
log_dbg(cd, "Resuming volume %s by volume key.", name);
if ((r = onlyLUKS(cd)))
return r;
r = dm_status_suspended(cd, name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended."), name);
return -EINVAL;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
if (isLUKS1(cd->type))
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
else if (isLUKS2(cd->type))
r = LUKS2_digest_verify_by_segment(cd, &cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT, vk);
else
r = -EINVAL;
if (r == -EPERM || r == -ENOENT)
log_err(cd, _("Volume key does not match the volume."));
if (r >= 0)
r = resume_by_volume_key(cd, vk, name);
crypt_free_volume_key(vk);
return r;
}
int crypt_resume_by_token_pin(struct crypt_device *cd, const char *name,
const char *type, int token, const char *pin, size_t pin_size,
void *usrptr)
{
struct volume_key *vk = NULL;
int r, keyslot;
if (!name)
return -EINVAL;
log_dbg(cd, "Resuming volume %s by token (%s type) %d.",
name, type ?: "any", token);
if ((r = _onlyLUKS2(cd, CRYPT_CD_QUIET, 0)))
return r;
r = dm_status_suspended(cd, name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended."), name);
return -EINVAL;
}
r = LUKS2_token_unlock_key(cd, &cd->u.luks2.hdr, token, type,
pin, pin_size, CRYPT_DEFAULT_SEGMENT, usrptr, &vk);
keyslot = r;
if (r >= 0)
r = resume_by_volume_key(cd, vk, name);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
/*
* Keyslot manipulation
*/
int crypt_keyslot_add_by_passphrase(struct crypt_device *cd,
int keyslot, // -1 any
const char *passphrase,
size_t passphrase_size,
const char *new_passphrase,
size_t new_passphrase_size)
{
int r;
struct crypt_keyslot_context kc, new_kc;
if (!passphrase || !new_passphrase)
return -EINVAL;
crypt_keyslot_unlock_by_passphrase_init_internal(&kc, passphrase, passphrase_size);
crypt_keyslot_unlock_by_passphrase_init_internal(&new_kc, new_passphrase, new_passphrase_size);
r = crypt_keyslot_add_by_keyslot_context(cd, CRYPT_ANY_SLOT, &kc, keyslot, &new_kc, 0);
crypt_keyslot_context_destroy_internal(&kc);
crypt_keyslot_context_destroy_internal(&new_kc);
return r;
}
int crypt_keyslot_change_by_passphrase(struct crypt_device *cd,
int keyslot_old,
int keyslot_new,
const char *passphrase,
size_t passphrase_size,
const char *new_passphrase,
size_t new_passphrase_size)
{
int digest = -1, r, keyslot_new_orig = keyslot_new;
struct luks2_keyslot_params params;
struct volume_key *vk = NULL;
if (!passphrase || !new_passphrase)
return -EINVAL;
log_dbg(cd, "Changing passphrase from old keyslot %d to new %d.",
keyslot_old, keyslot_new);
if ((r = onlyLUKS(cd)))
return r;
if (isLUKS1(cd->type))
r = LUKS_open_key_with_hdr(keyslot_old, passphrase, passphrase_size,
&cd->u.luks1.hdr, &vk, cd);
else if (isLUKS2(cd->type)) {
r = LUKS2_keyslot_open(cd, keyslot_old, CRYPT_ANY_SEGMENT, passphrase, passphrase_size, &vk);
/* will fail for keyslots w/o digest. fix if supported in a future */
if (r >= 0) {
digest = LUKS2_digest_by_keyslot(&cd->u.luks2.hdr, r);
if (digest < 0)
r = -EINVAL;
}
} else
r = -EINVAL;
if (r < 0)
goto out;
if (keyslot_old != CRYPT_ANY_SLOT && keyslot_old != r) {
log_dbg(cd, "Keyslot mismatch.");
goto out;
}
keyslot_old = r;
if (keyslot_new == CRYPT_ANY_SLOT) {
if (isLUKS1(cd->type))
keyslot_new = LUKS_keyslot_find_empty(&cd->u.luks1.hdr);
else if (isLUKS2(cd->type))
keyslot_new = LUKS2_keyslot_find_empty(cd, &cd->u.luks2.hdr, vk->keylength);
if (keyslot_new < 0)
keyslot_new = keyslot_old;
}
log_dbg(cd, "Key change, old slot %d, new slot %d.", keyslot_old, keyslot_new);
if (isLUKS1(cd->type)) {
if (keyslot_old == keyslot_new) {
log_dbg(cd, "Key slot %d is going to be overwritten.", keyslot_old);
(void)crypt_keyslot_destroy(cd, keyslot_old);
}
r = LUKS_set_key(keyslot_new, new_passphrase, new_passphrase_size,
&cd->u.luks1.hdr, vk, cd);
} else if (isLUKS2(cd->type)) {
r = LUKS2_keyslot_params_default(cd, &cd->u.luks2.hdr, &params);
if (r)
goto out;
if (keyslot_old != keyslot_new) {
r = LUKS2_digest_assign(cd, &cd->u.luks2.hdr, keyslot_new, digest, 1, 0);
if (r < 0)
goto out;
r = LUKS2_token_assignment_copy(cd, &cd->u.luks2.hdr, keyslot_old, keyslot_new, 0);
if (r < 0)
goto out;
} else {
log_dbg(cd, "Key slot %d is going to be overwritten.", keyslot_old);
/* FIXME: improve return code so that we can detect area is damaged */
r = LUKS2_keyslot_wipe(cd, &cd->u.luks2.hdr, keyslot_old, 1);
if (r) {
/* (void)crypt_keyslot_destroy(cd, keyslot_old); */
r = -EINVAL;
goto out;
}
}
r = LUKS2_keyslot_store(cd, &cd->u.luks2.hdr,
keyslot_new, new_passphrase,
new_passphrase_size, vk, &params);
if (r < 0)
goto out;
/* Swap old & new so the final keyslot number remains */
if (keyslot_new_orig == CRYPT_ANY_SLOT && keyslot_old != keyslot_new) {
r = LUKS2_keyslot_swap(cd, &cd->u.luks2.hdr, keyslot_old, keyslot_new);
if (r < 0)
goto out;
/* Swap slot id */
r = keyslot_old;
keyslot_old = keyslot_new;
keyslot_new = r;
}
} else
r = -EINVAL;
if (r >= 0 && keyslot_old != keyslot_new)
r = crypt_keyslot_destroy(cd, keyslot_old);
if (r < 0)
log_err(cd, _("Failed to swap new key slot."));
out:
crypt_free_volume_key(vk);
if (r < 0) {
_luks2_rollback(cd);
return r;
}
return keyslot_new;
}
int crypt_keyslot_add_by_keyfile_device_offset(struct crypt_device *cd,
int keyslot,
const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset,
const char *new_keyfile,
size_t new_keyfile_size,
uint64_t new_keyfile_offset)
{
int r;
struct crypt_keyslot_context kc, new_kc;
if (!keyfile || !new_keyfile)
return -EINVAL;
crypt_keyslot_unlock_by_keyfile_init_internal(&kc, keyfile, keyfile_size, keyfile_offset);
crypt_keyslot_unlock_by_keyfile_init_internal(&new_kc, new_keyfile, new_keyfile_size, new_keyfile_offset);
r = crypt_keyslot_add_by_keyslot_context(cd, CRYPT_ANY_SLOT, &kc, keyslot, &new_kc, 0);
crypt_keyslot_context_destroy_internal(&kc);
crypt_keyslot_context_destroy_internal(&new_kc);
return r;
}
int crypt_keyslot_add_by_keyfile(struct crypt_device *cd,
int keyslot,
const char *keyfile,
size_t keyfile_size,
const char *new_keyfile,
size_t new_keyfile_size)
{
return crypt_keyslot_add_by_keyfile_device_offset(cd, keyslot,
keyfile, keyfile_size, 0,
new_keyfile, new_keyfile_size, 0);
}
int crypt_keyslot_add_by_keyfile_offset(struct crypt_device *cd,
int keyslot,
const char *keyfile,
size_t keyfile_size,
size_t keyfile_offset,
const char *new_keyfile,
size_t new_keyfile_size,
size_t new_keyfile_offset)
{
return crypt_keyslot_add_by_keyfile_device_offset(cd, keyslot,
keyfile, keyfile_size, keyfile_offset,
new_keyfile, new_keyfile_size, new_keyfile_offset);
}
int crypt_keyslot_add_by_volume_key(struct crypt_device *cd,
int keyslot,
const char *volume_key,
size_t volume_key_size,
const char *passphrase,
size_t passphrase_size)
{
int r;
struct crypt_keyslot_context kc, new_kc;
if (!passphrase)
return -EINVAL;
crypt_keyslot_unlock_by_key_init_internal(&kc, volume_key, volume_key_size);
crypt_keyslot_unlock_by_passphrase_init_internal(&new_kc, passphrase, passphrase_size);
r = crypt_keyslot_add_by_keyslot_context(cd, CRYPT_ANY_SLOT, &kc, keyslot, &new_kc, 0);
crypt_keyslot_context_destroy_internal(&kc);
crypt_keyslot_context_destroy_internal(&new_kc);
return r;
}
int crypt_keyslot_destroy(struct crypt_device *cd, int keyslot)
{
crypt_keyslot_info ki;
int r;
log_dbg(cd, "Destroying keyslot %d.", keyslot);
if ((r = _onlyLUKS(cd, CRYPT_CD_UNRESTRICTED)))
return r;
ki = crypt_keyslot_status(cd, keyslot);
if (ki == CRYPT_SLOT_INVALID) {
log_err(cd, _("Key slot %d is invalid."), keyslot);
return -EINVAL;
}
if (isLUKS1(cd->type)) {
if (ki == CRYPT_SLOT_INACTIVE) {
log_err(cd, _("Keyslot %d is not active."), keyslot);
return -EINVAL;
}
return LUKS_del_key(keyslot, &cd->u.luks1.hdr, cd);
}
return LUKS2_keyslot_wipe(cd, &cd->u.luks2.hdr, keyslot, 0);
}
static int _check_header_data_overlap(struct crypt_device *cd, const char *name)
{
if (!name || !isLUKS(cd->type))
return 0;
if (device_is_identical(crypt_data_device(cd), crypt_metadata_device(cd)) <= 0)
return 0;
/* FIXME: check real header size */
if (crypt_get_data_offset(cd) == 0) {
log_err(cd, _("Device header overlaps with data area."));
return -EINVAL;
}
return 0;
}
static int check_devices(struct crypt_device *cd, const char *name, const char *iname, uint32_t *flags)
{
int r;
if (!flags || !name)
return -EINVAL;
if (iname) {
r = dm_status_device(cd, iname);
if (r >= 0 && !(*flags & CRYPT_ACTIVATE_REFRESH))
return -EBUSY;
if (r < 0 && r != -ENODEV)
return r;
if (r == -ENODEV)
*flags &= ~CRYPT_ACTIVATE_REFRESH;
}
r = dm_status_device(cd, name);
if (r >= 0 && !(*flags & CRYPT_ACTIVATE_REFRESH))
return -EBUSY;
if (r < 0 && r != -ENODEV)
return r;
if (r == -ENODEV)
*flags &= ~CRYPT_ACTIVATE_REFRESH;
return 0;
}
static int _create_device_with_integrity(struct crypt_device *cd,
const char *type, const char *name, const char *iname,
const char *ipath, struct crypt_dm_active_device *dmd,
struct crypt_dm_active_device *dmdi)
{
int r;
enum devcheck device_check;
struct dm_target *tgt;
struct device *device = NULL;
if (!single_segment(dmd))
return -EINVAL;
tgt = &dmd->segment;
if (tgt->type != DM_CRYPT)
return -EINVAL;
device_check = dmd->flags & CRYPT_ACTIVATE_SHARED ? DEV_OK : DEV_EXCL;
r = INTEGRITY_activate_dmd_device(cd, iname, CRYPT_INTEGRITY, dmdi, 0);
if (r)
return r;
r = device_alloc(cd, &device, ipath);
if (r < 0)
goto out;
tgt->data_device = device;
r = device_block_adjust(cd, tgt->data_device, device_check,
tgt->u.crypt.offset, &dmd->size, &dmd->flags);
if (!r)
r = dm_create_device(cd, name, type, dmd);
out:
if (r < 0)
dm_remove_device(cd, iname, 0);
device_free(cd, device);
return r;
}
static int kernel_keyring_support(void)
{
static unsigned _checked = 0;
if (!_checked) {
_kernel_keyring_supported = keyring_check();
_checked = 1;
}
return _kernel_keyring_supported;
}
static int dmcrypt_keyring_bug(void)
{
uint64_t kversion;
if (kernel_version(&kversion))
return 1;
return kversion < compact_version(4,15,0,0);
}
int create_or_reload_device(struct crypt_device *cd, const char *name,
const char *type, struct crypt_dm_active_device *dmd)
{
int r;
enum devcheck device_check;
struct dm_target *tgt;
if (!type || !name || !single_segment(dmd))
return -EINVAL;
tgt = &dmd->segment;
if (tgt->type != DM_CRYPT && tgt->type != DM_INTEGRITY)
return -EINVAL;
/* drop CRYPT_ACTIVATE_REFRESH flag if any device is inactive */
r = check_devices(cd, name, NULL, &dmd->flags);
if (r)
return r;
if (dmd->flags & CRYPT_ACTIVATE_REFRESH)
r = _reload_device(cd, name, dmd);
else {
if (tgt->type == DM_CRYPT) {
device_check = dmd->flags & CRYPT_ACTIVATE_SHARED ? DEV_OK : DEV_EXCL;
r = device_block_adjust(cd, tgt->data_device, device_check,
tgt->u.crypt.offset, &dmd->size, &dmd->flags);
if (!r) {
tgt->size = dmd->size;
r = dm_create_device(cd, name, type, dmd);
}
} else if (tgt->type == DM_INTEGRITY) {
r = device_block_adjust(cd, tgt->data_device, DEV_EXCL,
tgt->u.integrity.offset, NULL, &dmd->flags);
if (r)
return r;
if (tgt->u.integrity.meta_device) {
r = device_block_adjust(cd, tgt->u.integrity.meta_device, DEV_EXCL, 0, NULL, NULL);
if (r)
return r;
}
r = dm_create_device(cd, name, type, dmd);
}
}
return r;
}
int create_or_reload_device_with_integrity(struct crypt_device *cd, const char *name,
const char *type, struct crypt_dm_active_device *dmd,
struct crypt_dm_active_device *dmdi)
{
int r;
const char *iname = NULL;
char *ipath = NULL;
if (!type || !name || !dmd || !dmdi)
return -EINVAL;
if (asprintf(&ipath, "%s/%s_dif", dm_get_dir(), name) < 0)
return -ENOMEM;
iname = ipath + strlen(dm_get_dir()) + 1;
/* drop CRYPT_ACTIVATE_REFRESH flag if any device is inactive */
r = check_devices(cd, name, iname, &dmd->flags);
if (r)
goto out;
if (dmd->flags & CRYPT_ACTIVATE_REFRESH)
r = _reload_device_with_integrity(cd, name, iname, ipath, dmd, dmdi);
else
r = _create_device_with_integrity(cd, type, name, iname, ipath, dmd, dmdi);
out:
free(ipath);
return r;
}
static int _open_and_activate(struct crypt_device *cd,
int keyslot,
const char *name,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
bool use_keyring;
int r;
struct volume_key *vk = NULL;
r = LUKS2_keyslot_open(cd, keyslot,
(flags & CRYPT_ACTIVATE_ALLOW_UNBOUND_KEY) ?
CRYPT_ANY_SEGMENT : CRYPT_DEFAULT_SEGMENT,
passphrase, passphrase_size, &vk);
if (r < 0)
return r;
keyslot = r;
if (!crypt_use_keyring_for_vk(cd))
use_keyring = false;
else
use_keyring = ((name && !crypt_is_cipher_null(crypt_get_cipher(cd))) ||
(flags & CRYPT_ACTIVATE_KEYRING_KEY));
if (use_keyring) {
r = LUKS2_volume_key_load_in_keyring_by_keyslot(cd,
&cd->u.luks2.hdr, vk, keyslot);
if (r < 0)
goto out;
flags |= CRYPT_ACTIVATE_KEYRING_KEY;
}
if (name)
r = LUKS2_activate(cd, name, vk, flags);
out:
if (r < 0)
crypt_drop_keyring_key(cd, vk);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
#if USE_LUKS2_REENCRYPTION
static int load_all_keys(struct crypt_device *cd, struct luks2_hdr *hdr, struct volume_key *vks)
{
int r;
struct volume_key *vk = vks;
while (vk) {
r = LUKS2_volume_key_load_in_keyring_by_digest(cd, vk, crypt_volume_key_get_id(vk));
if (r < 0)
return r;
vk = crypt_volume_key_next(vk);
}
return 0;
}
static int _open_all_keys(struct crypt_device *cd,
struct luks2_hdr *hdr,
int keyslot,
const char *passphrase,
size_t passphrase_size,
uint32_t flags,
struct volume_key **vks)
{
int r, segment;
struct volume_key *_vks = NULL;
crypt_reencrypt_info ri = LUKS2_reencrypt_status(hdr);
segment = (flags & CRYPT_ACTIVATE_ALLOW_UNBOUND_KEY) ? CRYPT_ANY_SEGMENT : CRYPT_DEFAULT_SEGMENT;
switch (ri) {
case CRYPT_REENCRYPT_NONE:
r = LUKS2_keyslot_open(cd, keyslot, segment, passphrase, passphrase_size, &_vks);
break;
case CRYPT_REENCRYPT_CLEAN:
case CRYPT_REENCRYPT_CRASH:
if (segment == CRYPT_ANY_SEGMENT)
r = LUKS2_keyslot_open(cd, keyslot, segment, passphrase,
passphrase_size, &_vks);
else
r = LUKS2_keyslot_open_all_segments(cd, keyslot,
keyslot, passphrase, passphrase_size,
&_vks);
break;
default:
r = -EINVAL;
}
if (keyslot == CRYPT_ANY_SLOT)
keyslot = r;
if (r >= 0 && (flags & CRYPT_ACTIVATE_KEYRING_KEY))
r = load_all_keys(cd, hdr, _vks);
if (r >= 0 && vks)
MOVE_REF(*vks, _vks);
if (r < 0)
crypt_drop_keyring_key(cd, _vks);
crypt_free_volume_key(_vks);
return r < 0 ? r : keyslot;
}
static int _open_and_activate_reencrypt_device(struct crypt_device *cd,
struct luks2_hdr *hdr,
int keyslot,
const char *name,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
bool dynamic_size;
crypt_reencrypt_info ri;
uint64_t minimal_size, device_size;
struct volume_key *vks = NULL;
int r = 0;
struct crypt_lock_handle *reencrypt_lock = NULL;
if (crypt_use_keyring_for_vk(cd))
flags |= CRYPT_ACTIVATE_KEYRING_KEY;
r = LUKS2_reencrypt_lock(cd, &reencrypt_lock);
if (r) {
if (r == -EBUSY)
log_err(cd, _("Reencryption in-progress. Cannot activate device."));
else
log_err(cd, _("Failed to get reencryption lock."));
return r;
}
if ((r = crypt_load(cd, CRYPT_LUKS2, NULL)))
goto out;
ri = LUKS2_reencrypt_status(hdr);
if (ri == CRYPT_REENCRYPT_CRASH) {
r = LUKS2_reencrypt_locked_recovery_by_passphrase(cd, keyslot,
keyslot, passphrase, passphrase_size, &vks);
if (r < 0) {
log_err(cd, _("LUKS2 reencryption recovery failed."));
goto out;
}
keyslot = r;
ri = LUKS2_reencrypt_status(hdr);
}
/* recovery finished reencryption or it's already finished */
if (ri == CRYPT_REENCRYPT_NONE) {
crypt_drop_keyring_key(cd, vks);
crypt_free_volume_key(vks);
LUKS2_reencrypt_unlock(cd, reencrypt_lock);
return _open_and_activate(cd, keyslot, name, passphrase, passphrase_size, flags);
}
if (ri > CRYPT_REENCRYPT_CLEAN) {
r = -EINVAL;
goto out;
}
if (LUKS2_get_data_size(hdr, &minimal_size, &dynamic_size))
goto out;
if (!vks) {
r = _open_all_keys(cd, hdr, keyslot, passphrase, passphrase_size, flags, &vks);
if (r >= 0)
keyslot = r;
}
if (r >= 0) {
r = LUKS2_reencrypt_digest_verify(cd, hdr, vks);
if (r < 0)
goto out;
}
log_dbg(cd, "Entering clean reencryption state mode.");
if (r >= 0)
r = LUKS2_reencrypt_check_device_size(cd, hdr, minimal_size, &device_size, true, dynamic_size);
if (r >= 0)
r = LUKS2_activate_multi(cd, name, vks, device_size >> SECTOR_SHIFT, flags);
out:
LUKS2_reencrypt_unlock(cd, reencrypt_lock);
if (r < 0)
crypt_drop_keyring_key(cd, vks);
crypt_free_volume_key(vks);
return r < 0 ? r : keyslot;
}
/*
* Activation/deactivation of a device
*/
static int _open_and_activate_luks2(struct crypt_device *cd,
int keyslot,
const char *name,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
crypt_reencrypt_info ri;
int r, rv;
struct luks2_hdr *hdr = &cd->u.luks2.hdr;
struct volume_key *vks = NULL;
ri = LUKS2_reencrypt_status(hdr);
if (ri == CRYPT_REENCRYPT_INVALID)
return -EINVAL;
if (ri > CRYPT_REENCRYPT_NONE) {
if (name)
r = _open_and_activate_reencrypt_device(cd, hdr, keyslot, name, passphrase,
passphrase_size, flags);
else {
r = _open_all_keys(cd, hdr, keyslot, passphrase,
passphrase_size, flags, &vks);
if (r < 0)
return r;
rv = LUKS2_reencrypt_digest_verify(cd, hdr, vks);
crypt_free_volume_key(vks);
if (rv < 0)
return rv;
}
} else
r = _open_and_activate(cd, keyslot, name, passphrase,
passphrase_size, flags);
return r;
}
#else
static int _open_and_activate_luks2(struct crypt_device *cd,
int keyslot,
const char *name,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
crypt_reencrypt_info ri;
ri = LUKS2_reencrypt_status(&cd->u.luks2.hdr);
if (ri == CRYPT_REENCRYPT_INVALID)
return -EINVAL;
if (ri > CRYPT_REENCRYPT_NONE) {
log_err(cd, _("This operation is not supported for this device type."));
return -ENOTSUP;
}
return _open_and_activate(cd, keyslot, name, passphrase, passphrase_size, flags);
}
#endif
static int _activate_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
int r;
struct volume_key *vk = NULL;
if ((flags & CRYPT_ACTIVATE_KEYRING_KEY) && !crypt_use_keyring_for_vk(cd))
return -EINVAL;
if ((flags & CRYPT_ACTIVATE_ALLOW_UNBOUND_KEY) && name)
return -EINVAL;
r = _check_header_data_overlap(cd, name);
if (r < 0)
return r;
if (flags & CRYPT_ACTIVATE_SERIALIZE_MEMORY_HARD_PBKDF)
cd->memory_hard_pbkdf_lock_enabled = true;
/* plain, use hashed passphrase */
if (isPLAIN(cd->type)) {
r = -EINVAL;
if (!name)
goto out;
r = process_key(cd, cd->u.plain.hdr.hash,
cd->u.plain.key_size,
passphrase, passphrase_size, &vk);
if (r < 0)
goto out;
r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags);
keyslot = 0;
} else if (isLUKS1(cd->type)) {
r = LUKS_open_key_with_hdr(keyslot, passphrase,
passphrase_size, &cd->u.luks1.hdr, &vk, cd);
if (r >= 0) {
keyslot = r;
if (name)
r = LUKS1_activate(cd, name, vk, flags);
}
} else if (isLUKS2(cd->type)) {
r = _open_and_activate_luks2(cd, keyslot, name, passphrase, passphrase_size, flags);
keyslot = r;
} else if (isBITLK(cd->type)) {
r = BITLK_activate_by_passphrase(cd, name, passphrase, passphrase_size,
&cd->u.bitlk.params, flags);
keyslot = 0;
} else if (isFVAULT2(cd->type)) {
r = FVAULT2_activate_by_passphrase(cd, name, passphrase, passphrase_size,
&cd->u.fvault2.params, flags);
keyslot = 0;
} else {
log_err(cd, _("Device type is not properly initialized."));
r = -EINVAL;
}
out:
if (r < 0)
crypt_drop_keyring_key(cd, vk);
crypt_free_volume_key(vk);
cd->memory_hard_pbkdf_lock_enabled = false;
return r < 0 ? r : keyslot;
}
static int _activate_loopaes(struct crypt_device *cd,
const char *name,
char *buffer,
size_t buffer_size,
uint32_t flags)
{
int r;
unsigned int key_count = 0;
struct volume_key *vk = NULL;
r = LOOPAES_parse_keyfile(cd, &vk, cd->u.loopaes.hdr.hash, &key_count,
buffer, buffer_size);
if (!r && name)
r = LOOPAES_activate(cd, name, cd->u.loopaes.cipher, key_count,
vk, flags);
crypt_free_volume_key(vk);
return r;
}
static int _activate_check_status(struct crypt_device *cd, const char *name, unsigned reload)
{
int r;
if (!name)
return 0;
r = dm_status_device(cd, name);
if (r >= 0 && reload)
return 0;
if (r >= 0 || r == -EEXIST) {
log_err(cd, _("Device %s already exists."), name);
return -EEXIST;
}
if (r == -ENODEV)
return 0;
log_err(cd, _("Cannot use device %s, name is invalid or still in use."), name);
return r;
}
// activation/deactivation of device mapping
int crypt_activate_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
int r;
if (!cd || !passphrase || (!name && (flags & CRYPT_ACTIVATE_REFRESH)))
return -EINVAL;
log_dbg(cd, "%s volume %s [keyslot %d] using passphrase.",
name ? "Activating" : "Checking", name ?: "passphrase",
keyslot);
r = _activate_check_status(cd, name, flags & CRYPT_ACTIVATE_REFRESH);
if (r < 0)
return r;
return _activate_by_passphrase(cd, name, keyslot, passphrase, passphrase_size, flags);
}
int crypt_activate_by_keyfile_device_offset(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset,
uint32_t flags)
{
char *passphrase_read = NULL;
size_t passphrase_size_read;
int r;
if (!cd || !keyfile ||
((flags & CRYPT_ACTIVATE_KEYRING_KEY) && !crypt_use_keyring_for_vk(cd)))
return -EINVAL;
log_dbg(cd, "%s volume %s [keyslot %d] using keyfile %s.",
name ? "Activating" : "Checking", name ?: "passphrase", keyslot, keyfile);
r = _activate_check_status(cd, name, flags & CRYPT_ACTIVATE_REFRESH);
if (r < 0)
return r;
r = crypt_keyfile_device_read(cd, keyfile,
&passphrase_read, &passphrase_size_read,
keyfile_offset, keyfile_size, 0);
if (r < 0)
goto out;
if (isLOOPAES(cd->type))
r = _activate_loopaes(cd, name, passphrase_read, passphrase_size_read, flags);
else
r = _activate_by_passphrase(cd, name, keyslot, passphrase_read, passphrase_size_read, flags);
out:
crypt_safe_free(passphrase_read);
return r;
}
int crypt_activate_by_keyfile(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
uint32_t flags)
{
return crypt_activate_by_keyfile_device_offset(cd, name, keyslot, keyfile,
keyfile_size, 0, flags);
}
int crypt_activate_by_keyfile_offset(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
size_t keyfile_offset,
uint32_t flags)
{
return crypt_activate_by_keyfile_device_offset(cd, name, keyslot, keyfile,
keyfile_size, keyfile_offset, flags);
}
int crypt_activate_by_volume_key(struct crypt_device *cd,
const char *name,
const char *volume_key,
size_t volume_key_size,
uint32_t flags)
{
bool use_keyring;
struct volume_key *vk = NULL;
int r;
if (!cd ||
((flags & CRYPT_ACTIVATE_KEYRING_KEY) && !crypt_use_keyring_for_vk(cd)))
return -EINVAL;
log_dbg(cd, "%s volume %s by volume key.", name ? "Activating" : "Checking",
name ?: "");
r = _activate_check_status(cd, name, flags & CRYPT_ACTIVATE_REFRESH);
if (r < 0)
return r;
r = _check_header_data_overlap(cd, name);
if (r < 0)
return r;
/* use key directly, no hash */
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
if (!volume_key || !volume_key_size || volume_key_size != cd->u.plain.key_size) {
log_err(cd, _("Incorrect volume key specified for plain device."));
return -EINVAL;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = PLAIN_activate(cd, name, vk, cd->u.plain.hdr.size, flags);
} else if (isLUKS1(cd->type)) {
/* If key is not provided, try to use internal key */
if (!volume_key) {
if (!cd->volume_key) {
log_err(cd, _("Volume key does not match the volume."));
return -EINVAL;
}
volume_key_size = cd->volume_key->keylength;
volume_key = cd->volume_key->key;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
if (r == -EPERM)
log_err(cd, _("Volume key does not match the volume."));
if (!r && name)
r = LUKS1_activate(cd, name, vk, flags);
} else if (isLUKS2(cd->type)) {
/* If key is not provided, try to use internal key */
if (!volume_key) {
if (!cd->volume_key) {
log_err(cd, _("Volume key does not match the volume."));
return -EINVAL;
}
volume_key_size = cd->volume_key->keylength;
volume_key = cd->volume_key->key;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = LUKS2_digest_verify_by_segment(cd, &cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT, vk);
if (r == -EPERM || r == -ENOENT)
log_err(cd, _("Volume key does not match the volume."));
if (r > 0)
r = 0;
if (!crypt_use_keyring_for_vk(cd))
use_keyring = false;
else
use_keyring = (name && !crypt_is_cipher_null(crypt_get_cipher(cd))) ||
(flags & CRYPT_ACTIVATE_KEYRING_KEY);
if (!r && use_keyring) {
r = LUKS2_key_description_by_segment(cd,
&cd->u.luks2.hdr, vk, CRYPT_DEFAULT_SEGMENT);
if (!r)
r = crypt_volume_key_load_in_keyring(cd, vk);
if (!r)
flags |= CRYPT_ACTIVATE_KEYRING_KEY;
}
if (!r && name)
r = LUKS2_activate(cd, name, vk, flags);
} else if (isVERITY(cd->type)) {
r = crypt_activate_by_signed_key(cd, name, volume_key, volume_key_size, NULL, 0, flags);
} else if (isTCRYPT(cd->type)) {
if (!name)
return 0;
r = TCRYPT_activate(cd, name, &cd->u.tcrypt.hdr,
&cd->u.tcrypt.params, flags);
} else if (isINTEGRITY(cd->type)) {
if (!name)
return 0;
if (volume_key) {
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
}
r = INTEGRITY_activate(cd, name, &cd->u.integrity.params, vk,
cd->u.integrity.journal_crypt_key,
cd->u.integrity.journal_mac_key, flags,
cd->u.integrity.sb_flags);
} else if (isBITLK(cd->type)) {
r = BITLK_activate_by_volume_key(cd, name, volume_key, volume_key_size,
&cd->u.bitlk.params, flags);
} else {
log_err(cd, _("Device type is not properly initialized."));
r = -EINVAL;
}
if (r < 0)
crypt_drop_keyring_key(cd, vk);
crypt_free_volume_key(vk);
return r;
}
int crypt_activate_by_signed_key(struct crypt_device *cd,
const char *name,
const char *volume_key,
size_t volume_key_size,
const char *signature,
size_t signature_size,
uint32_t flags)
{
char description[512];
int r;
if (!cd || !isVERITY(cd->type))
return -EINVAL;
if (!volume_key || !volume_key_size || (!name && signature)) {
log_err(cd, _("Incorrect root hash specified for verity device."));
return -EINVAL;
}
if (name)
log_dbg(cd, "Activating volume %s by %skey.", name, signature ? "signed " : "");
else
log_dbg(cd, "Checking volume by key.");
if (cd->u.verity.hdr.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE && !signature) {
log_err(cd, _("Root hash signature required."));
return -EINVAL;
}
r = _activate_check_status(cd, name, flags & CRYPT_ACTIVATE_REFRESH);
if (r < 0)
return r;
if (signature && !kernel_keyring_support()) {
log_err(cd, _("Kernel keyring missing: required for passing signature to kernel."));
return -EINVAL;
}
/* volume_key == root hash */
free(CONST_CAST(void*)cd->u.verity.root_hash);
cd->u.verity.root_hash = NULL;
if (signature) {
r = snprintf(description, sizeof(description)-1, "cryptsetup:%s%s%s",
crypt_get_uuid(cd) ?: "", crypt_get_uuid(cd) ? "-" : "", name);
if (r < 0)
return -EINVAL;
log_dbg(cd, "Adding signature into keyring %s", description);
r = keyring_add_key_in_thread_keyring(USER_KEY, description, signature, signature_size);
if (r) {
log_err(cd, _("Failed to load key in kernel keyring."));
return r;
}
}
r = VERITY_activate(cd, name, volume_key, volume_key_size,
signature ? description : NULL,
cd->u.verity.fec_device,
&cd->u.verity.hdr, flags | CRYPT_ACTIVATE_READONLY);
if (!r) {
cd->u.verity.root_hash_size = volume_key_size;
cd->u.verity.root_hash = malloc(volume_key_size);
if (cd->u.verity.root_hash)
memcpy(CONST_CAST(void*)cd->u.verity.root_hash, volume_key, volume_key_size);
}
if (signature)
crypt_drop_keyring_key_by_description(cd, description, USER_KEY);
return r;
}
int crypt_deactivate_by_name(struct crypt_device *cd, const char *name, uint32_t flags)
{
struct crypt_device *fake_cd = NULL;
struct luks2_hdr *hdr2 = NULL;
struct crypt_dm_active_device dmd = {};
int r;
uint32_t get_flags = DM_ACTIVE_DEVICE | DM_ACTIVE_UUID | DM_ACTIVE_HOLDERS;
if (!name)
return -EINVAL;
if ((flags & CRYPT_DEACTIVATE_DEFERRED) && (flags & CRYPT_DEACTIVATE_DEFERRED_CANCEL))
return -EINVAL;
log_dbg(cd, "Deactivating volume %s.", name);
if (!cd) {
r = crypt_init_by_name(&fake_cd, name);
if (r < 0)
return r;
cd = fake_cd;
}
/* skip holders detection and early abort when some flags raised */
if (flags & (CRYPT_DEACTIVATE_FORCE | CRYPT_DEACTIVATE_DEFERRED | CRYPT_DEACTIVATE_DEFERRED_CANCEL))
get_flags &= ~DM_ACTIVE_HOLDERS;
switch (crypt_status(cd, name)) {
case CRYPT_ACTIVE:
case CRYPT_BUSY:
if (flags & CRYPT_DEACTIVATE_DEFERRED_CANCEL) {
r = dm_cancel_deferred_removal(name);
if (r < 0)
log_err(cd, _("Could not cancel deferred remove from device %s."), name);
break;
}
r = dm_query_device(cd, name, get_flags, &dmd);
if (r >= 0) {
if (dmd.holders) {
log_err(cd, _("Device %s is still in use."), name);
r = -EBUSY;
break;
}
}
if (isLUKS2(cd->type))
hdr2 = crypt_get_hdr(cd, CRYPT_LUKS2);
if ((dmd.uuid && !strncmp(CRYPT_LUKS2, dmd.uuid, sizeof(CRYPT_LUKS2)-1)) || hdr2)
r = LUKS2_deactivate(cd, name, hdr2, &dmd, flags);
else if (isTCRYPT(cd->type))
r = TCRYPT_deactivate(cd, name, flags);
else
r = dm_remove_device(cd, name, flags);
if (r < 0 && crypt_status(cd, name) == CRYPT_BUSY) {
log_err(cd, _("Device %s is still in use."), name);
r = -EBUSY;
}
break;
case CRYPT_INACTIVE:
log_err(cd, _("Device %s is not active."), name);
r = -ENODEV;
break;
default:
log_err(cd, _("Invalid device %s."), name);
r = -EINVAL;
}
dm_targets_free(cd, &dmd);
free(CONST_CAST(void*)dmd.uuid);
crypt_free(fake_cd);
return r;
}
int crypt_deactivate(struct crypt_device *cd, const char *name)
{
return crypt_deactivate_by_name(cd, name, 0);
}
int crypt_get_active_device(struct crypt_device *cd, const char *name,
struct crypt_active_device *cad)
{
int r;
struct crypt_dm_active_device dmd, dmdi = {};
const char *namei = NULL;
struct dm_target *tgt = &dmd.segment;
uint64_t min_offset = UINT64_MAX;
if (!cd || !name || !cad)
return -EINVAL;
r = dm_query_device(cd, name, DM_ACTIVE_DEVICE, &dmd);
if (r < 0)
return r;
/* For LUKS2 with integrity we need flags from underlying dm-integrity */
if (isLUKS2(cd->type) && crypt_get_integrity_tag_size(cd) && single_segment(&dmd)) {
namei = device_dm_name(tgt->data_device);
if (namei && dm_query_device(cd, namei, 0, &dmdi) >= 0)
dmd.flags |= dmdi.flags;
}
if (cd && isTCRYPT(cd->type)) {
cad->offset = TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
cad->iv_offset = TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
} else {
while (tgt) {
if (tgt->type == DM_CRYPT && (min_offset > tgt->u.crypt.offset)) {
min_offset = tgt->u.crypt.offset;
cad->iv_offset = tgt->u.crypt.iv_offset;
} else if (tgt->type == DM_INTEGRITY && (min_offset > tgt->u.integrity.offset)) {
min_offset = tgt->u.integrity.offset;
cad->iv_offset = 0;
} else if (tgt->type == DM_LINEAR && (min_offset > tgt->u.linear.offset)) {
min_offset = tgt->u.linear.offset;
cad->iv_offset = 0;
}
tgt = tgt->next;
}
}
if (min_offset != UINT64_MAX)
cad->offset = min_offset;
cad->size = dmd.size;
cad->flags = dmd.flags;
r = 0;
dm_targets_free(cd, &dmd);
dm_targets_free(cd, &dmdi);
return r;
}
uint64_t crypt_get_active_integrity_failures(struct crypt_device *cd, const char *name)
{
struct crypt_dm_active_device dmd;
uint64_t failures = 0;
if (!name)
return 0;
/* LUKS2 / dm-crypt does not provide this count. */
if (dm_query_device(cd, name, 0, &dmd) < 0)
return 0;
if (single_segment(&dmd) && dmd.segment.type == DM_INTEGRITY)
(void)dm_status_integrity_failures(cd, name, &failures);
dm_targets_free(cd, &dmd);
return failures;
}
/*
* Volume key handling
*/
int crypt_volume_key_get(struct crypt_device *cd,
int keyslot,
char *volume_key,
size_t *volume_key_size,
const char *passphrase,
size_t passphrase_size)
{
int r;
struct crypt_keyslot_context kc;
if (!passphrase)
return crypt_volume_key_get_by_keyslot_context(cd, keyslot, volume_key, volume_key_size, NULL);
crypt_keyslot_unlock_by_passphrase_init_internal(&kc, passphrase, passphrase_size);
r = crypt_volume_key_get_by_keyslot_context(cd, keyslot, volume_key, volume_key_size, &kc);
crypt_keyslot_context_destroy_internal(&kc);
return r;
}
int crypt_volume_key_get_by_keyslot_context(struct crypt_device *cd,
int keyslot,
char *volume_key,
size_t *volume_key_size,
struct crypt_keyslot_context *kc)
{
size_t passphrase_size;
int key_len, r;
const char *passphrase = NULL;
struct volume_key *vk = NULL;
if (!cd || !volume_key || !volume_key_size ||
(!kc && !isLUKS(cd->type) && !isTCRYPT(cd->type) && !isVERITY(cd->type)))
return -EINVAL;
if (isLUKS2(cd->type) && keyslot != CRYPT_ANY_SLOT)
key_len = LUKS2_get_keyslot_stored_key_size(&cd->u.luks2.hdr, keyslot);
else
key_len = crypt_get_volume_key_size(cd);
if (key_len < 0)
return -EINVAL;
if (key_len > (int)*volume_key_size) {
log_err(cd, _("Volume key buffer too small."));
return -ENOMEM;
}
if (kc && (!kc->get_passphrase || kc->type == CRYPT_KC_TYPE_KEY))
return -EINVAL;
if (kc) {
r = kc->get_passphrase(cd, kc, &passphrase, &passphrase_size);
if (r < 0)
return r;
}
r = -EINVAL;
if (isLUKS2(cd->type)) {
if (kc && !kc->get_luks2_key)
log_err(cd, _("Cannot retrieve volume key for LUKS2 device."));
else if (!kc)
r = -ENOENT;
else
r = kc->get_luks2_key(cd, kc, keyslot,
keyslot == CRYPT_ANY_SLOT ? CRYPT_DEFAULT_SEGMENT : CRYPT_ANY_SEGMENT,
&vk);
} else if (isLUKS1(cd->type)) {
if (kc && !kc->get_luks1_volume_key)
log_err(cd, _("Cannot retrieve volume key for LUKS1 device."));
else if (!kc)
r = -ENOENT;
else
r = kc->get_luks1_volume_key(cd, kc, keyslot, &vk);
} else if (isPLAIN(cd->type)) {
if (passphrase && cd->u.plain.hdr.hash)
r = process_key(cd, cd->u.plain.hdr.hash, key_len,
passphrase, passphrase_size, &vk);
if (r < 0)
log_err(cd, _("Cannot retrieve volume key for plain device."));
} else if (isVERITY(cd->type)) {
/* volume_key == root hash */
if (cd->u.verity.root_hash) {
memcpy(volume_key, cd->u.verity.root_hash, cd->u.verity.root_hash_size);
*volume_key_size = cd->u.verity.root_hash_size;
r = 0;
} else
log_err(cd, _("Cannot retrieve root hash for verity device."));
} else if (isTCRYPT(cd->type)) {
r = TCRYPT_get_volume_key(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params, &vk);
} else if (isBITLK(cd->type)) {
if (passphrase)
r = BITLK_get_volume_key(cd, passphrase, passphrase_size, &cd->u.bitlk.params, &vk);
if (r < 0)
log_err(cd, _("Cannot retrieve volume key for BITLK device."));
} else if (isFVAULT2(cd->type)) {
if (passphrase)
r = FVAULT2_get_volume_key(cd, passphrase, passphrase_size, &cd->u.fvault2.params, &vk);
if (r < 0)
log_err(cd, _("Cannot retrieve volume key for FVAULT2 device."));
} else
log_err(cd, _("This operation is not supported for %s crypt device."), cd->type ?: "(none)");
if (r == -ENOENT && isLUKS(cd->type) && cd->volume_key) {
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
r = vk ? 0 : -ENOMEM;
}
if (r >= 0 && vk) {
memcpy(volume_key, vk->key, vk->keylength);
*volume_key_size = vk->keylength;
}
crypt_free_volume_key(vk);
return r;
}
int crypt_volume_key_verify(struct crypt_device *cd,
const char *volume_key,
size_t volume_key_size)
{
struct volume_key *vk;
int r;
if ((r = _onlyLUKS(cd, CRYPT_CD_UNRESTRICTED)))
return r;
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
if (isLUKS1(cd->type))
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
else if (isLUKS2(cd->type))
r = LUKS2_digest_verify_by_segment(cd, &cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT, vk);
else
r = -EINVAL;
crypt_free_volume_key(vk);
return r >= 0 ? 0 : r;
}
/*
* RNG and memory locking
*/
void crypt_set_rng_type(struct crypt_device *cd, int rng_type)
{
if (!cd)
return;
switch (rng_type) {
case CRYPT_RNG_URANDOM:
case CRYPT_RNG_RANDOM:
log_dbg(cd, "RNG set to %d (%s).", rng_type, rng_type ? "random" : "urandom");
cd->rng_type = rng_type;
}
}
int crypt_get_rng_type(struct crypt_device *cd)
{
if (!cd)
return -EINVAL;
return cd->rng_type;
}
int crypt_memory_lock(struct crypt_device *cd, int lock)
{
return 0;
}
void crypt_set_compatibility(struct crypt_device *cd, uint32_t flags)
{
if (cd)
cd->compatibility = flags;
}
uint32_t crypt_get_compatibility(struct crypt_device *cd)
{
if (cd)
return cd->compatibility;
return 0;
}
/*
* Reporting
*/
crypt_status_info crypt_status(struct crypt_device *cd, const char *name)
{
int r;
if (!name)
return CRYPT_INVALID;
if (!cd)
dm_backend_init(cd);
r = dm_status_device(cd, name);
if (!cd)
dm_backend_exit(cd);
if (r < 0 && r != -ENODEV)
return CRYPT_INVALID;
if (r == 0)
return CRYPT_ACTIVE;
if (r > 0)
return CRYPT_BUSY;
return CRYPT_INACTIVE;
}
static int _luks_dump(struct crypt_device *cd)
{
int i;
log_std(cd, "LUKS header information for %s\n\n", mdata_device_path(cd));
log_std(cd, "Version: \t%" PRIu16 "\n", cd->u.luks1.hdr.version);
log_std(cd, "Cipher name: \t%s\n", cd->u.luks1.hdr.cipherName);
log_std(cd, "Cipher mode: \t%s\n", cd->u.luks1.hdr.cipherMode);
log_std(cd, "Hash spec: \t%s\n", cd->u.luks1.hdr.hashSpec);
log_std(cd, "Payload offset:\t%" PRIu32 "\n", cd->u.luks1.hdr.payloadOffset);
log_std(cd, "MK bits: \t%" PRIu32 "\n", cd->u.luks1.hdr.keyBytes * 8);
log_std(cd, "MK digest: \t");
crypt_log_hex(cd, cd->u.luks1.hdr.mkDigest, LUKS_DIGESTSIZE, " ", 0, NULL);
log_std(cd, "\n");
log_std(cd, "MK salt: \t");
crypt_log_hex(cd, cd->u.luks1.hdr.mkDigestSalt, LUKS_SALTSIZE/2, " ", 0, NULL);
log_std(cd, "\n \t");
crypt_log_hex(cd, cd->u.luks1.hdr.mkDigestSalt+LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " ", 0, NULL);
log_std(cd, "\n");
log_std(cd, "MK iterations: \t%" PRIu32 "\n", cd->u.luks1.hdr.mkDigestIterations);
log_std(cd, "UUID: \t%s\n\n", cd->u.luks1.hdr.uuid);
for(i = 0; i < LUKS_NUMKEYS; i++) {
if(cd->u.luks1.hdr.keyblock[i].active == LUKS_KEY_ENABLED) {
log_std(cd, "Key Slot %d: ENABLED\n",i);
log_std(cd, "\tIterations: \t%" PRIu32 "\n",
cd->u.luks1.hdr.keyblock[i].passwordIterations);
log_std(cd, "\tSalt: \t");
crypt_log_hex(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt,
LUKS_SALTSIZE/2, " ", 0, NULL);
log_std(cd, "\n\t \t");
crypt_log_hex(cd, cd->u.luks1.hdr.keyblock[i].passwordSalt +
LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " ", 0, NULL);
log_std(cd, "\n");
log_std(cd, "\tKey material offset:\t%" PRIu32 "\n",
cd->u.luks1.hdr.keyblock[i].keyMaterialOffset);
log_std(cd, "\tAF stripes: \t%" PRIu32 "\n",
cd->u.luks1.hdr.keyblock[i].stripes);
}
else
log_std(cd, "Key Slot %d: DISABLED\n", i);
}
return 0;
}
int crypt_dump(struct crypt_device *cd)
{
if (!cd)
return -EINVAL;
if (isLUKS1(cd->type))
return _luks_dump(cd);
else if (isLUKS2(cd->type))
return LUKS2_hdr_dump(cd, &cd->u.luks2.hdr);
else if (isVERITY(cd->type))
return VERITY_dump(cd, &cd->u.verity.hdr,
cd->u.verity.root_hash, cd->u.verity.root_hash_size,
cd->u.verity.fec_device);
else if (isTCRYPT(cd->type))
return TCRYPT_dump(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
else if (isINTEGRITY(cd->type))
return INTEGRITY_dump(cd, crypt_data_device(cd), 0);
else if (isBITLK(cd->type))
return BITLK_dump(cd, crypt_data_device(cd), &cd->u.bitlk.params);
else if (isFVAULT2(cd->type))
return FVAULT2_dump(cd, crypt_data_device(cd), &cd->u.fvault2.params);
log_err(cd, _("Dump operation is not supported for this device type."));
return -EINVAL;
}
int crypt_dump_json(struct crypt_device *cd, const char **json, uint32_t flags)
{
if (!cd || flags)
return -EINVAL;
if (isLUKS2(cd->type))
return LUKS2_hdr_dump_json(cd, &cd->u.luks2.hdr, json);
log_err(cd, _("Dump operation is not supported for this device type."));
return -EINVAL;
}
/* internal only */
const char *crypt_get_cipher_spec(struct crypt_device *cd)
{
if (!cd)
return NULL;
else if (isLUKS2(cd->type))
return LUKS2_get_cipher(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
else if (isLUKS1(cd->type))
return cd->u.luks1.cipher_spec;
else if (isPLAIN(cd->type))
return cd->u.plain.cipher_spec;
else if (isLOOPAES(cd->type))
return cd->u.loopaes.cipher_spec;
else if (isBITLK(cd->type))
return cd->u.bitlk.cipher_spec;
else if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.cipher_spec;
return NULL;
}
const char *crypt_get_cipher(struct crypt_device *cd)
{
if (!cd)
return NULL;
if (isPLAIN(cd->type))
return cd->u.plain.cipher;
if (isLUKS1(cd->type))
return cd->u.luks1.hdr.cipherName;
if (isLUKS2(cd->type)) {
if (crypt_parse_name_and_mode(LUKS2_get_cipher(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT),
cd->u.luks2.cipher, NULL, cd->u.luks2.cipher_mode))
return NULL;
return cd->u.luks2.cipher;
}
if (isLOOPAES(cd->type))
return cd->u.loopaes.cipher;
if (isTCRYPT(cd->type))
return cd->u.tcrypt.params.cipher;
if (isBITLK(cd->type))
return cd->u.bitlk.params.cipher;
if (isFVAULT2(cd->type))
return cd->u.fvault2.params.cipher;
if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.cipher;
return NULL;
}
const char *crypt_get_cipher_mode(struct crypt_device *cd)
{
if (!cd)
return NULL;
if (isPLAIN(cd->type))
return cd->u.plain.cipher_mode;
if (isLUKS1(cd->type))
return cd->u.luks1.hdr.cipherMode;
if (isLUKS2(cd->type)) {
if (crypt_parse_name_and_mode(LUKS2_get_cipher(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT),
cd->u.luks2.cipher, NULL, cd->u.luks2.cipher_mode))
return NULL;
return cd->u.luks2.cipher_mode;
}
if (isLOOPAES(cd->type))
return cd->u.loopaes.cipher_mode;
if (isTCRYPT(cd->type))
return cd->u.tcrypt.params.mode;
if (isBITLK(cd->type))
return cd->u.bitlk.params.cipher_mode;
if (isFVAULT2(cd->type))
return cd->u.fvault2.params.cipher_mode;
if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.cipher_mode;
return NULL;
}
/* INTERNAL only */
const char *crypt_get_integrity(struct crypt_device *cd)
{
if (!cd)
return NULL;
if (isINTEGRITY(cd->type))
return cd->u.integrity.params.integrity;
if (isLUKS2(cd->type))
return LUKS2_get_integrity(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
return NULL;
}
/* INTERNAL only */
int crypt_get_integrity_key_size(struct crypt_device *cd)
{
int key_size = 0;
if (isINTEGRITY(cd->type))
key_size = INTEGRITY_key_size(crypt_get_integrity(cd));
if (isLUKS2(cd->type))
key_size = INTEGRITY_key_size(crypt_get_integrity(cd));
return key_size > 0 ? key_size : 0;
}
/* INTERNAL only */
int crypt_get_integrity_tag_size(struct crypt_device *cd)
{
if (isINTEGRITY(cd->type))
return cd->u.integrity.params.tag_size;
if (isLUKS2(cd->type))
return INTEGRITY_tag_size(crypt_get_integrity(cd),
crypt_get_cipher(cd),
crypt_get_cipher_mode(cd));
return 0;
}
int crypt_get_sector_size(struct crypt_device *cd)
{
if (!cd)
return SECTOR_SIZE;
if (isPLAIN(cd->type))
return cd->u.plain.hdr.sector_size;
if (isINTEGRITY(cd->type))
return cd->u.integrity.params.sector_size;
if (isLUKS2(cd->type))
return LUKS2_get_sector_size(&cd->u.luks2.hdr);
return SECTOR_SIZE;
}
const char *crypt_get_uuid(struct crypt_device *cd)
{
if (!cd)
return NULL;
if (isLUKS1(cd->type))
return cd->u.luks1.hdr.uuid;
if (isLUKS2(cd->type))
return cd->u.luks2.hdr.uuid;
if (isVERITY(cd->type))
return cd->u.verity.uuid;
if (isBITLK(cd->type))
return cd->u.bitlk.params.guid;
if (isFVAULT2(cd->type))
return cd->u.fvault2.params.family_uuid;
return NULL;
}
const char *crypt_get_device_name(struct crypt_device *cd)
{
const char *path;
if (!cd)
return NULL;
path = device_block_path(cd->device);
if (!path)
path = device_path(cd->device);
return path;
}
const char *crypt_get_metadata_device_name(struct crypt_device *cd)
{
const char *path;
if (!cd || !cd->metadata_device)
return NULL;
path = device_block_path(cd->metadata_device);
if (!path)
path = device_path(cd->metadata_device);
return path;
}
int crypt_get_volume_key_size(struct crypt_device *cd)
{
int r;
if (!cd)
return 0;
if (isPLAIN(cd->type))
return cd->u.plain.key_size;
if (isLUKS1(cd->type))
return cd->u.luks1.hdr.keyBytes;
if (isLUKS2(cd->type)) {
r = LUKS2_get_volume_key_size(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
if (r < 0 && cd->volume_key)
r = cd->volume_key->keylength;
return r < 0 ? 0 : r;
}
if (isLOOPAES(cd->type))
return cd->u.loopaes.key_size;
if (isVERITY(cd->type))
return cd->u.verity.root_hash_size;
if (isTCRYPT(cd->type))
return cd->u.tcrypt.params.key_size;
if (isBITLK(cd->type))
return cd->u.bitlk.params.key_size / 8;
if (isFVAULT2(cd->type))
return cd->u.fvault2.params.key_size;
if (!cd->type && !_init_by_name_crypt_none(cd))
return cd->u.none.key_size;
return 0;
}
int crypt_keyslot_get_key_size(struct crypt_device *cd, int keyslot)
{
if (!cd || !isLUKS(cd->type))
return -EINVAL;
if (keyslot < 0 || keyslot >= crypt_keyslot_max(cd->type))
return -EINVAL;
if (isLUKS1(cd->type))
return cd->u.luks1.hdr.keyBytes;
if (isLUKS2(cd->type))
return LUKS2_get_keyslot_stored_key_size(&cd->u.luks2.hdr, keyslot);
return -EINVAL;
}
int crypt_keyslot_set_encryption(struct crypt_device *cd,
const char *cipher,
size_t key_size)
{
char *tmp;
if (!cd || !cipher || !key_size || !isLUKS2(cd->type))
return -EINVAL;
if (LUKS2_keyslot_cipher_incompatible(cd, cipher))
return -EINVAL;
if (!(tmp = strdup(cipher)))
return -ENOMEM;
free(cd->u.luks2.keyslot_cipher);
cd->u.luks2.keyslot_cipher = tmp;
cd->u.luks2.keyslot_key_size = key_size;
return 0;
}
const char *crypt_keyslot_get_encryption(struct crypt_device *cd, int keyslot, size_t *key_size)
{
const char *cipher;
if (!cd || !isLUKS(cd->type) || !key_size)
return NULL;
if (isLUKS1(cd->type)) {
if (keyslot != CRYPT_ANY_SLOT &&
LUKS_keyslot_info(&cd->u.luks1.hdr, keyslot) < CRYPT_SLOT_ACTIVE)
return NULL;
*key_size = crypt_get_volume_key_size(cd);
return cd->u.luks1.cipher_spec;
}
if (keyslot != CRYPT_ANY_SLOT)
return LUKS2_get_keyslot_cipher(&cd->u.luks2.hdr, keyslot, key_size);
/* Keyslot encryption was set through crypt_keyslot_set_encryption() */
if (cd->u.luks2.keyslot_cipher) {
*key_size = cd->u.luks2.keyslot_key_size;
return cd->u.luks2.keyslot_cipher;
}
/* Try to reuse volume encryption parameters */
cipher = LUKS2_get_cipher(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
if (!LUKS2_keyslot_cipher_incompatible(cd, cipher)) {
*key_size = crypt_get_volume_key_size(cd);
if (*key_size)
return cipher;
}
/* Fallback to default LUKS2 keyslot encryption */
*key_size = DEFAULT_LUKS2_KEYSLOT_KEYBITS / 8;
return DEFAULT_LUKS2_KEYSLOT_CIPHER;
}
int crypt_keyslot_get_pbkdf(struct crypt_device *cd, int keyslot, struct crypt_pbkdf_type *pbkdf)
{
if (!cd || !pbkdf || keyslot == CRYPT_ANY_SLOT)
return -EINVAL;
if (isLUKS1(cd->type))
return LUKS_keyslot_pbkdf(&cd->u.luks1.hdr, keyslot, pbkdf);
else if (isLUKS2(cd->type))
return LUKS2_keyslot_pbkdf(&cd->u.luks2.hdr, keyslot, pbkdf);
return -EINVAL;
}
int crypt_set_data_offset(struct crypt_device *cd, uint64_t data_offset)
{
if (!cd)
return -EINVAL;
if (data_offset % (MAX_SECTOR_SIZE >> SECTOR_SHIFT)) {
log_err(cd, _("Data offset is not multiple of %u bytes."), MAX_SECTOR_SIZE);
return -EINVAL;
}
cd->data_offset = data_offset;
log_dbg(cd, "Data offset set to %" PRIu64 " (512-byte) sectors.", data_offset);
return 0;
}
int crypt_set_metadata_size(struct crypt_device *cd,
uint64_t metadata_size,
uint64_t keyslots_size)
{
if (!cd)
return -EINVAL;
if (cd->type && !isLUKS2(cd->type))
return -EINVAL;
if (metadata_size && LUKS2_check_metadata_area_size(metadata_size))
return -EINVAL;
if (keyslots_size && LUKS2_check_keyslots_area_size(keyslots_size))
return -EINVAL;
cd->metadata_size = metadata_size;
cd->keyslots_size = keyslots_size;
return 0;
}
int crypt_get_metadata_size(struct crypt_device *cd,
uint64_t *metadata_size,
uint64_t *keyslots_size)
{
uint64_t msize, ksize;
if (!cd)
return -EINVAL;
if (!cd->type) {
msize = cd->metadata_size;
ksize = cd->keyslots_size;
} else if (isLUKS1(cd->type)) {
msize = LUKS_ALIGN_KEYSLOTS;
ksize = LUKS_device_sectors(&cd->u.luks1.hdr) * SECTOR_SIZE - msize;
} else if (isLUKS2(cd->type)) {
msize = LUKS2_metadata_size(&cd->u.luks2.hdr);
ksize = LUKS2_keyslots_size(&cd->u.luks2.hdr);
} else
return -EINVAL;
if (metadata_size)
*metadata_size = msize;
if (keyslots_size)
*keyslots_size = ksize;
return 0;
}
uint64_t crypt_get_data_offset(struct crypt_device *cd)
{
if (!cd)
return 0;
if (isPLAIN(cd->type))
return cd->u.plain.hdr.offset;
if (isLUKS1(cd->type))
return cd->u.luks1.hdr.payloadOffset;
if (isLUKS2(cd->type))
return LUKS2_get_data_offset(&cd->u.luks2.hdr);
if (isLOOPAES(cd->type))
return cd->u.loopaes.hdr.offset;
if (isTCRYPT(cd->type))
return TCRYPT_get_data_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
if (isBITLK(cd->type))
return cd->u.bitlk.params.volume_header_size / SECTOR_SIZE;
if (isFVAULT2(cd->type))
return cd->u.fvault2.params.log_vol_off / SECTOR_SIZE;
return cd->data_offset;
}
uint64_t crypt_get_iv_offset(struct crypt_device *cd)
{
if (!cd)
return 0;
if (isPLAIN(cd->type))
return cd->u.plain.hdr.skip;
if (isLOOPAES(cd->type))
return cd->u.loopaes.hdr.skip;
if (isTCRYPT(cd->type))
return TCRYPT_get_iv_offset(cd, &cd->u.tcrypt.hdr, &cd->u.tcrypt.params);
return 0;
}
crypt_keyslot_info crypt_keyslot_status(struct crypt_device *cd, int keyslot)
{
if (_onlyLUKS(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED) < 0)
return CRYPT_SLOT_INVALID;
if (isLUKS1(cd->type))
return LUKS_keyslot_info(&cd->u.luks1.hdr, keyslot);
else if(isLUKS2(cd->type))
return LUKS2_keyslot_info(&cd->u.luks2.hdr, keyslot);
return CRYPT_SLOT_INVALID;
}
int crypt_keyslot_max(const char *type)
{
if (isLUKS1(type))
return LUKS_NUMKEYS;
if (isLUKS2(type))
return LUKS2_KEYSLOTS_MAX;
return -EINVAL;
}
int crypt_keyslot_area(struct crypt_device *cd,
int keyslot,
uint64_t *offset,
uint64_t *length)
{
if (_onlyLUKS(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED) || !offset || !length)
return -EINVAL;
if (isLUKS2(cd->type))
return LUKS2_keyslot_area(&cd->u.luks2.hdr, keyslot, offset, length);
return LUKS_keyslot_area(&cd->u.luks1.hdr, keyslot, offset, length);
}
crypt_keyslot_priority crypt_keyslot_get_priority(struct crypt_device *cd, int keyslot)
{
if (_onlyLUKS(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED))
return CRYPT_SLOT_PRIORITY_INVALID;
if (keyslot < 0 || keyslot >= crypt_keyslot_max(cd->type))
return CRYPT_SLOT_PRIORITY_INVALID;
if (isLUKS2(cd->type))
return LUKS2_keyslot_priority_get(&cd->u.luks2.hdr, keyslot);
return CRYPT_SLOT_PRIORITY_NORMAL;
}
int crypt_keyslot_set_priority(struct crypt_device *cd, int keyslot, crypt_keyslot_priority priority)
{
int r;
log_dbg(cd, "Setting keyslot %d to priority %d.", keyslot, priority);
if (priority == CRYPT_SLOT_PRIORITY_INVALID)
return -EINVAL;
if (keyslot < 0 || keyslot >= crypt_keyslot_max(cd->type))
return -EINVAL;
if ((r = onlyLUKS2(cd)))
return r;
return LUKS2_keyslot_priority_set(cd, &cd->u.luks2.hdr, keyslot, priority, 1);
}
const char *crypt_get_type(struct crypt_device *cd)
{
return cd ? cd->type : NULL;
}
const char *crypt_get_default_type(void)
{
return DEFAULT_LUKS_FORMAT;
}
int crypt_get_verity_info(struct crypt_device *cd,
struct crypt_params_verity *vp)
{
if (!cd || !isVERITY(cd->type) || !vp)
return -EINVAL;
vp->data_device = device_path(cd->device);
vp->hash_device = mdata_device_path(cd);
vp->fec_device = device_path(cd->u.verity.fec_device);
vp->fec_area_offset = cd->u.verity.hdr.fec_area_offset;
vp->fec_roots = cd->u.verity.hdr.fec_roots;
vp->hash_name = cd->u.verity.hdr.hash_name;
vp->salt = cd->u.verity.hdr.salt;
vp->salt_size = cd->u.verity.hdr.salt_size;
vp->data_block_size = cd->u.verity.hdr.data_block_size;
vp->hash_block_size = cd->u.verity.hdr.hash_block_size;
vp->data_size = cd->u.verity.hdr.data_size;
vp->hash_area_offset = cd->u.verity.hdr.hash_area_offset;
vp->hash_type = cd->u.verity.hdr.hash_type;
vp->flags = cd->u.verity.hdr.flags & (CRYPT_VERITY_NO_HEADER | CRYPT_VERITY_ROOT_HASH_SIGNATURE);
return 0;
}
int crypt_get_integrity_info(struct crypt_device *cd,
struct crypt_params_integrity *ip)
{
if (!cd || !ip)
return -EINVAL;
if (isINTEGRITY(cd->type)) {
ip->journal_size = cd->u.integrity.params.journal_size;
ip->journal_watermark = cd->u.integrity.params.journal_watermark;
ip->journal_commit_time = cd->u.integrity.params.journal_commit_time;
ip->interleave_sectors = cd->u.integrity.params.interleave_sectors;
ip->tag_size = cd->u.integrity.params.tag_size;
ip->sector_size = cd->u.integrity.params.sector_size;
ip->buffer_sectors = cd->u.integrity.params.buffer_sectors;
ip->integrity = cd->u.integrity.params.integrity;
ip->integrity_key_size = crypt_get_integrity_key_size(cd);
ip->journal_integrity = cd->u.integrity.params.journal_integrity;
ip->journal_integrity_key_size = cd->u.integrity.params.journal_integrity_key_size;
ip->journal_integrity_key = NULL;
ip->journal_crypt = cd->u.integrity.params.journal_crypt;
ip->journal_crypt_key_size = cd->u.integrity.params.journal_crypt_key_size;
ip->journal_crypt_key = NULL;
return 0;
} else if (isLUKS2(cd->type)) {
ip->journal_size = 0; // FIXME
ip->journal_watermark = 0; // FIXME
ip->journal_commit_time = 0; // FIXME
ip->interleave_sectors = 0; // FIXME
ip->sector_size = crypt_get_sector_size(cd);
ip->buffer_sectors = 0; // FIXME
ip->integrity = LUKS2_get_integrity(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
ip->integrity_key_size = crypt_get_integrity_key_size(cd);
ip->tag_size = INTEGRITY_tag_size(ip->integrity, crypt_get_cipher(cd), crypt_get_cipher_mode(cd));
ip->journal_integrity = NULL;
ip->journal_integrity_key_size = 0;
ip->journal_integrity_key = NULL;
ip->journal_crypt = NULL;
ip->journal_crypt_key_size = 0;
ip->journal_crypt_key = NULL;
return 0;
}
return -ENOTSUP;
}
int crypt_convert(struct crypt_device *cd,
const char *type,
void *params)
{
struct luks_phdr hdr1;
struct luks2_hdr hdr2;
int r;
if (!type)
return -EINVAL;
log_dbg(cd, "Converting LUKS device to type %s", type);
if ((r = onlyLUKS(cd)))
return r;
if (isLUKS1(cd->type) && isLUKS2(type))
r = LUKS2_luks1_to_luks2(cd, &cd->u.luks1.hdr, &hdr2);
else if (isLUKS2(cd->type) && isLUKS1(type))
r = LUKS2_luks2_to_luks1(cd, &cd->u.luks2.hdr, &hdr1);
else
return -EINVAL;
if (r < 0) {
/* in-memory header may be invalid after failed conversion */
_luks2_rollback(cd);
if (r == -EBUSY)
log_err(cd, _("Cannot convert device %s which is still in use."), mdata_device_path(cd));
return r;
}
crypt_free_type(cd, NULL);
return crypt_load(cd, type, params);
}
/* Internal access function to header pointer */
void *crypt_get_hdr(struct crypt_device *cd, const char *type)
{
/* If requested type differs, ignore it */
if (strcmp(cd->type, type))
return NULL;
if (isPLAIN(cd->type))
return &cd->u.plain;
if (isLUKS1(cd->type))
return &cd->u.luks1.hdr;
if (isLUKS2(cd->type))
return &cd->u.luks2.hdr;
if (isLOOPAES(cd->type))
return &cd->u.loopaes;
if (isVERITY(cd->type))
return &cd->u.verity;
if (isTCRYPT(cd->type))
return &cd->u.tcrypt;
return NULL;
}
/* internal only */
struct luks2_reencrypt *crypt_get_luks2_reencrypt(struct crypt_device *cd)
{
return cd->u.luks2.rh;
}
/* internal only */
void crypt_set_luks2_reencrypt(struct crypt_device *cd, struct luks2_reencrypt *rh)
{
cd->u.luks2.rh = rh;
}
/*
* Token handling
*/
int crypt_activate_by_token_pin(struct crypt_device *cd, const char *name,
const char *type, int token, const char *pin, size_t pin_size,
void *usrptr, uint32_t flags)
{
int r;
log_dbg(cd, "%s volume %s using token (%s type) %d.",
name ? "Activating" : "Checking", name ?: "passphrase",
type ?: "any", token);
if ((r = _onlyLUKS2(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED, 0)))
return r;
if ((flags & CRYPT_ACTIVATE_KEYRING_KEY) && !crypt_use_keyring_for_vk(cd))
return -EINVAL;
if ((flags & CRYPT_ACTIVATE_ALLOW_UNBOUND_KEY) && name)
return -EINVAL;
r = _activate_check_status(cd, name, flags & CRYPT_ACTIVATE_REFRESH);
if (r < 0)
return r;
return LUKS2_token_open_and_activate(cd, &cd->u.luks2.hdr, token, name, type,
pin, pin_size, flags, usrptr);
}
int crypt_activate_by_token(struct crypt_device *cd,
const char *name, int token, void *usrptr, uint32_t flags)
{
return crypt_activate_by_token_pin(cd, name, NULL, token, NULL, 0, usrptr, flags);
}
int crypt_token_json_get(struct crypt_device *cd, int token, const char **json)
{
int r;
if (!json)
return -EINVAL;
log_dbg(cd, "Requesting JSON for token %d.", token);
if ((r = _onlyLUKS2(cd, CRYPT_CD_UNRESTRICTED, 0)))
return r;
return LUKS2_token_json_get(&cd->u.luks2.hdr, token, json) ?: token;
}
int crypt_token_json_set(struct crypt_device *cd, int token, const char *json)
{
int r;
log_dbg(cd, "Updating JSON for token %d.", token);
if ((r = onlyLUKS2(cd)))
return r;
return LUKS2_token_create(cd, &cd->u.luks2.hdr, token, json, 1);
}
crypt_token_info crypt_token_status(struct crypt_device *cd, int token, const char **type)
{
if (_onlyLUKS2(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED, 0))
return CRYPT_TOKEN_INVALID;
return LUKS2_token_status(cd, &cd->u.luks2.hdr, token, type);
}
int crypt_token_max(const char *type)
{
if (isLUKS2(type))
return LUKS2_TOKENS_MAX;
return -EINVAL;
}
int crypt_token_luks2_keyring_get(struct crypt_device *cd,
int token,
struct crypt_token_params_luks2_keyring *params)
{
crypt_token_info token_info;
const char *type;
int r;
if (!params)
return -EINVAL;
log_dbg(cd, "Requesting LUKS2 keyring token %d.", token);
if ((r = _onlyLUKS2(cd, CRYPT_CD_UNRESTRICTED, 0)))
return r;
token_info = LUKS2_token_status(cd, &cd->u.luks2.hdr, token, &type);
switch (token_info) {
case CRYPT_TOKEN_INVALID:
log_dbg(cd, "Token %d is invalid.", token);
return -EINVAL;
case CRYPT_TOKEN_INACTIVE:
log_dbg(cd, "Token %d is inactive.", token);
return -EINVAL;
case CRYPT_TOKEN_INTERNAL:
if (!strcmp(type, LUKS2_TOKEN_KEYRING))
break;
/* Fall through */
case CRYPT_TOKEN_INTERNAL_UNKNOWN:
case CRYPT_TOKEN_EXTERNAL:
case CRYPT_TOKEN_EXTERNAL_UNKNOWN:
log_dbg(cd, "Token %d has unexpected type %s.", token, type);
return -EINVAL;
}
return LUKS2_token_keyring_get(&cd->u.luks2.hdr, token, params);
}
int crypt_token_luks2_keyring_set(struct crypt_device *cd,
int token,
const struct crypt_token_params_luks2_keyring *params)
{
int r;
char json[4096];
if (!params || !params->key_description)
return -EINVAL;
log_dbg(cd, "Creating new LUKS2 keyring token (%d).", token);
if ((r = onlyLUKS2(cd)))
return r;
r = LUKS2_token_keyring_json(json, sizeof(json), params);
if (r < 0)
return r;
return LUKS2_token_create(cd, &cd->u.luks2.hdr, token, json, 1);
}
int crypt_token_assign_keyslot(struct crypt_device *cd, int token, int keyslot)
{
int r;
if ((r = onlyLUKS2(cd)))
return r;
return LUKS2_token_assign(cd, &cd->u.luks2.hdr, keyslot, token, 1, 1);
}
int crypt_token_unassign_keyslot(struct crypt_device *cd, int token, int keyslot)
{
int r;
if ((r = onlyLUKS2(cd)))
return r;
return LUKS2_token_assign(cd, &cd->u.luks2.hdr, keyslot, token, 0, 1);
}
int crypt_token_is_assigned(struct crypt_device *cd, int token, int keyslot)
{
int r;
if ((r = _onlyLUKS2(cd, CRYPT_CD_QUIET | CRYPT_CD_UNRESTRICTED, 0)))
return r;
return LUKS2_token_is_assigned(&cd->u.luks2.hdr, keyslot, token);
}
/* Internal only */
int crypt_metadata_locking_enabled(void)
{
return _metadata_locking;
}
int crypt_metadata_locking(struct crypt_device *cd __attribute__((unused)), int enable)
{
if (enable && !_metadata_locking)
return -EPERM;
_metadata_locking = enable ? 1 : 0;
return 0;
}
int crypt_persistent_flags_set(struct crypt_device *cd, crypt_flags_type type, uint32_t flags)
{
int r;
if ((r = onlyLUKS2(cd)))
return r;
if (type == CRYPT_FLAGS_ACTIVATION)
return LUKS2_config_set_flags(cd, &cd->u.luks2.hdr, flags);
if (type == CRYPT_FLAGS_REQUIREMENTS)
return LUKS2_config_set_requirements(cd, &cd->u.luks2.hdr, flags, true);
return -EINVAL;
}
int crypt_persistent_flags_get(struct crypt_device *cd, crypt_flags_type type, uint32_t *flags)
{
int r;
if (!flags)
return -EINVAL;
if ((r = _onlyLUKS2(cd, CRYPT_CD_UNRESTRICTED, 0)))
return r;
if (type == CRYPT_FLAGS_ACTIVATION)
return LUKS2_config_get_flags(cd, &cd->u.luks2.hdr, flags);
if (type == CRYPT_FLAGS_REQUIREMENTS)
return LUKS2_config_get_requirements(cd, &cd->u.luks2.hdr, flags);
return -EINVAL;
}
static int update_volume_key_segment_digest(struct crypt_device *cd, struct luks2_hdr *hdr, int digest, int commit)
{
int r;
/* Remove any assignments in memory */
r = LUKS2_digest_segment_assign(cd, hdr, CRYPT_DEFAULT_SEGMENT, CRYPT_ANY_DIGEST, 0, 0);
if (r)
return r;
/* Assign it to the specific digest */
return LUKS2_digest_segment_assign(cd, hdr, CRYPT_DEFAULT_SEGMENT, digest, 1, commit);
}
static int verify_and_update_segment_digest(struct crypt_device *cd,
struct luks2_hdr *hdr, int keyslot, struct crypt_keyslot_context *kc)
{
int digest, r;
struct volume_key *vk = NULL;
assert(kc);
assert(kc->get_luks2_key);
assert(keyslot >= 0);
r = kc->get_luks2_key(cd, kc, keyslot, CRYPT_ANY_SEGMENT, &vk);
if (r < 0)
return r;
/* check volume_key (param) digest matches keyslot digest */
r = LUKS2_digest_verify(cd, hdr, vk, keyslot);
if (r < 0)
goto out;
digest = r;
/* nothing to do, volume key in keyslot is already assigned to default segment */
r = LUKS2_digest_verify_by_segment(cd, hdr, CRYPT_DEFAULT_SEGMENT, vk);
if (r >= 0)
goto out;
/* FIXME: check new volume key is usable with current default segment */
r = update_volume_key_segment_digest(cd, &cd->u.luks2.hdr, digest, 1);
if (r)
log_err(cd, _("Failed to assign keyslot %u as the new volume key."), keyslot);
out:
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
static int luks2_keyslot_add_by_verified_volume_key(struct crypt_device *cd,
int keyslot_new,
const char *new_passphrase,
size_t new_passphrase_size,
struct volume_key *vk)
{
int r;
struct luks2_keyslot_params params;
assert(cd);
assert(keyslot_new >= 0);
assert(new_passphrase);
assert(vk);
assert(crypt_volume_key_get_id(vk) >= 0);
r = LUKS2_keyslot_params_default(cd, &cd->u.luks2.hdr, &params);
if (r < 0) {
log_err(cd, _("Failed to initialize default LUKS2 keyslot parameters."));
return r;
}
r = LUKS2_digest_assign(cd, &cd->u.luks2.hdr, keyslot_new, crypt_volume_key_get_id(vk), 1, 0);
if (r < 0) {
log_err(cd, _("Failed to assign keyslot %d to digest."), keyslot_new);
return r;
}
r = LUKS2_keyslot_store(cd, &cd->u.luks2.hdr, keyslot_new,
CONST_CAST(char*)new_passphrase,
new_passphrase_size, vk, &params);
return r < 0 ? r : keyslot_new;
}
static int luks2_keyslot_add_by_volume_key(struct crypt_device *cd,
int keyslot_new,
const char *new_passphrase,
size_t new_passphrase_size,
struct volume_key *vk)
{
int r;
assert(cd);
assert(keyslot_new >= 0);
assert(new_passphrase);
assert(vk);
r = LUKS2_digest_verify_by_segment(cd, &cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT, vk);
if (r >= 0)
crypt_volume_key_set_id(vk, r);
if (r < 0) {
log_err(cd, _("Volume key does not match the volume."));
return r;
}
return luks2_keyslot_add_by_verified_volume_key(cd, keyslot_new, new_passphrase, new_passphrase_size, vk);
}
static int luks1_keyslot_add_by_volume_key(struct crypt_device *cd,
int keyslot_new,
const char *new_passphrase,
size_t new_passphrase_size,
struct volume_key *vk)
{
int r;
assert(cd);
assert(keyslot_new >= 0);
assert(new_passphrase);
assert(vk);
r = LUKS_verify_volume_key(&cd->u.luks1.hdr, vk);
if (r < 0) {
log_err(cd, _("Volume key does not match the volume."));
return r;
}
r = LUKS_set_key(keyslot_new, CONST_CAST(char*)new_passphrase,
new_passphrase_size, &cd->u.luks1.hdr, vk, cd);
return r < 0 ? r : keyslot_new;
}
static int keyslot_add_by_key(struct crypt_device *cd,
bool is_luks1,
int keyslot_new,
const char *new_passphrase,
size_t new_passphrase_size,
struct volume_key *vk,
uint32_t flags)
{
int r, digest;
assert(cd);
assert(keyslot_new >= 0);
assert(new_passphrase);
assert(vk);
if (!flags)
return is_luks1 ? luks1_keyslot_add_by_volume_key(cd, keyslot_new, new_passphrase, new_passphrase_size, vk) :
luks2_keyslot_add_by_volume_key(cd, keyslot_new, new_passphrase, new_passphrase_size, vk);
if (is_luks1)
return -EINVAL;
digest = LUKS2_digest_verify_by_segment(cd, &cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT, vk);
if (digest >= 0) /* if key matches volume key digest tear down new vk flag */
flags &= ~CRYPT_VOLUME_KEY_SET;
else {
/* if key matches any existing digest, do not create new digest */
if ((flags & CRYPT_VOLUME_KEY_DIGEST_REUSE))
digest = LUKS2_digest_any_matching(cd, &cd->u.luks2.hdr, vk);
/* no segment flag or new vk flag requires new key digest */
if (flags & (CRYPT_VOLUME_KEY_NO_SEGMENT | CRYPT_VOLUME_KEY_SET)) {
if (digest < 0 || !(flags & CRYPT_VOLUME_KEY_DIGEST_REUSE))
digest = LUKS2_digest_create(cd, "pbkdf2", &cd->u.luks2.hdr, vk);
}
}
r = digest;
if (r < 0) {
log_err(cd, _("Volume key does not match the volume."));
return r;
}
crypt_volume_key_set_id(vk, digest);
if (flags & CRYPT_VOLUME_KEY_SET) {
r = update_volume_key_segment_digest(cd, &cd->u.luks2.hdr, digest, 0);
if (r < 0)
log_err(cd, _("Failed to assign keyslot %u as the new volume key."), keyslot_new);
}
if (r >= 0)
r = luks2_keyslot_add_by_verified_volume_key(cd, keyslot_new, new_passphrase, new_passphrase_size, vk);
return r < 0 ? r : keyslot_new;
}
int crypt_keyslot_add_by_key(struct crypt_device *cd,
int keyslot,
const char *volume_key,
size_t volume_key_size,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
int r;
struct crypt_keyslot_context kc, new_kc;
if (!passphrase || ((flags & CRYPT_VOLUME_KEY_NO_SEGMENT) &&
(flags & CRYPT_VOLUME_KEY_SET)))
return -EINVAL;
if ((r = onlyLUKS(cd)) < 0)
return r;
if ((flags & CRYPT_VOLUME_KEY_SET) && crypt_keyslot_status(cd, keyslot) > CRYPT_SLOT_INACTIVE &&
isLUKS2(cd->type)) {
if (volume_key)
crypt_keyslot_unlock_by_key_init_internal(&kc, volume_key, volume_key_size);
else
crypt_keyslot_unlock_by_passphrase_init_internal(&kc, passphrase, passphrase_size);
r = verify_and_update_segment_digest(cd, &cd->u.luks2.hdr, keyslot, &kc);
crypt_keyslot_context_destroy_internal(&kc);
return r;
}
crypt_keyslot_unlock_by_key_init_internal(&kc, volume_key, volume_key_size);
crypt_keyslot_unlock_by_passphrase_init_internal(&new_kc, passphrase, passphrase_size);
r = crypt_keyslot_add_by_keyslot_context(cd, CRYPT_ANY_SLOT, &kc, keyslot, &new_kc, flags);
crypt_keyslot_context_destroy_internal(&kc);
crypt_keyslot_context_destroy_internal(&new_kc);
return r;
}
int crypt_keyslot_add_by_keyslot_context(struct crypt_device *cd,
int keyslot_existing,
struct crypt_keyslot_context *kc,
int keyslot_new,
struct crypt_keyslot_context *new_kc,
uint32_t flags)
{
bool is_luks1;
int active_slots, r;
const char *new_passphrase;
size_t new_passphrase_size;
struct volume_key *vk = NULL;
if (!kc || ((flags & CRYPT_VOLUME_KEY_NO_SEGMENT) &&
(flags & CRYPT_VOLUME_KEY_SET)))
return -EINVAL;
r = flags ? onlyLUKS2(cd) : onlyLUKS(cd);
if (r)
return r;
if ((flags & CRYPT_VOLUME_KEY_SET) && crypt_keyslot_status(cd, keyslot_existing) > CRYPT_SLOT_INACTIVE)
return verify_and_update_segment_digest(cd, &cd->u.luks2.hdr, keyslot_existing, kc);
if (!new_kc || !new_kc->get_passphrase)
return -EINVAL;
log_dbg(cd, "Adding new keyslot %d by %s%s, volume key provided by %s (%d).",
keyslot_new, keyslot_context_type_string(new_kc),
(flags & CRYPT_VOLUME_KEY_NO_SEGMENT) ? " unassigned to a crypt segment" : "",
keyslot_context_type_string(kc), keyslot_existing);
r = keyslot_verify_or_find_empty(cd, &keyslot_new);
if (r < 0)
return r;
is_luks1 = isLUKS1(cd->type);
if (is_luks1)
active_slots = LUKS_keyslot_active_count(&cd->u.luks1.hdr);
else
active_slots = LUKS2_keyslot_active_count(&cd->u.luks2.hdr, CRYPT_DEFAULT_SEGMENT);
if (active_slots < 0)
return -EINVAL;
if (active_slots == 0 && kc->type != CRYPT_KC_TYPE_KEY)
r = -ENOENT;
else if (is_luks1 && kc->get_luks1_volume_key)
r = kc->get_luks1_volume_key(cd, kc, keyslot_existing, &vk);
else if (!is_luks1 && kc->get_luks2_volume_key)
r = kc->get_luks2_volume_key(cd, kc, keyslot_existing, &vk);
else
return -EINVAL;
if (r == -ENOENT) {
if ((flags & CRYPT_VOLUME_KEY_NO_SEGMENT) && kc->type == CRYPT_KC_TYPE_KEY) {
if (!(vk = crypt_generate_volume_key(cd, kc->u.k.volume_key_size)))
return -ENOMEM;
r = 0;
} else if (cd->volume_key) {
if (!(vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key)))
return -ENOMEM;
r = 0;
} else if (active_slots == 0) {
log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided."));
r = -EINVAL;
}
}
if (r < 0)
return r;
r = new_kc->get_passphrase(cd, new_kc, &new_passphrase, &new_passphrase_size);
/* If new keyslot context is token just assign it to new keyslot */
if (r >= 0 && new_kc->type == CRYPT_KC_TYPE_TOKEN && !is_luks1)
r = LUKS2_token_assign(cd, &cd->u.luks2.hdr, keyslot_new, new_kc->u.t.id, 1, 0);
if (r >= 0)
r = keyslot_add_by_key(cd, is_luks1, keyslot_new, new_passphrase, new_passphrase_size, vk, flags);
crypt_free_volume_key(vk);
if (r < 0) {
_luks2_rollback(cd);
return r;
}
return keyslot_new;
}
/*
* Keyring handling
*/
int crypt_use_keyring_for_vk(struct crypt_device *cd)
{
uint32_t dmc_flags;
/* dm backend must be initialized */
if (!cd || !isLUKS2(cd->type))
return 0;
if (!_vk_via_keyring || !kernel_keyring_support())
return 0;
if (dm_flags(cd, DM_CRYPT, &dmc_flags))
return dmcrypt_keyring_bug() ? 0 : 1;
return (dmc_flags & DM_KERNEL_KEYRING_SUPPORTED);
}
int crypt_volume_key_keyring(struct crypt_device *cd __attribute__((unused)), int enable)
{
_vk_via_keyring = enable ? 1 : 0;
return 0;
}
/* internal only */
int crypt_volume_key_load_in_keyring(struct crypt_device *cd, struct volume_key *vk)
{
int r;
const char *type_name = key_type_name(LOGON_KEY);
if (!vk || !cd || !type_name)
return -EINVAL;
if (!vk->key_description) {
log_dbg(cd, "Invalid key description");
return -EINVAL;
}
log_dbg(cd, "Loading key (%zu bytes, type %s) in thread keyring.", vk->keylength, type_name);
r = keyring_add_key_in_thread_keyring(LOGON_KEY, vk->key_description, vk->key, vk->keylength);
if (r) {
log_dbg(cd, "keyring_add_key_in_thread_keyring failed (error %d)", r);
log_err(cd, _("Failed to load key in kernel keyring."));
} else
crypt_set_key_in_keyring(cd, 1);
return r;
}
/* internal only */
int crypt_key_in_keyring(struct crypt_device *cd)
{
return cd ? cd->key_in_keyring : 0;
}
/* internal only */
void crypt_set_key_in_keyring(struct crypt_device *cd, unsigned key_in_keyring)
{
if (!cd)
return;
cd->key_in_keyring = key_in_keyring;
}
/* internal only */
void crypt_drop_keyring_key_by_description(struct crypt_device *cd, const char *key_description, key_type_t ktype)
{
int r;
const char *type_name = key_type_name(ktype);
if (!key_description || !type_name)
return;
log_dbg(cd, "Requesting keyring %s key for revoke and unlink.", type_name);
r = keyring_revoke_and_unlink_key(ktype, key_description);
if (r)
log_dbg(cd, "keyring_revoke_and_unlink_key failed (error %d)", r);
crypt_set_key_in_keyring(cd, 0);
}
/* internal only */
void crypt_drop_keyring_key(struct crypt_device *cd, struct volume_key *vks)
{
struct volume_key *vk = vks;
while (vk) {
crypt_drop_keyring_key_by_description(cd, vk->key_description, LOGON_KEY);
vk = crypt_volume_key_next(vk);
}
}
int crypt_activate_by_keyring(struct crypt_device *cd,
const char *name,
const char *key_description,
int keyslot,
uint32_t flags)
{
char *passphrase;
size_t passphrase_size;
int r;
if (!cd || !key_description)
return -EINVAL;
log_dbg(cd, "%s volume %s [keyslot %d] using passphrase in keyring.",
name ? "Activating" : "Checking", name ?: "passphrase", keyslot);
if (!kernel_keyring_support()) {
log_err(cd, _("Kernel keyring is not supported by the kernel."));
return -EINVAL;
}
r = _activate_check_status(cd, name, flags & CRYPT_ACTIVATE_REFRESH);
if (r < 0)
return r;
r = keyring_get_passphrase(key_description, &passphrase, &passphrase_size);
if (r < 0) {
log_err(cd, _("Failed to read passphrase from keyring (error %d)."), r);
return -EINVAL;
}
r = _activate_by_passphrase(cd, name, keyslot, passphrase, passphrase_size, flags);
crypt_safe_free(passphrase);
return r;
}
/*
* Workaround for serialization of parallel activation and memory-hard PBKDF
* In specific situation (systemd activation) this causes OOM killer activation.
* For now, let's provide this ugly way to serialize unlocking of devices.
*/
int crypt_serialize_lock(struct crypt_device *cd)
{
if (!cd->memory_hard_pbkdf_lock_enabled)
return 0;
log_dbg(cd, "Taking global memory-hard access serialization lock.");
if (crypt_write_lock(cd, "memory-hard-access", true, &cd->pbkdf_memory_hard_lock)) {
log_err(cd, _("Failed to acquire global memory-hard access serialization lock."));
cd->pbkdf_memory_hard_lock = NULL;
return -EINVAL;
}
return 0;
}
void crypt_serialize_unlock(struct crypt_device *cd)
{
if (!cd->memory_hard_pbkdf_lock_enabled)
return;
crypt_unlock_internal(cd, cd->pbkdf_memory_hard_lock);
cd->pbkdf_memory_hard_lock = NULL;
}
crypt_reencrypt_info crypt_reencrypt_status(struct crypt_device *cd,
struct crypt_params_reencrypt *params)
{
if (params)
memset(params, 0, sizeof(*params));
if (!cd || !isLUKS(cd->type))
return CRYPT_REENCRYPT_INVALID;
if (isLUKS1(cd->type))
return CRYPT_REENCRYPT_NONE;
if (_onlyLUKS2(cd, CRYPT_CD_QUIET, CRYPT_REQUIREMENT_ONLINE_REENCRYPT))
return CRYPT_REENCRYPT_INVALID;
return LUKS2_reencrypt_get_params(&cd->u.luks2.hdr, params);
}
static void __attribute__((destructor)) libcryptsetup_exit(void)
{
crypt_token_unload_external_all(NULL);
crypt_backend_destroy();
crypt_random_exit();
}