e2fsprogs/e2fsck/journal.c

1901 lines
51 KiB
C

/*
* journal.c --- code for handling the "ext3" journal
*
* Copyright (C) 2000 Andreas Dilger
* Copyright (C) 2000 Theodore Ts'o
*
* Parts of the code are based on fs/jfs/journal.c by Stephen C. Tweedie
* Copyright (C) 1999 Red Hat Software
*
* This file may be redistributed under the terms of the
* GNU General Public License version 2 or at your discretion
* any later version.
*/
#include "config.h"
#ifdef HAVE_SYS_MOUNT_H
#include <sys/param.h>
#include <sys/mount.h>
#define MNT_FL (MS_MGC_VAL | MS_RDONLY)
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#define E2FSCK_INCLUDE_INLINE_FUNCS
#include "jfs_user.h"
#include "problem.h"
#include "uuid/uuid.h"
static int bh_count = 0;
/*
* Define USE_INODE_IO to use the inode_io.c / fileio.c codepaths.
* This creates a larger static binary, and a smaller binary using
* shared libraries. It's also probably slightly less CPU-efficient,
* which is why it's not on by default. But, it's a good way of
* testing the functions in inode_io.c and fileio.c.
*/
#undef USE_INODE_IO
/* Checksumming functions */
static int e2fsck_journal_verify_csum_type(journal_t *j,
journal_superblock_t *jsb)
{
if (!jbd2_journal_has_csum_v2or3(j))
return 1;
return jsb->s_checksum_type == JBD2_CRC32C_CHKSUM;
}
static __u32 e2fsck_journal_sb_csum(journal_superblock_t *jsb)
{
__u32 crc, old_crc;
old_crc = jsb->s_checksum;
jsb->s_checksum = 0;
crc = ext2fs_crc32c_le(~0, (unsigned char *)jsb,
sizeof(journal_superblock_t));
jsb->s_checksum = old_crc;
return crc;
}
static int e2fsck_journal_sb_csum_verify(journal_t *j,
journal_superblock_t *jsb)
{
__u32 provided, calculated;
if (!jbd2_journal_has_csum_v2or3(j))
return 1;
provided = ext2fs_be32_to_cpu(jsb->s_checksum);
calculated = e2fsck_journal_sb_csum(jsb);
return provided == calculated;
}
static errcode_t e2fsck_journal_sb_csum_set(journal_t *j,
journal_superblock_t *jsb)
{
__u32 crc;
if (!jbd2_journal_has_csum_v2or3(j))
return 0;
crc = e2fsck_journal_sb_csum(jsb);
jsb->s_checksum = ext2fs_cpu_to_be32(crc);
return 0;
}
/* Kernel compatibility functions for handling the journal. These allow us
* to use the recovery.c file virtually unchanged from the kernel, so we
* don't have to do much to keep kernel and user recovery in sync.
*/
int jbd2_journal_bmap(journal_t *journal, unsigned long block,
unsigned long long *phys)
{
#ifdef USE_INODE_IO
*phys = block;
return 0;
#else
struct inode *inode = journal->j_inode;
errcode_t retval;
blk64_t pblk;
if (!inode) {
*phys = block;
return 0;
}
retval= ext2fs_bmap2(inode->i_ctx->fs, inode->i_ino,
&inode->i_ext2, NULL, 0, (blk64_t) block,
0, &pblk);
*phys = pblk;
return -1 * ((int) retval);
#endif
}
struct buffer_head *getblk(kdev_t kdev, unsigned long long blocknr,
int blocksize)
{
struct buffer_head *bh;
int bufsize = sizeof(*bh) + kdev->k_ctx->fs->blocksize -
sizeof(bh->b_data);
bh = e2fsck_allocate_memory(kdev->k_ctx, bufsize, "block buffer");
if (!bh)
return NULL;
if (journal_enable_debug >= 3)
bh_count++;
jfs_debug(4, "getblk for block %llu (%d bytes)(total %d)\n",
blocknr, blocksize, bh_count);
bh->b_ctx = kdev->k_ctx;
if (kdev->k_dev == K_DEV_FS)
bh->b_io = kdev->k_ctx->fs->io;
else
bh->b_io = kdev->k_ctx->journal_io;
bh->b_size = blocksize;
bh->b_blocknr = blocknr;
return bh;
}
int sync_blockdev(kdev_t kdev)
{
io_channel io;
if (kdev->k_dev == K_DEV_FS)
io = kdev->k_ctx->fs->io;
else
io = kdev->k_ctx->journal_io;
return io_channel_flush(io) ? -EIO : 0;
}
void ll_rw_block(int rw, int op_flags EXT2FS_ATTR((unused)), int nr,
struct buffer_head *bhp[])
{
errcode_t retval;
struct buffer_head *bh;
for (; nr > 0; --nr) {
bh = *bhp++;
if (rw == REQ_OP_READ && !bh->b_uptodate) {
jfs_debug(3, "reading block %llu/%p\n",
bh->b_blocknr, (void *) bh);
retval = io_channel_read_blk64(bh->b_io,
bh->b_blocknr,
1, bh->b_data);
if (retval) {
com_err(bh->b_ctx->device_name, retval,
"while reading block %llu\n",
bh->b_blocknr);
bh->b_err = (int) retval;
continue;
}
bh->b_uptodate = 1;
} else if (rw == REQ_OP_WRITE && bh->b_dirty) {
jfs_debug(3, "writing block %llu/%p\n",
bh->b_blocknr,
(void *) bh);
retval = io_channel_write_blk64(bh->b_io,
bh->b_blocknr,
1, bh->b_data);
if (retval) {
com_err(bh->b_ctx->device_name, retval,
"while writing block %llu\n",
bh->b_blocknr);
bh->b_err = (int) retval;
continue;
}
bh->b_dirty = 0;
bh->b_uptodate = 1;
} else {
jfs_debug(3, "no-op %s for block %llu\n",
rw == REQ_OP_READ ? "read" : "write",
bh->b_blocknr);
}
}
}
void mark_buffer_dirty(struct buffer_head *bh)
{
bh->b_dirty = 1;
}
static void mark_buffer_clean(struct buffer_head * bh)
{
bh->b_dirty = 0;
}
void brelse(struct buffer_head *bh)
{
if (bh->b_dirty)
ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
jfs_debug(3, "freeing block %llu/%p (total %d)\n",
bh->b_blocknr, (void *) bh, --bh_count);
ext2fs_free_mem(&bh);
}
int buffer_uptodate(struct buffer_head *bh)
{
return bh->b_uptodate;
}
void mark_buffer_uptodate(struct buffer_head *bh, int val)
{
bh->b_uptodate = val;
}
void wait_on_buffer(struct buffer_head *bh)
{
if (!bh->b_uptodate)
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
}
static void e2fsck_clear_recover(e2fsck_t ctx, int error)
{
ext2fs_clear_feature_journal_needs_recovery(ctx->fs->super);
/* if we had an error doing journal recovery, we need a full fsck */
if (error)
ctx->fs->super->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
/*
* This is a helper function to check the validity of the journal.
*/
struct process_block_struct {
e2_blkcnt_t last_block;
};
static int process_journal_block(ext2_filsys fs,
blk64_t *block_nr,
e2_blkcnt_t blockcnt,
blk64_t ref_block EXT2FS_ATTR((unused)),
int ref_offset EXT2FS_ATTR((unused)),
void *priv_data)
{
struct process_block_struct *p;
blk64_t blk = *block_nr;
p = (struct process_block_struct *) priv_data;
if (!blk || blk < fs->super->s_first_data_block ||
blk >= ext2fs_blocks_count(fs->super))
return BLOCK_ABORT;
if (blockcnt >= 0)
p->last_block = blockcnt;
return 0;
}
static int ext4_fc_replay_scan(journal_t *j, struct buffer_head *bh,
int off, tid_t expected_tid)
{
e2fsck_t ctx = j->j_fs_dev->k_ctx;
struct e2fsck_fc_replay_state *state;
int ret = JBD2_FC_REPLAY_CONTINUE;
struct ext4_fc_add_range ext;
struct ext4_fc_tl tl;
struct ext4_fc_tail tail;
__u8 *start, *cur, *end, *val;
struct ext4_fc_head head;
struct ext2fs_extent ext2fs_ex = {0};
state = &ctx->fc_replay_state;
start = (__u8 *)bh->b_data;
end = (__u8 *)bh->b_data + j->j_blocksize - 1;
jbd_debug(1, "Scan phase starting, expected %d", expected_tid);
if (state->fc_replay_expected_off == 0) {
memset(state, 0, sizeof(*state));
/* Check if we can stop early */
if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
!= EXT4_FC_TAG_HEAD) {
jbd_debug(1, "Ending early!, not a head tag");
return 0;
}
}
if (off != state->fc_replay_expected_off) {
ret = -EFSCORRUPTED;
goto out_err;
}
state->fc_replay_expected_off++;
for (cur = start; cur < end; cur = cur + le16_to_cpu(tl.fc_len) + sizeof(tl)) {
memcpy(&tl, cur, sizeof(tl));
val = cur + sizeof(tl);
jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
switch (le16_to_cpu(tl.fc_tag)) {
case EXT4_FC_TAG_ADD_RANGE:
memcpy(&ext, val, sizeof(ext));
ret = ext2fs_decode_extent(&ext2fs_ex,
(void *)&ext.fc_ex,
sizeof(ext.fc_ex));
if (ret)
ret = JBD2_FC_REPLAY_STOP;
else
ret = JBD2_FC_REPLAY_CONTINUE;
/* fallthrough */
case EXT4_FC_TAG_DEL_RANGE:
case EXT4_FC_TAG_LINK:
case EXT4_FC_TAG_UNLINK:
case EXT4_FC_TAG_CREAT:
case EXT4_FC_TAG_INODE:
case EXT4_FC_TAG_PAD:
state->fc_cur_tag++;
state->fc_crc = jbd2_chksum(j, state->fc_crc, cur,
sizeof(tl) + ext4_fc_tag_len(&tl));
break;
case EXT4_FC_TAG_TAIL:
state->fc_cur_tag++;
memcpy(&tail, val, sizeof(tail));
state->fc_crc = jbd2_chksum(j, state->fc_crc, cur,
sizeof(tl) +
offsetof(struct ext4_fc_tail,
fc_crc));
jbd_debug(1, "tail tid %d, expected %d\n",
le32_to_cpu(tail.fc_tid), expected_tid);
if (le32_to_cpu(tail.fc_tid) == expected_tid &&
le32_to_cpu(tail.fc_crc) == state->fc_crc) {
state->fc_replay_num_tags = state->fc_cur_tag;
} else {
ret = state->fc_replay_num_tags ?
JBD2_FC_REPLAY_STOP : -EFSBADCRC;
}
state->fc_crc = 0;
break;
case EXT4_FC_TAG_HEAD:
memcpy(&head, val, sizeof(head));
if (le32_to_cpu(head.fc_features) &
~EXT4_FC_SUPPORTED_FEATURES) {
ret = -EOPNOTSUPP;
break;
}
if (le32_to_cpu(head.fc_tid) != expected_tid) {
ret = -EINVAL;
break;
}
state->fc_cur_tag++;
state->fc_crc = jbd2_chksum(j, state->fc_crc, cur,
sizeof(tl) + ext4_fc_tag_len(&tl));
break;
default:
ret = state->fc_replay_num_tags ?
JBD2_FC_REPLAY_STOP : -ECANCELED;
}
if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
break;
}
out_err:
return ret;
}
static int __errcode_to_errno(errcode_t err, const char *func, int line)
{
if (err == 0)
return 0;
fprintf(stderr, "Error \"%s\" encountered in function %s at line %d\n",
error_message(err), func, line);
if (err <= 256)
return -err;
return -EFAULT;
}
#define errcode_to_errno(err) __errcode_to_errno(err, __func__, __LINE__)
#define ex_end(__ex) ((__ex)->e_lblk + (__ex)->e_len - 1)
#define ex_pend(__ex) ((__ex)->e_pblk + (__ex)->e_len - 1)
static int make_room(struct extent_list *list, int i)
{
int ret;
if (list->count == list->size) {
unsigned int new_size = (list->size + 341) *
sizeof(struct ext2fs_extent);
ret = errcode_to_errno(ext2fs_resize_mem(0, new_size, &list->extents));
if (ret)
return ret;
list->size += 341;
}
memmove(&list->extents[i + 1], &list->extents[i],
sizeof(list->extents[0]) * (list->count - i));
list->count++;
return 0;
}
static int ex_compar(const void *arg1, const void *arg2)
{
const struct ext2fs_extent *ex1 = (const struct ext2fs_extent *)arg1;
const struct ext2fs_extent *ex2 = (const struct ext2fs_extent *)arg2;
if (ex1->e_lblk < ex2->e_lblk)
return -1;
if (ex1->e_lblk > ex2->e_lblk)
return 1;
return ex1->e_len - ex2->e_len;
}
static int ex_len_compar(const void *arg1, const void *arg2)
{
const struct ext2fs_extent *ex1 = (const struct ext2fs_extent *)arg1;
const struct ext2fs_extent *ex2 = (const struct ext2fs_extent *)arg2;
if (ex1->e_len < ex2->e_len)
return 1;
if (ex1->e_lblk > ex2->e_lblk)
return -1;
return 0;
}
static void ex_sort_and_merge(struct extent_list *list)
{
unsigned int i, j;
if (list->count < 2)
return;
/*
* Reverse sort by length, that way we strip off all the 0 length
* extents
*/
qsort(list->extents, list->count, sizeof(struct ext2fs_extent),
ex_len_compar);
for (i = 0; i < list->count; i++) {
if (list->extents[i].e_len == 0) {
list->count = i;
break;
}
}
if (list->count == 0)
return;
/* Now sort by logical offset */
qsort(list->extents, list->count, sizeof(list->extents[0]),
ex_compar);
/* Merge adjacent extents if they are logically and physically contiguous */
i = 0;
while (i < list->count - 1) {
if (ex_end(&list->extents[i]) + 1 != list->extents[i + 1].e_lblk ||
ex_pend(&list->extents[i]) + 1 != list->extents[i + 1].e_pblk ||
(list->extents[i].e_flags & EXT2_EXTENT_FLAGS_UNINIT) !=
(list->extents[i + 1].e_flags & EXT2_EXTENT_FLAGS_UNINIT)) {
i++;
continue;
}
list->extents[i].e_len += list->extents[i + 1].e_len;
for (j = i + 1; j < list->count - 1; j++)
list->extents[j] = list->extents[j + 1];
list->count--;
}
}
/* must free blocks that are released */
static int ext4_modify_extent_list(e2fsck_t ctx, struct extent_list *list,
struct ext2fs_extent *ex, int del)
{
int ret, offset;
unsigned int i;
struct ext2fs_extent add_ex = *ex;
/* First let's create a hole from ex->e_lblk of length ex->e_len */
for (i = 0; i < list->count; i++) {
if (ex_end(&list->extents[i]) < add_ex.e_lblk)
continue;
/* Case 1: No overlap */
if (list->extents[i].e_lblk > ex_end(&add_ex))
break;
/*
* Unmark all the blocks in bb now. All the blocks get marked
* before we exit this function.
*/
ext2fs_unmark_block_bitmap_range2(ctx->fs->block_map,
list->extents[i].e_pblk, list->extents[i].e_len);
/* Case 2: Split */
if (list->extents[i].e_lblk < add_ex.e_lblk &&
ex_end(&list->extents[i]) > ex_end(&add_ex)) {
ret = make_room(list, i + 1);
if (ret)
return ret;
list->extents[i + 1] = list->extents[i];
offset = ex_end(&add_ex) + 1 - list->extents[i].e_lblk;
list->extents[i + 1].e_lblk += offset;
list->extents[i + 1].e_pblk += offset;
list->extents[i + 1].e_len -= offset;
list->extents[i].e_len =
add_ex.e_lblk - list->extents[i].e_lblk;
break;
}
/* Case 3: Exact overlap */
if (add_ex.e_lblk <= list->extents[i].e_lblk &&
ex_end(&list->extents[i]) <= ex_end(&add_ex)) {
list->extents[i].e_len = 0;
continue;
}
/* Case 4: Partial overlap */
if (ex_end(&list->extents[i]) > ex_end(&add_ex)) {
offset = ex_end(&add_ex) + 1 - list->extents[i].e_lblk;
list->extents[i].e_lblk += offset;
list->extents[i].e_pblk += offset;
list->extents[i].e_len -= offset;
break;
}
if (ex_end(&add_ex) >= ex_end(&list->extents[i]))
list->extents[i].e_len =
add_ex.e_lblk > list->extents[i].e_lblk ?
add_ex.e_lblk - list->extents[i].e_lblk : 0;
}
if (add_ex.e_len && !del) {
make_room(list, list->count);
list->extents[list->count - 1] = add_ex;
}
ex_sort_and_merge(list);
/* Mark all occupied blocks allocated */
for (i = 0; i < list->count; i++)
ext2fs_mark_block_bitmap_range2(ctx->fs->block_map,
list->extents[i].e_pblk, list->extents[i].e_len);
ext2fs_mark_bb_dirty(ctx->fs);
return 0;
}
static int ext4_add_extent_to_list(e2fsck_t ctx, struct extent_list *list,
struct ext2fs_extent *ex)
{
return ext4_modify_extent_list(ctx, list, ex, 0 /* add */);
}
static int ext4_del_extent_from_list(e2fsck_t ctx, struct extent_list *list,
struct ext2fs_extent *ex)
{
return ext4_modify_extent_list(ctx, list, ex, 1 /* delete */);
}
static int ext4_fc_read_extents(e2fsck_t ctx, ext2_ino_t ino)
{
struct extent_list *extent_list = &ctx->fc_replay_state.fc_extent_list;
if (extent_list->ino == ino)
return 0;
extent_list->ino = ino;
return errcode_to_errno(e2fsck_read_extents(ctx, extent_list));
}
/*
* Flush extents in replay state on disk. @ino is the inode that is going
* to be processed next. So, we hold back flushing of the extent list
* if the next inode that's going to be processed is same as the one with
* cached extents in our replay state. That allows us to gather multiple extents
* for the inode so that we can flush all of them at once and it also saves us
* from continuously growing and shrinking the extent tree.
*/
static void ext4_fc_flush_extents(e2fsck_t ctx, ext2_ino_t ino)
{
struct extent_list *extent_list = &ctx->fc_replay_state.fc_extent_list;
if (extent_list->ino == ino || extent_list->ino == 0)
return;
e2fsck_rewrite_extent_tree(ctx, extent_list);
ext2fs_free_mem(&extent_list->extents);
memset(extent_list, 0, sizeof(*extent_list));
}
/* Helper struct for dentry replay routines */
struct dentry_info_args {
ext2_ino_t parent_ino;
ext2_ino_t ino;
int dname_len;
char *dname;
};
static inline int tl_to_darg(struct dentry_info_args *darg,
struct ext4_fc_tl *tl, __u8 *val)
{
struct ext4_fc_dentry_info fcd;
memcpy(&fcd, val, sizeof(fcd));
darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
darg->ino = le32_to_cpu(fcd.fc_ino);
darg->dname_len = ext4_fc_tag_len(tl) -
sizeof(struct ext4_fc_dentry_info);
darg->dname = malloc(darg->dname_len + 1);
if (!darg->dname)
return -ENOMEM;
memcpy(darg->dname,
val + sizeof(struct ext4_fc_dentry_info),
darg->dname_len);
darg->dname[darg->dname_len] = 0;
jbd_debug(1, "%s: %s, ino %u, parent %u\n",
le16_to_cpu(tl->fc_tag) == EXT4_FC_TAG_CREAT ? "create" :
(le16_to_cpu(tl->fc_tag) == EXT4_FC_TAG_LINK ? "link" :
(le16_to_cpu(tl->fc_tag) == EXT4_FC_TAG_UNLINK ? "unlink" :
"error")), darg->dname, darg->ino, darg->parent_ino);
return 0;
}
static int ext4_fc_handle_unlink(e2fsck_t ctx, struct ext4_fc_tl *tl, __u8 *val)
{
struct dentry_info_args darg;
int ret;
ret = tl_to_darg(&darg, tl, val);
if (ret)
return ret;
ext4_fc_flush_extents(ctx, darg.ino);
ret = errcode_to_errno(ext2fs_unlink(ctx->fs, darg.parent_ino,
darg.dname, darg.ino, 0));
/* It's okay if the above call fails */
free(darg.dname);
return ret;
}
static int ext4_fc_handle_link_and_create(e2fsck_t ctx, struct ext4_fc_tl *tl, __u8 *val)
{
struct dentry_info_args darg;
ext2_filsys fs = ctx->fs;
struct ext2_inode_large inode_large;
int ret, filetype, mode;
ret = tl_to_darg(&darg, tl, val);
if (ret)
return ret;
ext4_fc_flush_extents(ctx, 0);
ret = errcode_to_errno(ext2fs_read_inode(fs, darg.ino,
(struct ext2_inode *)&inode_large));
if (ret)
goto out;
mode = inode_large.i_mode;
if (LINUX_S_ISREG(mode))
filetype = EXT2_FT_REG_FILE;
else if (LINUX_S_ISDIR(mode))
filetype = EXT2_FT_DIR;
else if (LINUX_S_ISCHR(mode))
filetype = EXT2_FT_CHRDEV;
else if (LINUX_S_ISBLK(mode))
filetype = EXT2_FT_BLKDEV;
else if (LINUX_S_ISLNK(mode))
return EXT2_FT_SYMLINK;
else if (LINUX_S_ISFIFO(mode))
filetype = EXT2_FT_FIFO;
else if (LINUX_S_ISSOCK(mode))
filetype = EXT2_FT_SOCK;
else {
ret = -EINVAL;
goto out;
}
/*
* Forcefully unlink if the same name is present and ignore the error
* if any, since this dirent might not exist
*/
ext2fs_unlink(fs, darg.parent_ino, darg.dname, darg.ino,
EXT2FS_UNLINK_FORCE);
ret = errcode_to_errno(
ext2fs_link(fs, darg.parent_ino, darg.dname, darg.ino,
filetype));
out:
free(darg.dname);
return ret;
}
/* This function fixes the i_blocks field in the replayed indoe */
static void ext4_fc_replay_fixup_iblocks(struct ext2_inode_large *ondisk_inode,
struct ext2_inode_large *fc_inode)
{
if (ondisk_inode->i_flags & EXT4_EXTENTS_FL) {
struct ext3_extent_header *eh;
eh = (struct ext3_extent_header *)(&ondisk_inode->i_block[0]);
if (le16_to_cpu(eh->eh_magic) != EXT3_EXT_MAGIC) {
memset(eh, 0, sizeof(*eh));
eh->eh_magic = cpu_to_le16(EXT3_EXT_MAGIC);
eh->eh_max = cpu_to_le16(
(sizeof(ondisk_inode->i_block) -
sizeof(struct ext3_extent_header)) /
sizeof(struct ext3_extent));
}
} else if (ondisk_inode->i_flags & EXT4_INLINE_DATA_FL) {
memcpy(ondisk_inode->i_block, fc_inode->i_block,
sizeof(fc_inode->i_block));
}
}
static int ext4_fc_handle_inode(e2fsck_t ctx, __u8 *val)
{
int ino, inode_len = EXT2_GOOD_OLD_INODE_SIZE;
struct ext2_inode_large *inode = NULL, *fc_inode = NULL;
__le32 fc_ino;
__u8 *fc_raw_inode;
errcode_t err;
blk64_t blks;
memcpy(&fc_ino, val, sizeof(fc_ino));
fc_raw_inode = val + sizeof(fc_ino);
ino = le32_to_cpu(fc_ino);
if (EXT2_INODE_SIZE(ctx->fs->super) > EXT2_GOOD_OLD_INODE_SIZE) {
__u16 extra_isize = ext2fs_le16_to_cpu(
((struct ext2_inode_large *)fc_raw_inode)->i_extra_isize);
if ((extra_isize < (sizeof(inode->i_extra_isize) +
sizeof(inode->i_checksum_hi))) ||
(extra_isize > (EXT2_INODE_SIZE(ctx->fs->super) -
EXT2_GOOD_OLD_INODE_SIZE))) {
err = EFSCORRUPTED;
goto out;
}
inode_len += extra_isize;
}
err = ext2fs_get_mem(inode_len, &inode);
if (err)
goto out;
err = ext2fs_get_mem(inode_len, &fc_inode);
if (err)
goto out;
ext4_fc_flush_extents(ctx, ino);
err = ext2fs_read_inode_full(ctx->fs, ino, (struct ext2_inode *)inode,
inode_len);
if (err)
goto out;
memcpy(fc_inode, fc_raw_inode, inode_len);
#ifdef WORDS_BIGENDIAN
ext2fs_swap_inode_full(ctx->fs, fc_inode, fc_inode, 0, inode_len);
#endif
memcpy(inode, fc_inode, offsetof(struct ext2_inode_large, i_block));
memcpy(&inode->i_generation, &fc_inode->i_generation,
inode_len - offsetof(struct ext2_inode_large, i_generation));
ext4_fc_replay_fixup_iblocks(inode, fc_inode);
err = ext2fs_count_blocks(ctx->fs, ino, EXT2_INODE(inode), &blks);
if (err)
goto out;
ext2fs_iblk_set(ctx->fs, EXT2_INODE(inode), blks);
ext2fs_inode_csum_set(ctx->fs, ino, inode);
err = ext2fs_write_inode_full(ctx->fs, ino, (struct ext2_inode *)inode,
inode_len);
if (err)
goto out;
if (inode->i_links_count)
ext2fs_mark_inode_bitmap2(ctx->fs->inode_map, ino);
else
ext2fs_unmark_inode_bitmap2(ctx->fs->inode_map, ino);
ext2fs_mark_ib_dirty(ctx->fs);
out:
ext2fs_free_mem(&inode);
ext2fs_free_mem(&fc_inode);
return errcode_to_errno(err);
}
/*
* Handle add extent replay tag.
*/
static int ext4_fc_handle_add_extent(e2fsck_t ctx, __u8 *val)
{
struct ext2fs_extent extent;
struct ext4_fc_add_range add_range;
ext2_ino_t ino;
int ret = 0;
memcpy(&add_range, val, sizeof(add_range));
ino = le32_to_cpu(add_range.fc_ino);
ext4_fc_flush_extents(ctx, ino);
ret = ext4_fc_read_extents(ctx, ino);
if (ret)
return ret;
memset(&extent, 0, sizeof(extent));
ret = errcode_to_errno(ext2fs_decode_extent(
&extent, (void *)add_range.fc_ex,
sizeof(add_range.fc_ex)));
if (ret)
return ret;
return ext4_add_extent_to_list(ctx,
&ctx->fc_replay_state.fc_extent_list, &extent);
}
/*
* Handle delete logical range replay tag.
*/
static int ext4_fc_handle_del_range(e2fsck_t ctx, __u8 *val)
{
struct ext2fs_extent extent;
struct ext4_fc_del_range del_range;
int ret, ino;
memcpy(&del_range, val, sizeof(del_range));
ino = le32_to_cpu(del_range.fc_ino);
ext4_fc_flush_extents(ctx, ino);
memset(&extent, 0, sizeof(extent));
extent.e_lblk = le32_to_cpu(del_range.fc_lblk);
extent.e_len = le32_to_cpu(del_range.fc_len);
ret = ext4_fc_read_extents(ctx, ino);
if (ret)
return ret;
return ext4_del_extent_from_list(ctx,
&ctx->fc_replay_state.fc_extent_list, &extent);
}
/*
* Main recovery path entry point. This function returns JBD2_FC_REPLAY_CONTINUE
* to indicate that it is expecting more fast commit blocks. It returns
* JBD2_FC_REPLAY_STOP to indicate that replay is done.
*/
static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
enum passtype pass, int off, tid_t expected_tid)
{
e2fsck_t ctx = journal->j_fs_dev->k_ctx;
struct e2fsck_fc_replay_state *state = &ctx->fc_replay_state;
int ret = JBD2_FC_REPLAY_CONTINUE;
struct ext4_fc_tl tl;
__u8 *start, *end, *cur, *val;
if (pass == PASS_SCAN) {
state->fc_current_pass = PASS_SCAN;
return ext4_fc_replay_scan(journal, bh, off, expected_tid);
}
if (state->fc_replay_num_tags == 0)
goto replay_done;
if (state->fc_current_pass != pass) {
/* Starting replay phase */
state->fc_current_pass = pass;
/* We will reset checksums */
ctx->fs->flags |= EXT2_FLAG_IGNORE_CSUM_ERRORS;
ret = errcode_to_errno(ext2fs_read_bitmaps(ctx->fs));
if (ret) {
jbd_debug(1, "Error %d while reading bitmaps\n", ret);
return ret;
}
state->fc_super_state = ctx->fs->super->s_state;
/*
* Mark the file system to indicate it contains errors. That's
* because the updates performed by fast commit replay code are
* not atomic and may result in inconsistent file system if it
* crashes before the replay is complete.
*/
ctx->fs->super->s_state |= EXT2_ERROR_FS;
ctx->fs->super->s_state |= EXT4_FC_REPLAY;
ext2fs_mark_super_dirty(ctx->fs);
ext2fs_flush(ctx->fs);
}
start = (__u8 *)bh->b_data;
end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
for (cur = start; cur < end; cur = cur + le16_to_cpu(tl.fc_len) + sizeof(tl)) {
memcpy(&tl, cur, sizeof(tl));
val = cur + sizeof(tl);
if (state->fc_replay_num_tags == 0)
goto replay_done;
jbd_debug(3, "Replay phase processing %s tag\n",
tag2str(le16_to_cpu(tl.fc_tag)));
state->fc_replay_num_tags--;
switch (le16_to_cpu(tl.fc_tag)) {
case EXT4_FC_TAG_CREAT:
case EXT4_FC_TAG_LINK:
ret = ext4_fc_handle_link_and_create(ctx, &tl, val);
break;
case EXT4_FC_TAG_UNLINK:
ret = ext4_fc_handle_unlink(ctx, &tl, val);
break;
case EXT4_FC_TAG_ADD_RANGE:
ret = ext4_fc_handle_add_extent(ctx, val);
break;
case EXT4_FC_TAG_DEL_RANGE:
ret = ext4_fc_handle_del_range(ctx, val);
break;
case EXT4_FC_TAG_INODE:
ret = ext4_fc_handle_inode(ctx, val);
break;
case EXT4_FC_TAG_TAIL:
ext4_fc_flush_extents(ctx, 0);
case EXT4_FC_TAG_PAD:
case EXT4_FC_TAG_HEAD:
break;
default:
ret = -ECANCELED;
break;
}
if (ret < 0)
break;
ret = JBD2_FC_REPLAY_CONTINUE;
}
return ret;
replay_done:
jbd_debug(1, "End of fast commit replay\n");
if (state->fc_current_pass != pass)
return JBD2_FC_REPLAY_STOP;
ext2fs_calculate_summary_stats(ctx->fs, 0 /* update bg also */);
ext2fs_write_block_bitmap(ctx->fs);
ext2fs_write_inode_bitmap(ctx->fs);
ext2fs_mark_super_dirty(ctx->fs);
ext2fs_set_gdt_csum(ctx->fs);
ctx->fs->super->s_state = state->fc_super_state;
ext2fs_flush(ctx->fs);
return JBD2_FC_REPLAY_STOP;
}
static errcode_t e2fsck_get_journal(e2fsck_t ctx, journal_t **ret_journal)
{
struct process_block_struct pb;
struct ext2_super_block *sb = ctx->fs->super;
struct ext2_super_block jsuper;
struct problem_context pctx;
struct buffer_head *bh;
struct inode *j_inode = NULL;
struct kdev_s *dev_fs = NULL, *dev_journal;
const char *journal_name = 0;
journal_t *journal = NULL;
errcode_t retval = 0;
io_manager io_ptr = 0;
unsigned long long start = 0;
int ret;
int ext_journal = 0;
int tried_backup_jnl = 0;
clear_problem_context(&pctx);
journal = e2fsck_allocate_memory(ctx, sizeof(journal_t), "journal");
if (!journal) {
return EXT2_ET_NO_MEMORY;
}
dev_fs = e2fsck_allocate_memory(ctx, 2*sizeof(struct kdev_s), "kdev");
if (!dev_fs) {
retval = EXT2_ET_NO_MEMORY;
goto errout;
}
dev_journal = dev_fs+1;
dev_fs->k_ctx = dev_journal->k_ctx = ctx;
dev_fs->k_dev = K_DEV_FS;
dev_journal->k_dev = K_DEV_JOURNAL;
journal->j_dev = dev_journal;
journal->j_fs_dev = dev_fs;
journal->j_inode = NULL;
journal->j_blocksize = ctx->fs->blocksize;
if (uuid_is_null(sb->s_journal_uuid)) {
/*
* The full set of superblock sanity checks haven't
* been performed yet, so we need to do some basic
* checks here to avoid potential array overruns.
*/
if (!sb->s_journal_inum ||
(sb->s_journal_inum >
(ctx->fs->group_desc_count * sb->s_inodes_per_group))) {
retval = EXT2_ET_BAD_INODE_NUM;
goto errout;
}
j_inode = e2fsck_allocate_memory(ctx, sizeof(*j_inode),
"journal inode");
if (!j_inode) {
retval = EXT2_ET_NO_MEMORY;
goto errout;
}
j_inode->i_ctx = ctx;
j_inode->i_ino = sb->s_journal_inum;
if ((retval = ext2fs_read_inode(ctx->fs,
sb->s_journal_inum,
&j_inode->i_ext2))) {
try_backup_journal:
if (sb->s_jnl_backup_type != EXT3_JNL_BACKUP_BLOCKS ||
tried_backup_jnl)
goto errout;
memset(&j_inode->i_ext2, 0, sizeof(struct ext2_inode));
memcpy(&j_inode->i_ext2.i_block[0], sb->s_jnl_blocks,
EXT2_N_BLOCKS*4);
j_inode->i_ext2.i_size_high = sb->s_jnl_blocks[15];
j_inode->i_ext2.i_size = sb->s_jnl_blocks[16];
j_inode->i_ext2.i_links_count = 1;
j_inode->i_ext2.i_mode = LINUX_S_IFREG | 0600;
e2fsck_use_inode_shortcuts(ctx, 1);
ctx->stashed_ino = j_inode->i_ino;
ctx->stashed_inode = &j_inode->i_ext2;
tried_backup_jnl++;
}
if (!j_inode->i_ext2.i_links_count ||
!LINUX_S_ISREG(j_inode->i_ext2.i_mode) ||
(j_inode->i_ext2.i_flags & EXT4_ENCRYPT_FL)) {
retval = EXT2_ET_NO_JOURNAL;
goto try_backup_journal;
}
if (EXT2_I_SIZE(&j_inode->i_ext2) / journal->j_blocksize <
JBD2_MIN_JOURNAL_BLOCKS) {
retval = EXT2_ET_JOURNAL_TOO_SMALL;
goto try_backup_journal;
}
pb.last_block = -1;
retval = ext2fs_block_iterate3(ctx->fs, j_inode->i_ino,
BLOCK_FLAG_HOLE, 0,
process_journal_block, &pb);
if ((pb.last_block + 1) * ctx->fs->blocksize <
(int) EXT2_I_SIZE(&j_inode->i_ext2)) {
retval = EXT2_ET_JOURNAL_TOO_SMALL;
goto try_backup_journal;
}
if (tried_backup_jnl && !(ctx->options & E2F_OPT_READONLY)) {
retval = ext2fs_write_inode(ctx->fs, sb->s_journal_inum,
&j_inode->i_ext2);
if (retval)
goto errout;
}
journal->j_total_len = EXT2_I_SIZE(&j_inode->i_ext2) /
journal->j_blocksize;
#ifdef USE_INODE_IO
retval = ext2fs_inode_io_intern2(ctx->fs, sb->s_journal_inum,
&j_inode->i_ext2,
&journal_name);
if (retval)
goto errout;
io_ptr = inode_io_manager;
#else
journal->j_inode = j_inode;
ctx->journal_io = ctx->fs->io;
if ((ret = jbd2_journal_bmap(journal, 0, &start)) != 0) {
retval = (errcode_t) (-1 * ret);
goto errout;
}
#endif
} else {
ext_journal = 1;
if (!ctx->journal_name) {
char uuid[37];
uuid_unparse(sb->s_journal_uuid, uuid);
ctx->journal_name = blkid_get_devname(ctx->blkid,
"UUID", uuid);
if (!ctx->journal_name)
ctx->journal_name = blkid_devno_to_devname(sb->s_journal_dev);
}
journal_name = ctx->journal_name;
if (!journal_name) {
fix_problem(ctx, PR_0_CANT_FIND_JOURNAL, &pctx);
retval = EXT2_ET_LOAD_EXT_JOURNAL;
goto errout;
}
jfs_debug(1, "Using journal file %s\n", journal_name);
io_ptr = unix_io_manager;
}
#if 0
test_io_backing_manager = io_ptr;
io_ptr = test_io_manager;
#endif
#ifndef USE_INODE_IO
if (ext_journal)
#endif
{
int flags = IO_FLAG_RW;
if (!(ctx->mount_flags & EXT2_MF_ISROOT &&
ctx->mount_flags & EXT2_MF_READONLY))
flags |= IO_FLAG_EXCLUSIVE;
if ((ctx->mount_flags & EXT2_MF_READONLY) &&
(ctx->options & E2F_OPT_FORCE))
flags &= ~IO_FLAG_EXCLUSIVE;
retval = io_ptr->open(journal_name, flags,
&ctx->journal_io);
}
if (retval)
goto errout;
io_channel_set_blksize(ctx->journal_io, ctx->fs->blocksize);
if (ext_journal) {
blk64_t maxlen;
start = ext2fs_journal_sb_start(ctx->fs->blocksize) - 1;
bh = getblk(dev_journal, start, ctx->fs->blocksize);
if (!bh) {
retval = EXT2_ET_NO_MEMORY;
goto errout;
}
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
if ((retval = bh->b_err) != 0) {
brelse(bh);
goto errout;
}
memcpy(&jsuper, start ? bh->b_data : bh->b_data + SUPERBLOCK_OFFSET,
sizeof(jsuper));
#ifdef WORDS_BIGENDIAN
if (jsuper.s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC))
ext2fs_swap_super(&jsuper);
#endif
if (jsuper.s_magic != EXT2_SUPER_MAGIC ||
!ext2fs_has_feature_journal_dev(&jsuper)) {
fix_problem(ctx, PR_0_EXT_JOURNAL_BAD_SUPER, &pctx);
retval = EXT2_ET_LOAD_EXT_JOURNAL;
brelse(bh);
goto errout;
}
/* Make sure the journal UUID is correct */
if (memcmp(jsuper.s_uuid, ctx->fs->super->s_journal_uuid,
sizeof(jsuper.s_uuid))) {
fix_problem(ctx, PR_0_JOURNAL_BAD_UUID, &pctx);
retval = EXT2_ET_LOAD_EXT_JOURNAL;
brelse(bh);
goto errout;
}
/* Check the superblock checksum */
if (ext2fs_has_feature_metadata_csum(&jsuper)) {
struct struct_ext2_filsys fsx;
struct ext2_super_block superx;
void *p;
p = start ? bh->b_data : bh->b_data + SUPERBLOCK_OFFSET;
memcpy(&fsx, ctx->fs, sizeof(fsx));
memcpy(&superx, ctx->fs->super, sizeof(superx));
fsx.super = &superx;
ext2fs_set_feature_metadata_csum(fsx.super);
if (!ext2fs_superblock_csum_verify(&fsx, p) &&
fix_problem(ctx, PR_0_EXT_JOURNAL_SUPER_CSUM_INVALID,
&pctx)) {
ext2fs_superblock_csum_set(&fsx, p);
mark_buffer_dirty(bh);
}
}
brelse(bh);
maxlen = ext2fs_blocks_count(&jsuper);
journal->j_total_len = (maxlen < 1ULL << 32) ? maxlen : (1ULL << 32) - 1;
start++;
}
if (!(bh = getblk(dev_journal, start, journal->j_blocksize))) {
retval = EXT2_ET_NO_MEMORY;
goto errout;
}
journal->j_sb_buffer = bh;
journal->j_superblock = (journal_superblock_t *)bh->b_data;
if (ext2fs_has_feature_fast_commit(ctx->fs->super))
journal->j_fc_replay_callback = ext4_fc_replay;
else
journal->j_fc_replay_callback = NULL;
#ifdef USE_INODE_IO
if (j_inode)
ext2fs_free_mem(&j_inode);
#endif
*ret_journal = journal;
e2fsck_use_inode_shortcuts(ctx, 0);
return 0;
errout:
e2fsck_use_inode_shortcuts(ctx, 0);
if (dev_fs)
ext2fs_free_mem(&dev_fs);
if (j_inode)
ext2fs_free_mem(&j_inode);
if (journal)
ext2fs_free_mem(&journal);
return retval;
}
static errcode_t e2fsck_journal_fix_bad_inode(e2fsck_t ctx,
struct problem_context *pctx)
{
struct ext2_super_block *sb = ctx->fs->super;
int recover = ext2fs_has_feature_journal_needs_recovery(ctx->fs->super);
int has_journal = ext2fs_has_feature_journal(ctx->fs->super);
if (has_journal || sb->s_journal_inum) {
/* The journal inode is bogus, remove and force full fsck */
pctx->ino = sb->s_journal_inum;
if (fix_problem(ctx, PR_0_JOURNAL_BAD_INODE, pctx)) {
if (has_journal && sb->s_journal_inum)
printf("*** journal has been deleted ***\n\n");
ext2fs_clear_feature_journal(sb);
sb->s_journal_inum = 0;
memset(sb->s_jnl_blocks, 0, sizeof(sb->s_jnl_blocks));
ctx->flags |= E2F_FLAG_JOURNAL_INODE;
ctx->fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
e2fsck_clear_recover(ctx, 1);
return 0;
}
return EXT2_ET_CORRUPT_JOURNAL_SB;
} else if (recover) {
if (fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, pctx)) {
e2fsck_clear_recover(ctx, 1);
return 0;
}
return EXT2_ET_UNSUPP_FEATURE;
}
return 0;
}
#define V1_SB_SIZE 0x0024
static void clear_v2_journal_fields(journal_t *journal)
{
e2fsck_t ctx = journal->j_dev->k_ctx;
struct problem_context pctx;
clear_problem_context(&pctx);
if (!fix_problem(ctx, PR_0_CLEAR_V2_JOURNAL, &pctx))
return;
ctx->flags |= E2F_FLAG_PROBLEMS_FIXED;
memset(((char *) journal->j_superblock) + V1_SB_SIZE, 0,
ctx->fs->blocksize-V1_SB_SIZE);
mark_buffer_dirty(journal->j_sb_buffer);
}
static errcode_t e2fsck_journal_load(journal_t *journal)
{
e2fsck_t ctx = journal->j_dev->k_ctx;
journal_superblock_t *jsb;
struct buffer_head *jbh = journal->j_sb_buffer;
struct problem_context pctx;
clear_problem_context(&pctx);
ll_rw_block(REQ_OP_READ, 0, 1, &jbh);
if (jbh->b_err) {
com_err(ctx->device_name, jbh->b_err, "%s",
_("reading journal superblock\n"));
return jbh->b_err;
}
jsb = journal->j_superblock;
/* If we don't even have JBD2_MAGIC, we probably have a wrong inode */
if (jsb->s_header.h_magic != htonl(JBD2_MAGIC_NUMBER))
return e2fsck_journal_fix_bad_inode(ctx, &pctx);
switch (ntohl(jsb->s_header.h_blocktype)) {
case JBD2_SUPERBLOCK_V1:
journal->j_format_version = 1;
if (jsb->s_feature_compat ||
jsb->s_feature_incompat ||
jsb->s_feature_ro_compat ||
jsb->s_nr_users)
clear_v2_journal_fields(journal);
break;
case JBD2_SUPERBLOCK_V2:
journal->j_format_version = 2;
if (ntohl(jsb->s_nr_users) > 1 &&
uuid_is_null(ctx->fs->super->s_journal_uuid))
clear_v2_journal_fields(journal);
if (ntohl(jsb->s_nr_users) > 1) {
fix_problem(ctx, PR_0_JOURNAL_UNSUPP_MULTIFS, &pctx);
return EXT2_ET_JOURNAL_UNSUPP_VERSION;
}
break;
/*
* These should never appear in a journal super block, so if
* they do, the journal is badly corrupted.
*/
case JBD2_DESCRIPTOR_BLOCK:
case JBD2_COMMIT_BLOCK:
case JBD2_REVOKE_BLOCK:
return EXT2_ET_CORRUPT_JOURNAL_SB;
/* If we don't understand the superblock major type, but there
* is a magic number, then it is likely to be a new format we
* just don't understand, so leave it alone. */
default:
return EXT2_ET_JOURNAL_UNSUPP_VERSION;
}
if (JBD2_HAS_INCOMPAT_FEATURE(journal, ~JBD2_KNOWN_INCOMPAT_FEATURES))
return EXT2_ET_UNSUPP_FEATURE;
if (JBD2_HAS_RO_COMPAT_FEATURE(journal, ~JBD2_KNOWN_ROCOMPAT_FEATURES))
return EXT2_ET_RO_UNSUPP_FEATURE;
/* Checksum v1-3 are mutually exclusive features. */
if (jbd2_has_feature_csum2(journal) && jbd2_has_feature_csum3(journal))
return EXT2_ET_CORRUPT_JOURNAL_SB;
if (jbd2_journal_has_csum_v2or3(journal) &&
jbd2_has_feature_checksum(journal))
return EXT2_ET_CORRUPT_JOURNAL_SB;
if (!e2fsck_journal_verify_csum_type(journal, jsb) ||
!e2fsck_journal_sb_csum_verify(journal, jsb))
return EXT2_ET_CORRUPT_JOURNAL_SB;
if (jbd2_journal_has_csum_v2or3(journal))
journal->j_csum_seed = jbd2_chksum(journal, ~0, jsb->s_uuid,
sizeof(jsb->s_uuid));
/* We have now checked whether we know enough about the journal
* format to be able to proceed safely, so any other checks that
* fail we should attempt to recover from. */
if (jsb->s_blocksize != htonl(journal->j_blocksize)) {
com_err(ctx->program_name, EXT2_ET_CORRUPT_JOURNAL_SB,
_("%s: no valid journal superblock found\n"),
ctx->device_name);
return EXT2_ET_CORRUPT_JOURNAL_SB;
}
if (ntohl(jsb->s_maxlen) < journal->j_total_len)
journal->j_total_len = ntohl(jsb->s_maxlen);
else if (ntohl(jsb->s_maxlen) > journal->j_total_len) {
com_err(ctx->program_name, EXT2_ET_CORRUPT_JOURNAL_SB,
_("%s: journal too short\n"),
ctx->device_name);
return EXT2_ET_CORRUPT_JOURNAL_SB;
}
journal->j_tail_sequence = ntohl(jsb->s_sequence);
journal->j_transaction_sequence = journal->j_tail_sequence;
journal->j_tail = ntohl(jsb->s_start);
journal->j_first = ntohl(jsb->s_first);
if (jbd2_has_feature_fast_commit(journal)) {
if (ntohl(jsb->s_maxlen) - jbd2_journal_get_num_fc_blks(jsb)
< JBD2_MIN_JOURNAL_BLOCKS) {
com_err(ctx->program_name, EXT2_ET_CORRUPT_JOURNAL_SB,
_("%s: incorrect fast commit blocks\n"),
ctx->device_name);
return EXT2_ET_CORRUPT_JOURNAL_SB;
}
journal->j_fc_last = ntohl(jsb->s_maxlen);
journal->j_last = journal->j_fc_last -
jbd2_journal_get_num_fc_blks(jsb);
journal->j_fc_first = journal->j_last + 1;
} else {
journal->j_last = ntohl(jsb->s_maxlen);
}
return 0;
}
static void e2fsck_journal_reset_super(e2fsck_t ctx, journal_superblock_t *jsb,
journal_t *journal)
{
char *p;
union {
uuid_t uuid;
__u32 val[4];
} u;
__u32 new_seq = 0;
int i;
/* Leave a valid existing V1 superblock signature alone.
* Anything unrecognisable we overwrite with a new V2
* signature. */
if (jsb->s_header.h_magic != htonl(JBD2_MAGIC_NUMBER) ||
jsb->s_header.h_blocktype != htonl(JBD2_SUPERBLOCK_V1)) {
jsb->s_header.h_magic = htonl(JBD2_MAGIC_NUMBER);
jsb->s_header.h_blocktype = htonl(JBD2_SUPERBLOCK_V2);
}
/* Zero out everything else beyond the superblock header */
p = ((char *) jsb) + sizeof(journal_header_t);
memset (p, 0, ctx->fs->blocksize-sizeof(journal_header_t));
jsb->s_blocksize = htonl(ctx->fs->blocksize);
jsb->s_maxlen = htonl(journal->j_total_len);
jsb->s_first = htonl(1);
/* Initialize the journal sequence number so that there is "no"
* chance we will find old "valid" transactions in the journal.
* This avoids the need to zero the whole journal (slow to do,
* and risky when we are just recovering the filesystem).
*/
uuid_generate(u.uuid);
for (i = 0; i < 4; i ++)
new_seq ^= u.val[i];
jsb->s_sequence = htonl(new_seq);
e2fsck_journal_sb_csum_set(journal, jsb);
mark_buffer_dirty(journal->j_sb_buffer);
ll_rw_block(REQ_OP_WRITE, 0, 1, &journal->j_sb_buffer);
}
static errcode_t e2fsck_journal_fix_corrupt_super(e2fsck_t ctx,
journal_t *journal,
struct problem_context *pctx)
{
struct ext2_super_block *sb = ctx->fs->super;
int recover = ext2fs_has_feature_journal_needs_recovery(ctx->fs->super);
if (ext2fs_has_feature_journal(sb)) {
if (fix_problem(ctx, PR_0_JOURNAL_BAD_SUPER, pctx)) {
e2fsck_journal_reset_super(ctx, journal->j_superblock,
journal);
journal->j_transaction_sequence = 1;
e2fsck_clear_recover(ctx, recover);
return 0;
}
return EXT2_ET_CORRUPT_JOURNAL_SB;
} else if (e2fsck_journal_fix_bad_inode(ctx, pctx))
return EXT2_ET_CORRUPT_JOURNAL_SB;
return 0;
}
static void e2fsck_journal_release(e2fsck_t ctx, journal_t *journal,
int reset, int drop)
{
journal_superblock_t *jsb;
if (drop)
mark_buffer_clean(journal->j_sb_buffer);
else if (!(ctx->options & E2F_OPT_READONLY)) {
jsb = journal->j_superblock;
jsb->s_sequence = htonl(journal->j_tail_sequence);
if (reset)
jsb->s_start = 0; /* this marks the journal as empty */
e2fsck_journal_sb_csum_set(journal, jsb);
mark_buffer_dirty(journal->j_sb_buffer);
}
brelse(journal->j_sb_buffer);
if (ctx->journal_io) {
if (ctx->fs && ctx->fs->io != ctx->journal_io)
io_channel_close(ctx->journal_io);
ctx->journal_io = 0;
}
#ifndef USE_INODE_IO
if (journal->j_inode)
ext2fs_free_mem(&journal->j_inode);
#endif
if (journal->j_fs_dev)
ext2fs_free_mem(&journal->j_fs_dev);
ext2fs_free_mem(&journal);
}
/*
* This function makes sure that the superblock fields regarding the
* journal are consistent.
*/
errcode_t e2fsck_check_ext3_journal(e2fsck_t ctx)
{
struct ext2_super_block *sb = ctx->fs->super;
journal_t *journal;
int recover = ext2fs_has_feature_journal_needs_recovery(ctx->fs->super);
struct problem_context pctx;
problem_t problem;
int reset = 0, force_fsck = 0;
errcode_t retval;
/* If we don't have any journal features, don't do anything more */
if (!ext2fs_has_feature_journal(sb) &&
!recover && sb->s_journal_inum == 0 && sb->s_journal_dev == 0 &&
uuid_is_null(sb->s_journal_uuid))
return 0;
clear_problem_context(&pctx);
pctx.num = sb->s_journal_inum;
retval = e2fsck_get_journal(ctx, &journal);
if (retval) {
if ((retval == EXT2_ET_BAD_INODE_NUM) ||
(retval == EXT2_ET_BAD_BLOCK_NUM) ||
(retval == EXT2_ET_JOURNAL_TOO_SMALL) ||
(retval == EXT2_ET_NO_JOURNAL))
return e2fsck_journal_fix_bad_inode(ctx, &pctx);
return retval;
}
retval = e2fsck_journal_load(journal);
if (retval) {
if ((retval == EXT2_ET_CORRUPT_JOURNAL_SB) ||
((retval == EXT2_ET_UNSUPP_FEATURE) &&
(!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_INCOMPAT,
&pctx))) ||
((retval == EXT2_ET_RO_UNSUPP_FEATURE) &&
(!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_ROCOMPAT,
&pctx))) ||
((retval == EXT2_ET_JOURNAL_UNSUPP_VERSION) &&
(!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_VERSION, &pctx))))
retval = e2fsck_journal_fix_corrupt_super(ctx, journal,
&pctx);
e2fsck_journal_release(ctx, journal, 0, 1);
return retval;
}
/*
* We want to make the flags consistent here. We will not leave with
* needs_recovery set but has_journal clear. We can't get in a loop
* with -y, -n, or -p, only if a user isn't making up their mind.
*/
no_has_journal:
if (!ext2fs_has_feature_journal(sb)) {
recover = ext2fs_has_feature_journal_needs_recovery(sb);
if (fix_problem(ctx, PR_0_JOURNAL_HAS_JOURNAL, &pctx)) {
if (recover &&
!fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, &pctx))
goto no_has_journal;
/*
* Need a full fsck if we are releasing a
* journal stored on a reserved inode.
*/
force_fsck = recover ||
(sb->s_journal_inum < EXT2_FIRST_INODE(sb));
/* Clear all of the journal fields */
sb->s_journal_inum = 0;
sb->s_journal_dev = 0;
memset(sb->s_journal_uuid, 0,
sizeof(sb->s_journal_uuid));
e2fsck_clear_recover(ctx, force_fsck);
} else if (!(ctx->options & E2F_OPT_READONLY)) {
ext2fs_set_feature_journal(sb);
ctx->fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
ext2fs_mark_super_dirty(ctx->fs);
}
}
if (ext2fs_has_feature_journal(sb) &&
!ext2fs_has_feature_journal_needs_recovery(sb) &&
journal->j_superblock->s_start != 0) {
/* Print status information */
fix_problem(ctx, PR_0_JOURNAL_RECOVERY_CLEAR, &pctx);
if (ctx->superblock)
problem = PR_0_JOURNAL_RUN_DEFAULT;
else
problem = PR_0_JOURNAL_RUN;
if (fix_problem(ctx, problem, &pctx)) {
ctx->options |= E2F_OPT_FORCE;
ext2fs_set_feature_journal_needs_recovery(sb);
ext2fs_mark_super_dirty(ctx->fs);
} else if (fix_problem(ctx,
PR_0_JOURNAL_RESET_JOURNAL, &pctx)) {
reset = 1;
sb->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
/*
* If the user answers no to the above question, we
* ignore the fact that journal apparently has data;
* accidentally replaying over valid data would be far
* worse than skipping a questionable recovery.
*
* XXX should we abort with a fatal error here? What
* will the ext3 kernel code do if a filesystem with
* !NEEDS_RECOVERY but with a non-zero
* journal->j_superblock->s_start is mounted?
*/
}
/*
* If we don't need to do replay the journal, check to see if
* the journal's errno is set; if so, we need to mark the file
* system as being corrupt and clear the journal's s_errno.
*/
if (!ext2fs_has_feature_journal_needs_recovery(sb) &&
journal->j_superblock->s_errno) {
ctx->fs->super->s_state |= EXT2_ERROR_FS;
ext2fs_mark_super_dirty(ctx->fs);
journal->j_superblock->s_errno = 0;
e2fsck_journal_sb_csum_set(journal, journal->j_superblock);
mark_buffer_dirty(journal->j_sb_buffer);
}
e2fsck_journal_release(ctx, journal, reset, 0);
return retval;
}
static errcode_t recover_ext3_journal(e2fsck_t ctx)
{
struct problem_context pctx;
journal_t *journal;
errcode_t retval;
clear_problem_context(&pctx);
retval = jbd2_journal_init_revoke_record_cache();
if (retval)
return retval;
retval = jbd2_journal_init_revoke_table_cache();
if (retval)
return retval;
retval = e2fsck_get_journal(ctx, &journal);
if (retval)
return retval;
retval = e2fsck_journal_load(journal);
if (retval)
goto errout;
retval = jbd2_journal_init_revoke(journal, 1024);
if (retval)
goto errout;
retval = -jbd2_journal_recover(journal);
if (retval)
goto errout;
if (journal->j_failed_commit) {
pctx.ino = journal->j_failed_commit;
fix_problem(ctx, PR_0_JNL_TXN_CORRUPT, &pctx);
journal->j_superblock->s_errno = -EINVAL;
mark_buffer_dirty(journal->j_sb_buffer);
}
journal->j_tail_sequence = journal->j_transaction_sequence;
errout:
jbd2_journal_destroy_revoke(journal);
jbd2_journal_destroy_revoke_record_cache();
jbd2_journal_destroy_revoke_table_cache();
e2fsck_journal_release(ctx, journal, 1, 0);
return retval;
}
errcode_t e2fsck_run_ext3_journal(e2fsck_t ctx)
{
io_manager io_ptr = ctx->fs->io->manager;
int blocksize = ctx->fs->blocksize;
errcode_t retval, recover_retval;
io_stats stats = 0;
unsigned long long kbytes_written = 0;
printf(_("%s: recovering journal\n"), ctx->device_name);
if (ctx->options & E2F_OPT_READONLY) {
printf(_("%s: won't do journal recovery while read-only\n"),
ctx->device_name);
return EXT2_ET_FILE_RO;
}
if (ctx->fs->flags & EXT2_FLAG_DIRTY)
ext2fs_flush(ctx->fs); /* Force out any modifications */
recover_retval = recover_ext3_journal(ctx);
/*
* Reload the filesystem context to get up-to-date data from disk
* because journal recovery will change the filesystem under us.
*/
if (ctx->fs->super->s_kbytes_written &&
ctx->fs->io->manager->get_stats)
ctx->fs->io->manager->get_stats(ctx->fs->io, &stats);
if (stats && stats->bytes_written)
kbytes_written = stats->bytes_written >> 10;
ext2fs_mmp_stop(ctx->fs);
ext2fs_free(ctx->fs);
retval = ext2fs_open(ctx->filesystem_name, ctx->openfs_flags,
ctx->superblock, blocksize, io_ptr,
&ctx->fs);
if (retval) {
com_err(ctx->program_name, retval,
_("while trying to re-open %s"),
ctx->device_name);
fatal_error(ctx, 0);
}
ctx->fs->priv_data = ctx;
ctx->fs->now = ctx->now;
ctx->fs->flags |= EXT2_FLAG_MASTER_SB_ONLY;
ctx->fs->super->s_kbytes_written += kbytes_written;
/* Set the superblock flags */
e2fsck_clear_recover(ctx, recover_retval != 0);
/*
* Do one last sanity check, and propagate journal->s_errno to
* the EXT2_ERROR_FS flag in the fs superblock if needed.
*/
retval = e2fsck_check_ext3_journal(ctx);
return retval ? retval : recover_retval;
}
/*
* This function will move the journal inode from a visible file in
* the filesystem directory hierarchy to the reserved inode if necessary.
*/
static const char * const journal_names[] = {
".journal", "journal", ".journal.dat", "journal.dat", 0 };
void e2fsck_move_ext3_journal(e2fsck_t ctx)
{
struct ext2_super_block *sb = ctx->fs->super;
struct problem_context pctx;
struct ext2_inode inode;
ext2_filsys fs = ctx->fs;
ext2_ino_t ino;
errcode_t retval;
const char * const * cpp;
dgrp_t group;
int mount_flags;
clear_problem_context(&pctx);
/*
* If the filesystem is opened read-only, or there is no
* journal, then do nothing.
*/
if ((ctx->options & E2F_OPT_READONLY) ||
(sb->s_journal_inum == 0) ||
!ext2fs_has_feature_journal(sb))
return;
/*
* Read in the journal inode
*/
if (ext2fs_read_inode(fs, sb->s_journal_inum, &inode) != 0)
return;
/*
* If it's necessary to backup the journal inode, do so.
*/
if ((sb->s_jnl_backup_type == 0) ||
((sb->s_jnl_backup_type == EXT3_JNL_BACKUP_BLOCKS) &&
memcmp(inode.i_block, sb->s_jnl_blocks, EXT2_N_BLOCKS*4))) {
if (fix_problem(ctx, PR_0_BACKUP_JNL, &pctx)) {
memcpy(sb->s_jnl_blocks, inode.i_block,
EXT2_N_BLOCKS*4);
sb->s_jnl_blocks[15] = inode.i_size_high;
sb->s_jnl_blocks[16] = inode.i_size;
sb->s_jnl_backup_type = EXT3_JNL_BACKUP_BLOCKS;
ext2fs_mark_super_dirty(fs);
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
}
}
/*
* If the journal is already the hidden inode, then do nothing
*/
if (sb->s_journal_inum == EXT2_JOURNAL_INO)
return;
/*
* The journal inode had better have only one link and not be readable.
*/
if (inode.i_links_count != 1)
return;
/*
* If the filesystem is mounted, or we can't tell whether
* or not it's mounted, do nothing.
*/
retval = ext2fs_check_if_mounted(ctx->filesystem_name, &mount_flags);
if (retval || (mount_flags & EXT2_MF_MOUNTED))
return;
/*
* If we can't find the name of the journal inode, then do
* nothing.
*/
for (cpp = journal_names; *cpp; cpp++) {
retval = ext2fs_lookup(fs, EXT2_ROOT_INO, *cpp,
strlen(*cpp), 0, &ino);
if ((retval == 0) && (ino == sb->s_journal_inum))
break;
}
if (*cpp == 0)
return;
/* We need the inode bitmap to be loaded */
retval = ext2fs_read_bitmaps(fs);
if (retval)
return;
pctx.str = *cpp;
if (!fix_problem(ctx, PR_0_MOVE_JOURNAL, &pctx))
return;
/*
* OK, we've done all the checks, let's actually move the
* journal inode. Errors at this point mean we need to force
* an ext2 filesystem check.
*/
if ((retval = ext2fs_unlink(fs, EXT2_ROOT_INO, *cpp, ino, 0)) != 0)
goto err_out;
if ((retval = ext2fs_write_inode(fs, EXT2_JOURNAL_INO, &inode)) != 0)
goto err_out;
sb->s_journal_inum = EXT2_JOURNAL_INO;
ext2fs_mark_super_dirty(fs);
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
inode.i_links_count = 0;
inode.i_dtime = ctx->now;
if ((retval = ext2fs_write_inode(fs, ino, &inode)) != 0)
goto err_out;
group = ext2fs_group_of_ino(fs, ino);
ext2fs_unmark_inode_bitmap2(fs->inode_map, ino);
ext2fs_mark_ib_dirty(fs);
ext2fs_bg_free_inodes_count_set(fs, group, ext2fs_bg_free_inodes_count(fs, group) + 1);
ext2fs_group_desc_csum_set(fs, group);
fs->super->s_free_inodes_count++;
return;
err_out:
pctx.errcode = retval;
fix_problem(ctx, PR_0_ERR_MOVE_JOURNAL, &pctx);
fs->super->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(fs);
return;
}
/*
* This function makes sure the superblock hint for the external
* journal is correct.
*/
int e2fsck_fix_ext3_journal_hint(e2fsck_t ctx)
{
struct ext2_super_block *sb = ctx->fs->super;
struct problem_context pctx;
char uuid[37], *journal_name;
struct stat st;
if (!ext2fs_has_feature_journal(sb) ||
uuid_is_null(sb->s_journal_uuid))
return 0;
uuid_unparse(sb->s_journal_uuid, uuid);
journal_name = blkid_get_devname(ctx->blkid, "UUID", uuid);
if (!journal_name)
return 0;
if (stat(journal_name, &st) < 0) {
free(journal_name);
return 0;
}
if (st.st_rdev != sb->s_journal_dev) {
clear_problem_context(&pctx);
pctx.num = st.st_rdev;
if (fix_problem(ctx, PR_0_EXTERNAL_JOURNAL_HINT, &pctx)) {
sb->s_journal_dev = st.st_rdev;
ext2fs_mark_super_dirty(ctx->fs);
}
}
free(journal_name);
return 0;
}