firefox/xpcom/threads/ThreadEventQueue.cpp

324 lines
10 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ThreadEventQueue.h"
#include "mozilla/EventQueue.h"
#include "LeakRefPtr.h"
#include "nsComponentManagerUtils.h"
#include "nsITargetShutdownTask.h"
#include "nsIThreadInternal.h"
#include "nsThreadUtils.h"
#include "nsThread.h"
#include "ThreadEventTarget.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/TaskController.h"
#include "mozilla/StaticPrefs_threads.h"
using namespace mozilla;
class ThreadEventQueue::NestedSink : public ThreadTargetSink {
public:
NestedSink(EventQueue* aQueue, ThreadEventQueue* aOwner)
: mQueue(aQueue), mOwner(aOwner) {}
bool PutEvent(already_AddRefed<nsIRunnable>&& aEvent,
EventQueuePriority aPriority) final {
return mOwner->PutEventInternal(std::move(aEvent), aPriority, this);
}
void Disconnect(const MutexAutoLock& aProofOfLock) final { mQueue = nullptr; }
nsresult RegisterShutdownTask(nsITargetShutdownTask* aTask) final {
return NS_ERROR_NOT_IMPLEMENTED;
}
nsresult UnregisterShutdownTask(nsITargetShutdownTask* aTask) final {
return NS_ERROR_NOT_IMPLEMENTED;
}
size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) {
if (mQueue) {
return mQueue->SizeOfIncludingThis(aMallocSizeOf);
}
return 0;
}
private:
friend class ThreadEventQueue;
// This is a non-owning reference. It must live at least until Disconnect is
// called to clear it out.
EventQueue* mQueue;
RefPtr<ThreadEventQueue> mOwner;
};
ThreadEventQueue::ThreadEventQueue(UniquePtr<EventQueue> aQueue,
bool aIsMainThread)
: mBaseQueue(std::move(aQueue)),
mLock("ThreadEventQueue"),
mEventsAvailable(mLock, "EventsAvail"),
mIsMainThread(aIsMainThread) {
if (aIsMainThread) {
TaskController::Get()->SetConditionVariable(&mEventsAvailable);
}
}
ThreadEventQueue::~ThreadEventQueue() { MOZ_ASSERT(mNestedQueues.IsEmpty()); }
bool ThreadEventQueue::PutEvent(already_AddRefed<nsIRunnable>&& aEvent,
EventQueuePriority aPriority) {
return PutEventInternal(std::move(aEvent), aPriority, nullptr);
}
bool ThreadEventQueue::PutEventInternal(already_AddRefed<nsIRunnable>&& aEvent,
EventQueuePriority aPriority,
NestedSink* aSink) {
// We want to leak the reference when we fail to dispatch it, so that
// we won't release the event in a wrong thread.
LeakRefPtr<nsIRunnable> event(std::move(aEvent));
nsCOMPtr<nsIThreadObserver> obs;
{
// Check if the runnable wants to override the passed-in priority.
// Do this outside the lock, so runnables implemented in JS can QI
// (and possibly GC) outside of the lock.
if (mIsMainThread) {
auto* e = event.get(); // can't do_QueryInterface on LeakRefPtr.
if (nsCOMPtr<nsIRunnablePriority> runnablePrio = do_QueryInterface(e)) {
uint32_t prio = nsIRunnablePriority::PRIORITY_NORMAL;
runnablePrio->GetPriority(&prio);
if (prio == nsIRunnablePriority::PRIORITY_CONTROL) {
aPriority = EventQueuePriority::Control;
} else if (prio == nsIRunnablePriority::PRIORITY_RENDER_BLOCKING) {
aPriority = EventQueuePriority::RenderBlocking;
} else if (prio == nsIRunnablePriority::PRIORITY_VSYNC) {
aPriority = EventQueuePriority::Vsync;
} else if (prio == nsIRunnablePriority::PRIORITY_INPUT_HIGH) {
aPriority = EventQueuePriority::InputHigh;
} else if (prio == nsIRunnablePriority::PRIORITY_MEDIUMHIGH) {
aPriority = EventQueuePriority::MediumHigh;
} else if (prio == nsIRunnablePriority::PRIORITY_DEFERRED_TIMERS) {
aPriority = EventQueuePriority::DeferredTimers;
} else if (prio == nsIRunnablePriority::PRIORITY_IDLE) {
aPriority = EventQueuePriority::Idle;
}
}
if (aPriority == EventQueuePriority::Control &&
!StaticPrefs::threads_control_event_queue_enabled()) {
aPriority = EventQueuePriority::MediumHigh;
}
}
MutexAutoLock lock(mLock);
if (mEventsAreDoomed) {
return false;
}
if (aSink) {
if (!aSink->mQueue) {
return false;
}
aSink->mQueue->PutEvent(event.take(), aPriority, lock);
} else {
mBaseQueue->PutEvent(event.take(), aPriority, lock);
}
mEventsAvailable.Notify();
// Make sure to grab the observer before dropping the lock, otherwise the
// event that we just placed into the queue could run and eventually delete
// this nsThread before the calling thread is scheduled again. We would then
// crash while trying to access a dead nsThread.
obs = mObserver;
}
if (obs) {
obs->OnDispatchedEvent();
}
return true;
}
already_AddRefed<nsIRunnable> ThreadEventQueue::GetEvent(
bool aMayWait, mozilla::TimeDuration* aLastEventDelay) {
nsCOMPtr<nsIRunnable> event;
{
// Scope for lock. When we are about to return, we will exit this
// scope so we can do some work after releasing the lock but
// before returning.
MutexAutoLock lock(mLock);
for (;;) {
const bool noNestedQueue = mNestedQueues.IsEmpty();
if (noNestedQueue) {
event = mBaseQueue->GetEvent(lock, aLastEventDelay);
} else {
// We always get events from the topmost queue when there are nested
// queues.
event =
mNestedQueues.LastElement().mQueue->GetEvent(lock, aLastEventDelay);
}
if (event) {
break;
}
// No runnable available. Sleep waiting for one if if we're supposed to.
// Otherwise just go ahead and return null.
if (!aMayWait) {
break;
}
AUTO_PROFILER_LABEL("ThreadEventQueue::GetEvent::Wait", IDLE);
mEventsAvailable.Wait();
}
}
return event.forget();
}
bool ThreadEventQueue::HasPendingEvent() {
MutexAutoLock lock(mLock);
// We always get events from the topmost queue when there are nested queues.
if (mNestedQueues.IsEmpty()) {
return mBaseQueue->HasReadyEvent(lock);
} else {
return mNestedQueues.LastElement().mQueue->HasReadyEvent(lock);
}
}
bool ThreadEventQueue::ShutdownIfNoPendingEvents() {
MutexAutoLock lock(mLock);
if (mNestedQueues.IsEmpty() && mBaseQueue->IsEmpty(lock)) {
mEventsAreDoomed = true;
return true;
}
return false;
}
already_AddRefed<nsISerialEventTarget> ThreadEventQueue::PushEventQueue() {
auto queue = MakeUnique<EventQueue>();
RefPtr<NestedSink> sink = new NestedSink(queue.get(), this);
RefPtr<ThreadEventTarget> eventTarget =
new ThreadEventTarget(sink, NS_IsMainThread());
MutexAutoLock lock(mLock);
mNestedQueues.AppendElement(NestedQueueItem(std::move(queue), eventTarget));
return eventTarget.forget();
}
void ThreadEventQueue::PopEventQueue(nsIEventTarget* aTarget) {
MutexAutoLock lock(mLock);
MOZ_ASSERT(!mNestedQueues.IsEmpty());
NestedQueueItem& item = mNestedQueues.LastElement();
MOZ_ASSERT(aTarget == item.mEventTarget);
// Disconnect the event target that will be popped.
item.mEventTarget->Disconnect(lock);
EventQueue* prevQueue =
mNestedQueues.Length() == 1
? mBaseQueue.get()
: mNestedQueues[mNestedQueues.Length() - 2].mQueue.get();
// Move events from the old queue to the new one.
nsCOMPtr<nsIRunnable> event;
TimeDuration delay;
while ((event = item.mQueue->GetEvent(lock, &delay))) {
// preserve the event delay so far
prevQueue->PutEvent(event.forget(), EventQueuePriority::Normal, lock,
&delay);
}
mNestedQueues.RemoveLastElement();
}
size_t ThreadEventQueue::SizeOfExcludingThis(
mozilla::MallocSizeOf aMallocSizeOf) {
size_t n = 0;
n += mBaseQueue->SizeOfIncludingThis(aMallocSizeOf);
{
MutexAutoLock lock(mLock);
n += mNestedQueues.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (auto& queue : mNestedQueues) {
n += queue.mEventTarget->SizeOfIncludingThis(aMallocSizeOf);
}
}
return SynchronizedEventQueue::SizeOfExcludingThis(aMallocSizeOf) + n;
}
already_AddRefed<nsIThreadObserver> ThreadEventQueue::GetObserver() {
MutexAutoLock lock(mLock);
return do_AddRef(mObserver);
}
already_AddRefed<nsIThreadObserver> ThreadEventQueue::GetObserverOnThread()
NO_THREAD_SAFETY_ANALYSIS {
// only written on this thread
return do_AddRef(mObserver);
}
void ThreadEventQueue::SetObserver(nsIThreadObserver* aObserver) {
// Always called from the thread - single writer.
nsCOMPtr<nsIThreadObserver> observer = aObserver;
{
MutexAutoLock lock(mLock);
mObserver.swap(observer);
}
if (NS_IsMainThread()) {
TaskController::Get()->SetThreadObserver(aObserver);
}
}
nsresult ThreadEventQueue::RegisterShutdownTask(nsITargetShutdownTask* aTask) {
NS_ENSURE_ARG(aTask);
MutexAutoLock lock(mLock);
if (mEventsAreDoomed || mShutdownTasksRun) {
return NS_ERROR_UNEXPECTED;
}
MOZ_ASSERT(!mShutdownTasks.Contains(aTask));
mShutdownTasks.AppendElement(aTask);
return NS_OK;
}
nsresult ThreadEventQueue::UnregisterShutdownTask(
nsITargetShutdownTask* aTask) {
NS_ENSURE_ARG(aTask);
MutexAutoLock lock(mLock);
if (mEventsAreDoomed || mShutdownTasksRun) {
return NS_ERROR_UNEXPECTED;
}
return mShutdownTasks.RemoveElement(aTask) ? NS_OK : NS_ERROR_UNEXPECTED;
}
void ThreadEventQueue::RunShutdownTasks() {
nsTArray<nsCOMPtr<nsITargetShutdownTask>> shutdownTasks;
{
MutexAutoLock lock(mLock);
shutdownTasks = std::move(mShutdownTasks);
mShutdownTasks.Clear();
mShutdownTasksRun = true;
}
for (auto& task : shutdownTasks) {
task->TargetShutdown();
}
}
ThreadEventQueue::NestedQueueItem::NestedQueueItem(
UniquePtr<EventQueue> aQueue, ThreadEventTarget* aEventTarget)
: mQueue(std::move(aQueue)), mEventTarget(aEventTarget) {}