/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * SPDX-License-Identifier: LGPL-2.1-or-later * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #include "glibconfig.h" #define DEBUG_MSG(x) /* */ #ifdef G_ENABLE_DEBUG /* #define DEBUG_MSG(args) g_message args ; */ #endif #include #include #include #include #ifdef G_OS_WIN32 #include #endif #include "gdate.h" #include "gconvert.h" #include "gmem.h" #include "gstrfuncs.h" #include "gtestutils.h" #include "gthread.h" #include "gunicode.h" #include "gutilsprivate.h" #ifdef G_OS_WIN32 #include "garray.h" #endif /** * GDate: * @julian_days: the Julian representation of the date * @julian: this bit is set if @julian_days is valid * @dmy: this is set if @day, @month and @year are valid * @day: the day of the day-month-year representation of the date, * as a number between 1 and 31 * @month: the month of the day-month-year representation of the date, * as a number between 1 and 12 * @year: the year of the day-month-year representation of the date * * `GDate` is a struct for calendrical calculations. * * The `GDate` data structure represents a day between January 1, Year 1, * and sometime a few thousand years in the future (right now it will go * to the year 65535 or so, but [method@GLib.Date.set_parse] only parses up to the * year 8000 or so - just count on "a few thousand"). `GDate` is meant to * represent everyday dates, not astronomical dates or historical dates * or ISO timestamps or the like. It extrapolates the current Gregorian * calendar forward and backward in time; there is no attempt to change * the calendar to match time periods or locations. `GDate` does not store * time information; it represents a day. * * The `GDate` implementation has several nice features; it is only a * 64-bit struct, so storing large numbers of dates is very efficient. It * can keep both a Julian and day-month-year representation of the date, * since some calculations are much easier with one representation or the * other. A Julian representation is simply a count of days since some * fixed day in the past; for #GDate the fixed day is January 1, 1 AD. * ("Julian" dates in the #GDate API aren't really Julian dates in the * technical sense; technically, Julian dates count from the start of the * Julian period, Jan 1, 4713 BC). * * `GDate` is simple to use. First you need a "blank" date; you can get a * dynamically allocated date from [ctor@GLib.Date.new], or you can declare an * automatic variable or array and initialize it by calling [method@GLib.Date.clear]. * A cleared date is safe; it's safe to call [method@GLib.Date.set_dmy] and the other * mutator functions to initialize the value of a cleared date. However, a cleared date * is initially invalid, meaning that it doesn't represent a day that exists. * It is undefined to call any of the date calculation routines on an invalid date. * If you obtain a date from a user or other unpredictable source, you should check * its validity with the [method@GLib.Date.valid] predicate. [method@GLib.Date.valid] * is also used to check for errors with [method@GLib.Date.set_parse] and other functions * that can fail. Dates can be invalidated by calling [method@GLib.Date.clear] again. * * It is very important to use the API to access the `GDate` struct. Often only the * day-month-year or only the Julian representation is valid. Sometimes neither is valid. * Use the API. * * GLib also features `GDateTime` which represents a precise time. */ /** * G_USEC_PER_SEC: * * Number of microseconds in one second (1 million). * This macro is provided for code readability. */ /** * GTimeVal: * @tv_sec: seconds * @tv_usec: microseconds * * Represents a precise time, with seconds and microseconds. * * Similar to the struct timeval returned by the `gettimeofday()` * UNIX system call. * * GLib is attempting to unify around the use of 64-bit integers to * represent microsecond-precision time. As such, this type will be * removed from a future version of GLib. A consequence of using `glong` for * `tv_sec` is that on 32-bit systems `GTimeVal` is subject to the year 2038 * problem. * * Deprecated: 2.62: Use #GDateTime or #guint64 instead. */ /** * GTime: * * Simply a replacement for `time_t`. It has been deprecated * since it is not equivalent to `time_t` on 64-bit platforms * with a 64-bit `time_t`. * * Unrelated to #GTimer. * * Note that #GTime is defined to always be a 32-bit integer, * unlike `time_t` which may be 64-bit on some systems. Therefore, * #GTime will overflow in the year 2038, and you cannot use the * address of a #GTime variable as argument to the UNIX time() * function. * * Instead, do the following: * * |[ * time_t ttime; * GTime gtime; * * time (&ttime); * gtime = (GTime)ttime; * ]| * * Deprecated: 2.62: This is not [Y2038-safe](https://en.wikipedia.org/wiki/Year_2038_problem). * Use #GDateTime or #time_t instead. */ /** * GDateDMY: * @G_DATE_DAY: a day * @G_DATE_MONTH: a month * @G_DATE_YEAR: a year * * This enumeration isn't used in the API, but may be useful if you need * to mark a number as a day, month, or year. */ /** * GDateDay: * * Integer representing a day of the month; between 1 and 31. * * The %G_DATE_BAD_DAY value represents an invalid day of the month. */ /** * GDateMonth: * @G_DATE_BAD_MONTH: invalid value * @G_DATE_JANUARY: January * @G_DATE_FEBRUARY: February * @G_DATE_MARCH: March * @G_DATE_APRIL: April * @G_DATE_MAY: May * @G_DATE_JUNE: June * @G_DATE_JULY: July * @G_DATE_AUGUST: August * @G_DATE_SEPTEMBER: September * @G_DATE_OCTOBER: October * @G_DATE_NOVEMBER: November * @G_DATE_DECEMBER: December * * Enumeration representing a month; values are %G_DATE_JANUARY, * %G_DATE_FEBRUARY, etc. %G_DATE_BAD_MONTH is the invalid value. */ /** * GDateYear: * * Integer type representing a year. * * The %G_DATE_BAD_YEAR value is the invalid value. The year * must be 1 or higher; negative ([BCE](https://en.wikipedia.org/wiki/Common_Era)) * years are not allowed. * * The year is represented with four digits. */ /** * GDateWeekday: * @G_DATE_BAD_WEEKDAY: invalid value * @G_DATE_MONDAY: Monday * @G_DATE_TUESDAY: Tuesday * @G_DATE_WEDNESDAY: Wednesday * @G_DATE_THURSDAY: Thursday * @G_DATE_FRIDAY: Friday * @G_DATE_SATURDAY: Saturday * @G_DATE_SUNDAY: Sunday * * Enumeration representing a day of the week; %G_DATE_MONDAY, * %G_DATE_TUESDAY, etc. %G_DATE_BAD_WEEKDAY is an invalid weekday. */ /** * G_DATE_BAD_DAY: * * Represents an invalid #GDateDay. */ /** * G_DATE_BAD_JULIAN: * * Represents an invalid Julian day number. */ /** * G_DATE_BAD_YEAR: * * Represents an invalid year. */ /** * g_date_new: * * Allocates a #GDate and initializes * it to a safe state. The new date will * be cleared (as if you'd called g_date_clear()) but invalid (it won't * represent an existing day). Free the return value with g_date_free(). * * Returns: a newly-allocated #GDate */ GDate* g_date_new (void) { GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */ return d; } /** * g_date_new_dmy: * @day: day of the month * @month: month of the year * @year: year * * Create a new #GDate representing the given day-month-year triplet. * * The triplet you pass in must represent a valid date. Use g_date_valid_dmy() * if needed to validate it. The returned #GDate is guaranteed to be non-%NULL * and valid. * * Returns: (transfer full) (not nullable): a newly-allocated #GDate * initialized with @day, @month, and @year */ GDate* g_date_new_dmy (GDateDay day, GDateMonth m, GDateYear y) { GDate *d; g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL); d = g_new (GDate, 1); d->julian = FALSE; d->dmy = TRUE; d->month = m; d->day = day; d->year = y; g_assert (g_date_valid (d)); return d; } /** * g_date_new_julian: * @julian_day: days since January 1, Year 1 * * Create a new #GDate representing the given Julian date. * * The @julian_day you pass in must be valid. Use g_date_valid_julian() if * needed to validate it. The returned #GDate is guaranteed to be non-%NULL and * valid. * * Returns: (transfer full) (not nullable): a newly-allocated #GDate initialized * with @julian_day */ GDate* g_date_new_julian (guint32 julian_day) { GDate *d; g_return_val_if_fail (g_date_valid_julian (julian_day), NULL); d = g_new (GDate, 1); d->julian = TRUE; d->dmy = FALSE; d->julian_days = julian_day; g_assert (g_date_valid (d)); return d; } /** * g_date_free: * @date: a #GDate to free * * Frees a #GDate returned from g_date_new(). */ void g_date_free (GDate *date) { g_return_if_fail (date != NULL); g_free (date); } /** * g_date_copy: * @date: a #GDate to copy * * Copies a GDate to a newly-allocated GDate. If the input was invalid * (as determined by g_date_valid()), the invalid state will be copied * as is into the new object. * * Returns: (transfer full): a newly-allocated #GDate initialized from @date * * Since: 2.56 */ GDate * g_date_copy (const GDate *date) { GDate *res; g_return_val_if_fail (date != NULL, NULL); if (g_date_valid (date)) res = g_date_new_julian (g_date_get_julian (date)); else { res = g_date_new (); *res = *date; } return res; } /** * g_date_valid: * @date: a #GDate to check * * Returns %TRUE if the #GDate represents an existing day. The date must not * contain garbage; it should have been initialized with g_date_clear() * if it wasn't allocated by one of the g_date_new() variants. * * Returns: Whether the date is valid */ gboolean g_date_valid (const GDate *d) { g_return_val_if_fail (d != NULL, FALSE); return (d->julian || d->dmy); } static const guint8 days_in_months[2][13] = { /* error, jan feb mar apr may jun jul aug sep oct nov dec */ { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, { 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */ }; static const guint16 days_in_year[2][14] = { /* 0, jan feb mar apr may jun jul aug sep oct nov dec */ { 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, { 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; /** * g_date_valid_month: * @month: month * * Returns %TRUE if the month value is valid. The 12 #GDateMonth * enumeration values are the only valid months. * * Returns: %TRUE if the month is valid */ gboolean g_date_valid_month (GDateMonth m) { return (((gint) m > G_DATE_BAD_MONTH) && ((gint) m < 13)); } /** * g_date_valid_year: * @year: year * * Returns %TRUE if the year is valid. Any year greater than 0 is valid, * though there is a 16-bit limit to what #GDate will understand. * * Returns: %TRUE if the year is valid */ gboolean g_date_valid_year (GDateYear y) { return ( y > G_DATE_BAD_YEAR ); } /** * g_date_valid_day: * @day: day to check * * Returns %TRUE if the day of the month is valid (a day is valid if it's * between 1 and 31 inclusive). * * Returns: %TRUE if the day is valid */ gboolean g_date_valid_day (GDateDay d) { return ( (d > G_DATE_BAD_DAY) && (d < 32) ); } /** * g_date_valid_weekday: * @weekday: weekday * * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration * values are the only valid weekdays. * * Returns: %TRUE if the weekday is valid */ gboolean g_date_valid_weekday (GDateWeekday w) { return (((gint) w > G_DATE_BAD_WEEKDAY) && ((gint) w < 8)); } /** * g_date_valid_julian: * @julian_date: Julian day to check * * Returns %TRUE if the Julian day is valid. Anything greater than zero * is basically a valid Julian, though there is a 32-bit limit. * * Returns: %TRUE if the Julian day is valid */ gboolean g_date_valid_julian (guint32 j) { return (j > G_DATE_BAD_JULIAN); } /** * g_date_valid_dmy: * @day: day * @month: month * @year: year * * Returns %TRUE if the day-month-year triplet forms a valid, existing day * in the range of days #GDate understands (Year 1 or later, no more than * a few thousand years in the future). * * Returns: %TRUE if the date is a valid one */ gboolean g_date_valid_dmy (GDateDay d, GDateMonth m, GDateYear y) { /* No need to check the upper bound of @y, because #GDateYear is 16 bits wide, * just like #GDate.year. */ return ( (m > G_DATE_BAD_MONTH) && (m < 13) && (d > G_DATE_BAD_DAY) && (y > G_DATE_BAD_YEAR) && /* must check before using g_date_is_leap_year */ (d <= (g_date_is_leap_year (y) ? days_in_months[1][m] : days_in_months[0][m])) ); } /* "Julian days" just means an absolute number of days, where Day 1 == * Jan 1, Year 1 */ static void g_date_update_julian (const GDate *const_d) { GDate *d = (GDate *) const_d; GDateYear year; gint idx; g_return_if_fail (d != NULL); g_return_if_fail (d->dmy != 0); g_return_if_fail (!d->julian); g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year)); /* What we actually do is: multiply years * 365 days in the year, * add the number of years divided by 4, subtract the number of * years divided by 100 and add the number of years divided by 400, * which accounts for leap year stuff. Code from Steffen Beyer's * DateCalc. */ year = d->year - 1; /* we know d->year > 0 since it's valid */ d->julian_days = year * 365U; d->julian_days += (year >>= 2); /* divide by 4 and add */ d->julian_days -= (year /= 25); /* divides original # years by 100 */ d->julian_days += year >> 2; /* divides by 4, which divides original by 400 */ idx = g_date_is_leap_year (d->year) ? 1 : 0; d->julian_days += days_in_year[idx][d->month] + d->day; g_return_if_fail (g_date_valid_julian (d->julian_days)); d->julian = TRUE; } static void g_date_update_dmy (const GDate *const_d) { GDate *d = (GDate *) const_d; GDateYear y; GDateMonth m; GDateDay day; guint32 A, B, C, D, E, M; g_return_if_fail (d != NULL); g_return_if_fail (d->julian); g_return_if_fail (!d->dmy); g_return_if_fail (g_date_valid_julian (d->julian_days)); /* Formula taken from the Calendar FAQ; the formula was for the * Julian Period which starts on 1 January 4713 BC, so we add * 1,721,425 to the number of days before doing the formula. * * I'm sure this can be simplified for our 1 January 1 AD period * start, but I can't figure out how to unpack the formula. */ A = d->julian_days + 1721425 + 32045; B = ( 4 *(A + 36524) )/ 146097 - 1; C = A - (146097 * B)/4; D = ( 4 * (C + 365) ) / 1461 - 1; E = C - ((1461*D) / 4); M = (5 * (E - 1) + 2)/153; m = M + 3 - (12*(M/10)); day = E - (153*M + 2)/5; y = 100 * B + D - 4800 + (M/10); #ifdef G_ENABLE_DEBUG if (!g_date_valid_dmy (day, m, y)) g_warning ("OOPS julian: %u computed dmy: %u %u %u", d->julian_days, day, m, y); #endif d->month = m; d->day = day; d->year = y; d->dmy = TRUE; } /** * g_date_get_weekday: * @date: a #GDate * * Returns the day of the week for a #GDate. The date must be valid. * * Returns: day of the week as a #GDateWeekday. */ GDateWeekday g_date_get_weekday (const GDate *d) { g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY); if (!d->julian) g_date_update_julian (d); g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY); return ((d->julian_days - 1) % 7) + 1; } /** * g_date_get_month: * @date: a #GDate to get the month from * * Returns the month of the year. The date must be valid. * * Returns: month of the year as a #GDateMonth */ GDateMonth g_date_get_month (const GDate *d) { g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH); return d->month; } /** * g_date_get_year: * @date: a #GDate * * Returns the year of a #GDate. The date must be valid. * * Returns: year in which the date falls */ GDateYear g_date_get_year (const GDate *d) { g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR); return d->year; } /** * g_date_get_day: * @date: a #GDate to extract the day of the month from * * Returns the day of the month. The date must be valid. * * Returns: day of the month */ GDateDay g_date_get_day (const GDate *d) { g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY); return d->day; } /** * g_date_get_julian: * @date: a #GDate to extract the Julian day from * * Returns the Julian day or "serial number" of the #GDate. The * Julian day is simply the number of days since January 1, Year 1; i.e., * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2, * etc. The date must be valid. * * Returns: Julian day */ guint32 g_date_get_julian (const GDate *d) { g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN); if (!d->julian) g_date_update_julian (d); g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN); return d->julian_days; } /** * g_date_get_day_of_year: * @date: a #GDate to extract day of year from * * Returns the day of the year, where Jan 1 is the first day of the * year. The date must be valid. * * Returns: day of the year */ guint g_date_get_day_of_year (const GDate *d) { gint idx; g_return_val_if_fail (g_date_valid (d), 0); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, 0); idx = g_date_is_leap_year (d->year) ? 1 : 0; return (days_in_year[idx][d->month] + d->day); } /** * g_date_get_monday_week_of_year: * @date: a #GDate * * Returns the week of the year, where weeks are understood to start on * Monday. If the date is before the first Monday of the year, return 0. * The date must be valid. * * Returns: week of the year */ guint g_date_get_monday_week_of_year (const GDate *d) { GDateWeekday wd; guint day; GDate first; g_return_val_if_fail (g_date_valid (d), 0); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, 0); g_date_clear (&first, 1); g_date_set_dmy (&first, 1, 1, d->year); wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */ day = g_date_get_day_of_year (d) - 1; return ((day + wd)/7U + (wd == 0 ? 1 : 0)); } /** * g_date_get_sunday_week_of_year: * @date: a #GDate * * Returns the week of the year during which this date falls, if * weeks are understood to begin on Sunday. The date must be valid. * Can return 0 if the day is before the first Sunday of the year. * * Returns: week number */ guint g_date_get_sunday_week_of_year (const GDate *d) { GDateWeekday wd; guint day; GDate first; g_return_val_if_fail (g_date_valid (d), 0); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, 0); g_date_clear (&first, 1); g_date_set_dmy (&first, 1, 1, d->year); wd = g_date_get_weekday (&first); if (wd == 7) wd = 0; /* make Sunday day 0 */ day = g_date_get_day_of_year (d) - 1; return ((day + wd)/7U + (wd == 0 ? 1 : 0)); } /** * g_date_get_iso8601_week_of_year: * @date: a valid #GDate * * Returns the week of the year, where weeks are interpreted according * to ISO 8601. * * Returns: ISO 8601 week number of the year. * * Since: 2.6 **/ guint g_date_get_iso8601_week_of_year (const GDate *d) { guint j, d4, L, d1, w; g_return_val_if_fail (g_date_valid (d), 0); if (!d->julian) g_date_update_julian (d); g_return_val_if_fail (d->julian, 0); /* Formula taken from the Calendar FAQ; the formula was for the * Julian Period which starts on 1 January 4713 BC, so we add * 1,721,425 to the number of days before doing the formula. */ j = d->julian_days + 1721425; d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461; L = d4 / 1460; d1 = ((d4 - L) % 365) + L; w = d1 / 7 + 1; return w; } /** * g_date_days_between: * @date1: the first date * @date2: the second date * * Computes the number of days between two dates. * If @date2 is prior to @date1, the returned value is negative. * Both dates must be valid. * * Returns: the number of days between @date1 and @date2 */ gint g_date_days_between (const GDate *d1, const GDate *d2) { g_return_val_if_fail (g_date_valid (d1), 0); g_return_val_if_fail (g_date_valid (d2), 0); return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1); } /** * g_date_clear: * @date: pointer to one or more dates to clear * @n_dates: number of dates to clear * * Initializes one or more #GDate structs to a safe but invalid * state. The cleared dates will not represent an existing date, but will * not contain garbage. Useful to init a date declared on the stack. * Validity can be tested with g_date_valid(). */ void g_date_clear (GDate *d, guint ndates) { g_return_if_fail (d != NULL); g_return_if_fail (ndates != 0); memset (d, 0x0, ndates*sizeof (GDate)); } G_LOCK_DEFINE_STATIC (g_date_global); /* These are for the parser, output to the user should use * * g_date_strftime () - this creates more never-freed memory to annoy * all those memory debugger users. :-) */ static gchar *long_month_names[13] = { NULL, }; static gchar *long_month_names_alternative[13] = { NULL, }; static gchar *short_month_names[13] = { NULL, }; static gchar *short_month_names_alternative[13] = { NULL, }; /* This tells us if we need to update the parse info */ static gchar *current_locale = NULL; /* order of these in the current locale */ static GDateDMY dmy_order[3] = { G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR }; /* Where to chop two-digit years: i.e., for the 1930 default, numbers * 29 and below are counted as in the year 2000, numbers 30 and above * are counted as in the year 1900. */ static const GDateYear twodigit_start_year = 1930; /* It is impossible to enter a year between 1 AD and 99 AD with this * in effect. */ static gboolean using_twodigit_years = FALSE; /* Adjustment of locale era to AD, non-zero means using locale era */ static gint locale_era_adjust = 0; struct _GDateParseTokens { gint num_ints; gint n[3]; guint month; }; typedef struct _GDateParseTokens GDateParseTokens; static inline gboolean update_month_match (gsize *longest, const gchar *haystack, const gchar *needle) { gsize length; if (needle == NULL) return FALSE; length = strlen (needle); if (*longest >= length) return FALSE; if (strstr (haystack, needle) == NULL) return FALSE; *longest = length; return TRUE; } #define NUM_LEN 10 /* HOLDS: g_date_global_lock */ static void g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt) { gchar num[4][NUM_LEN+1]; gint i; const guchar *s; /* We count 4, but store 3; so we can give an error * if there are 4. */ num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0'; s = (const guchar *) str; pt->num_ints = 0; while (*s && pt->num_ints < 4) { i = 0; while (*s && g_ascii_isdigit (*s) && i < NUM_LEN) { num[pt->num_ints][i] = *s; ++s; ++i; } if (i > 0) { num[pt->num_ints][i] = '\0'; ++(pt->num_ints); } if (*s == '\0') break; ++s; } pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0; pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0; pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0; pt->month = G_DATE_BAD_MONTH; if (pt->num_ints < 3) { gsize longest = 0; gchar *casefold; gchar *normalized; casefold = g_utf8_casefold (str, -1); normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); g_free (casefold); for (i = 1; i < 13; ++i) { /* Here month names may be in a genitive case if the language * grammatical rules require it. * Examples of how January may look in some languages: * Catalan: "de gener", Croatian: "siječnja", Polish: "stycznia", * Upper Sorbian: "januara". * Note that most of the languages can't or don't use the the * genitive case here so they use nominative everywhere. * For example, English always uses "January". */ if (update_month_match (&longest, normalized, long_month_names[i])) pt->month = i; /* Here month names will be in a nominative case. * Examples of how January may look in some languages: * Catalan: "gener", Croatian: "Siječanj", Polish: "styczeń", * Upper Sorbian: "Januar". */ if (update_month_match (&longest, normalized, long_month_names_alternative[i])) pt->month = i; /* Differences between abbreviated nominative and abbreviated * genitive month names are visible in very few languages but * let's handle them. */ if (update_month_match (&longest, normalized, short_month_names[i])) pt->month = i; if (update_month_match (&longest, normalized, short_month_names_alternative[i])) pt->month = i; } g_free (normalized); } } /* HOLDS: g_date_global_lock */ static void g_date_prepare_to_parse (const gchar *str, GDateParseTokens *pt) { const gchar *locale = setlocale (LC_TIME, NULL); gboolean recompute_localeinfo = FALSE; GDate d; g_return_if_fail (locale != NULL); /* should not happen */ g_date_clear (&d, 1); /* clear for scratch use */ if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) ) recompute_localeinfo = TRUE; /* Uh, there used to be a reason for the temporary */ if (recompute_localeinfo) { int i = 1; GDateParseTokens testpt; gchar buf[128]; g_free (current_locale); /* still works if current_locale == NULL */ current_locale = g_strdup (locale); short_month_names[0] = "Error"; long_month_names[0] = "Error"; while (i < 13) { gchar *casefold; g_date_set_dmy (&d, 1, i, 1976); g_return_if_fail (g_date_valid (&d)); g_date_strftime (buf, 127, "%b", &d); casefold = g_utf8_casefold (buf, -1); g_free (short_month_names[i]); short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); g_free (casefold); g_date_strftime (buf, 127, "%B", &d); casefold = g_utf8_casefold (buf, -1); g_free (long_month_names[i]); long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); g_free (casefold); g_date_strftime (buf, 127, "%Ob", &d); casefold = g_utf8_casefold (buf, -1); g_free (short_month_names_alternative[i]); short_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); g_free (casefold); g_date_strftime (buf, 127, "%OB", &d); casefold = g_utf8_casefold (buf, -1); g_free (long_month_names_alternative[i]); long_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL); g_free (casefold); ++i; } /* Determine DMY order */ /* had to pick a random day - don't change this, some strftimes * are broken on some days, and this one is good so far. */ g_date_set_dmy (&d, 4, 7, 1976); g_date_strftime (buf, 127, "%x", &d); g_date_fill_parse_tokens (buf, &testpt); using_twodigit_years = FALSE; locale_era_adjust = 0; dmy_order[0] = G_DATE_DAY; dmy_order[1] = G_DATE_MONTH; dmy_order[2] = G_DATE_YEAR; i = 0; while (i < testpt.num_ints) { switch (testpt.n[i]) { case 7: dmy_order[i] = G_DATE_MONTH; break; case 4: dmy_order[i] = G_DATE_DAY; break; case 76: using_twodigit_years = TRUE; G_GNUC_FALLTHROUGH; case 1976: dmy_order[i] = G_DATE_YEAR; break; default: /* assume locale era */ locale_era_adjust = 1976 - testpt.n[i]; dmy_order[i] = G_DATE_YEAR; break; } ++i; } #if defined(G_ENABLE_DEBUG) && 0 DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules.")); i = 1; while (i < 13) { DEBUG_MSG ((" %s %s", long_month_names[i], short_month_names[i])); ++i; } DEBUG_MSG (("Alternative month names:")); i = 1; while (i < 13) { DEBUG_MSG ((" %s %s", long_month_names_alternative[i], short_month_names_alternative[i])); ++i; } if (using_twodigit_years) { DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year)); } { gchar *strings[3]; i = 0; while (i < 3) { switch (dmy_order[i]) { case G_DATE_MONTH: strings[i] = "Month"; break; case G_DATE_YEAR: strings[i] = "Year"; break; case G_DATE_DAY: strings[i] = "Day"; break; default: strings[i] = NULL; break; } ++i; } DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2])); DEBUG_MSG (("**Sample date in this locale: '%s'", buf)); } #endif } g_date_fill_parse_tokens (str, pt); } static guint convert_twodigit_year (guint y) { if (using_twodigit_years && y < 100) { guint two = twodigit_start_year % 100; guint century = (twodigit_start_year / 100) * 100; if (y < two) century += 100; y += century; } return y; } /** * g_date_set_parse: * @date: a #GDate to fill in * @str: string to parse * * Parses a user-inputted string @str, and try to figure out what date it * represents, taking the [current locale][setlocale] into account. If the * string is successfully parsed, the date will be valid after the call. * Otherwise, it will be invalid. You should check using g_date_valid() * to see whether the parsing succeeded. * * This function is not appropriate for file formats and the like; it * isn't very precise, and its exact behavior varies with the locale. * It's intended to be a heuristic routine that guesses what the user * means by a given string (and it does work pretty well in that * capacity). */ void g_date_set_parse (GDate *d, const gchar *str) { GDateParseTokens pt; guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR; gsize str_len; g_return_if_fail (d != NULL); /* set invalid */ g_date_clear (d, 1); /* Anything longer than this is ridiculous and could take a while to normalize. * This limit is chosen arbitrarily. */ str_len = strlen (str); if (str_len > 200) return; /* The input has to be valid UTF-8. */ if (!g_utf8_validate_len (str, str_len, NULL)) return; G_LOCK (g_date_global); g_date_prepare_to_parse (str, &pt); DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d", pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month)); if (pt.num_ints == 4) { G_UNLOCK (g_date_global); return; /* presumably a typo; bail out. */ } if (pt.num_ints > 1) { int i = 0; int j = 0; g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */ while (i < pt.num_ints && j < 3) { switch (dmy_order[j]) { case G_DATE_MONTH: { if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH) { m = pt.month; ++j; /* skip months, but don't skip this number */ continue; } else m = pt.n[i]; } break; case G_DATE_DAY: { if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH) { day = 1; ++j; /* skip days, since we may have month/year */ continue; } day = pt.n[i]; } break; case G_DATE_YEAR: { y = pt.n[i]; if (locale_era_adjust != 0) { y += locale_era_adjust; } y = convert_twodigit_year (y); } break; default: break; } ++i; ++j; } if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y)) { /* Try YYYY MM DD */ y = pt.n[0]; m = pt.n[1]; day = pt.n[2]; if (using_twodigit_years && y < 100) y = G_DATE_BAD_YEAR; /* avoids ambiguity */ } else if (pt.num_ints == 2) { if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH) m = pt.month; } } else if (pt.num_ints == 1) { if (pt.month != G_DATE_BAD_MONTH) { /* Month name and year? */ m = pt.month; day = 1; y = pt.n[0]; } else { /* Try yyyymmdd and yymmdd */ m = (pt.n[0]/100) % 100; day = pt.n[0] % 100; y = pt.n[0]/10000; y = convert_twodigit_year (y); } } /* See if we got anything valid out of all this. */ /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */ if (y < 8000 && g_date_valid_dmy (day, m, y)) { d->month = m; d->day = day; d->year = y; d->dmy = TRUE; } #ifdef G_ENABLE_DEBUG else { DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y)); } #endif G_UNLOCK (g_date_global); } gboolean _g_localtime (time_t timet, struct tm *out_tm) { gboolean success = TRUE; #ifdef HAVE_LOCALTIME_R if (!localtime_r (&timet, out_tm)) success = FALSE; #else { struct tm *ptm = localtime (&timet); if (ptm == NULL) { /* Happens at least in Microsoft's C library if you pass a * negative time_t. */ success = FALSE; } else memcpy (out_tm, ptm, sizeof (struct tm)); } #endif return success; } /** * g_date_set_time_t: * @date: a #GDate * @timet: time_t value to set * * Sets the value of a date to the date corresponding to a time * specified as a time_t. The time to date conversion is done using * the user's current timezone. * * To set the value of a date to the current day, you could write: * |[ * time_t now = time (NULL); * if (now == (time_t) -1) * // handle the error * g_date_set_time_t (date, now); * ]| * * Since: 2.10 */ void g_date_set_time_t (GDate *date, time_t timet) { struct tm tm; gboolean success; g_return_if_fail (date != NULL); success = _g_localtime (timet, &tm); if (!success) { /* Still set a default date, 2000-01-01. * * We may assert out below. */ tm.tm_mon = 0; tm.tm_mday = 1; tm.tm_year = 100; } date->julian = FALSE; date->month = tm.tm_mon + 1; date->day = tm.tm_mday; date->year = tm.tm_year + 1900; g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year)); date->dmy = TRUE; #ifndef G_DISABLE_CHECKS if (!success) g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "localtime() == NULL"); #endif } /** * g_date_set_time: * @date: a #GDate. * @time_: #GTime value to set. * * Sets the value of a date from a #GTime value. * The time to date conversion is done using the user's current timezone. * * Deprecated: 2.10: Use g_date_set_time_t() instead. */ G_GNUC_BEGIN_IGNORE_DEPRECATIONS void g_date_set_time (GDate *date, GTime time_) { g_date_set_time_t (date, (time_t) time_); } G_GNUC_END_IGNORE_DEPRECATIONS /** * g_date_set_time_val: * @date: a #GDate * @timeval: #GTimeVal value to set * * Sets the value of a date from a #GTimeVal value. Note that the * @tv_usec member is ignored, because #GDate can't make use of the * additional precision. * * The time to date conversion is done using the user's current timezone. * * Since: 2.10 * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use g_date_set_time_t() * instead. */ G_GNUC_BEGIN_IGNORE_DEPRECATIONS void g_date_set_time_val (GDate *date, GTimeVal *timeval) { g_date_set_time_t (date, (time_t) timeval->tv_sec); } G_GNUC_END_IGNORE_DEPRECATIONS /** * g_date_set_month: * @date: a #GDate * @month: month to set * * Sets the month of the year for a #GDate. If the resulting * day-month-year triplet is invalid, the date will be invalid. */ void g_date_set_month (GDate *d, GDateMonth m) { g_return_if_fail (d != NULL); g_return_if_fail (g_date_valid_month (m)); if (d->julian && !d->dmy) g_date_update_dmy(d); d->julian = FALSE; d->month = m; if (g_date_valid_dmy (d->day, d->month, d->year)) d->dmy = TRUE; else d->dmy = FALSE; } /** * g_date_set_day: * @date: a #GDate * @day: day to set * * Sets the day of the month for a #GDate. If the resulting * day-month-year triplet is invalid, the date will be invalid. */ void g_date_set_day (GDate *d, GDateDay day) { g_return_if_fail (d != NULL); g_return_if_fail (g_date_valid_day (day)); if (d->julian && !d->dmy) g_date_update_dmy(d); d->julian = FALSE; d->day = day; if (g_date_valid_dmy (d->day, d->month, d->year)) d->dmy = TRUE; else d->dmy = FALSE; } /** * g_date_set_year: * @date: a #GDate * @year: year to set * * Sets the year for a #GDate. If the resulting day-month-year * triplet is invalid, the date will be invalid. */ void g_date_set_year (GDate *d, GDateYear y) { g_return_if_fail (d != NULL); g_return_if_fail (g_date_valid_year (y)); if (d->julian && !d->dmy) g_date_update_dmy(d); d->julian = FALSE; d->year = y; if (g_date_valid_dmy (d->day, d->month, d->year)) d->dmy = TRUE; else d->dmy = FALSE; } /** * g_date_set_dmy: * @date: a #GDate * @day: day * @month: month * @y: year * * Sets the value of a #GDate from a day, month, and year. * The day-month-year triplet must be valid; if you aren't * sure it is, call g_date_valid_dmy() to check before you * set it. */ void g_date_set_dmy (GDate *d, GDateDay day, GDateMonth m, GDateYear y) { g_return_if_fail (d != NULL); g_return_if_fail (g_date_valid_dmy (day, m, y)); d->julian = FALSE; d->month = m; d->day = day; d->year = y; d->dmy = TRUE; } /** * g_date_set_julian: * @date: a #GDate * @julian_date: Julian day number (days since January 1, Year 1) * * Sets the value of a #GDate from a Julian day number. */ void g_date_set_julian (GDate *d, guint32 j) { g_return_if_fail (d != NULL); g_return_if_fail (g_date_valid_julian (j)); d->julian_days = j; d->julian = TRUE; d->dmy = FALSE; } /** * g_date_is_first_of_month: * @date: a #GDate to check * * Returns %TRUE if the date is on the first of a month. * The date must be valid. * * Returns: %TRUE if the date is the first of the month */ gboolean g_date_is_first_of_month (const GDate *d) { g_return_val_if_fail (g_date_valid (d), FALSE); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, FALSE); if (d->day == 1) return TRUE; else return FALSE; } /** * g_date_is_last_of_month: * @date: a #GDate to check * * Returns %TRUE if the date is the last day of the month. * The date must be valid. * * Returns: %TRUE if the date is the last day of the month */ gboolean g_date_is_last_of_month (const GDate *d) { gint idx; g_return_val_if_fail (g_date_valid (d), FALSE); if (!d->dmy) g_date_update_dmy (d); g_return_val_if_fail (d->dmy, FALSE); idx = g_date_is_leap_year (d->year) ? 1 : 0; if (d->day == days_in_months[idx][d->month]) return TRUE; else return FALSE; } /** * g_date_add_days: * @date: a #GDate to increment * @n_days: number of days to move the date forward * * Increments a date some number of days. * To move forward by weeks, add weeks*7 days. * The date must be valid. */ void g_date_add_days (GDate *d, guint ndays) { g_return_if_fail (g_date_valid (d)); if (!d->julian) g_date_update_julian (d); g_return_if_fail (d->julian); g_return_if_fail (ndays <= G_MAXUINT32 - d->julian_days); d->julian_days += ndays; d->dmy = FALSE; } /** * g_date_subtract_days: * @date: a #GDate to decrement * @n_days: number of days to move * * Moves a date some number of days into the past. * To move by weeks, just move by weeks*7 days. * The date must be valid. */ void g_date_subtract_days (GDate *d, guint ndays) { g_return_if_fail (g_date_valid (d)); if (!d->julian) g_date_update_julian (d); g_return_if_fail (d->julian); g_return_if_fail (d->julian_days > ndays); d->julian_days -= ndays; d->dmy = FALSE; } /** * g_date_add_months: * @date: a #GDate to increment * @n_months: number of months to move forward * * Increments a date by some number of months. * If the day of the month is greater than 28, * this routine may change the day of the month * (because the destination month may not have * the current day in it). The date must be valid. */ void g_date_add_months (GDate *d, guint nmonths) { guint years, months; gint idx; g_return_if_fail (g_date_valid (d)); if (!d->dmy) g_date_update_dmy (d); g_return_if_fail (d->dmy != 0); g_return_if_fail (nmonths <= G_MAXUINT - (d->month - 1)); nmonths += d->month - 1; years = nmonths/12; months = nmonths%12; g_return_if_fail (years <= (guint) (G_MAXUINT16 - d->year)); d->month = months + 1; d->year += years; idx = g_date_is_leap_year (d->year) ? 1 : 0; if (d->day > days_in_months[idx][d->month]) d->day = days_in_months[idx][d->month]; d->julian = FALSE; g_return_if_fail (g_date_valid (d)); } /** * g_date_subtract_months: * @date: a #GDate to decrement * @n_months: number of months to move * * Moves a date some number of months into the past. * If the current day of the month doesn't exist in * the destination month, the day of the month * may change. The date must be valid. */ void g_date_subtract_months (GDate *d, guint nmonths) { guint years, months; gint idx; g_return_if_fail (g_date_valid (d)); if (!d->dmy) g_date_update_dmy (d); g_return_if_fail (d->dmy != 0); years = nmonths/12; months = nmonths%12; g_return_if_fail (d->year > years); d->year -= years; if (d->month > months) d->month -= months; else { months -= d->month; d->month = 12 - months; d->year -= 1; } idx = g_date_is_leap_year (d->year) ? 1 : 0; if (d->day > days_in_months[idx][d->month]) d->day = days_in_months[idx][d->month]; d->julian = FALSE; g_return_if_fail (g_date_valid (d)); } /** * g_date_add_years: * @date: a #GDate to increment * @n_years: number of years to move forward * * Increments a date by some number of years. * If the date is February 29, and the destination * year is not a leap year, the date will be changed * to February 28. The date must be valid. */ void g_date_add_years (GDate *d, guint nyears) { g_return_if_fail (g_date_valid (d)); if (!d->dmy) g_date_update_dmy (d); g_return_if_fail (d->dmy != 0); g_return_if_fail (nyears <= (guint) (G_MAXUINT16 - d->year)); d->year += nyears; if (d->month == 2 && d->day == 29) { if (!g_date_is_leap_year (d->year)) d->day = 28; } d->julian = FALSE; } /** * g_date_subtract_years: * @date: a #GDate to decrement * @n_years: number of years to move * * Moves a date some number of years into the past. * If the current day doesn't exist in the destination * year (i.e. it's February 29 and you move to a non-leap-year) * then the day is changed to February 29. The date * must be valid. */ void g_date_subtract_years (GDate *d, guint nyears) { g_return_if_fail (g_date_valid (d)); if (!d->dmy) g_date_update_dmy (d); g_return_if_fail (d->dmy != 0); g_return_if_fail (d->year > nyears); d->year -= nyears; if (d->month == 2 && d->day == 29) { if (!g_date_is_leap_year (d->year)) d->day = 28; } d->julian = FALSE; } /** * g_date_is_leap_year: * @year: year to check * * Returns %TRUE if the year is a leap year. * * For the purposes of this function, leap year is every year * divisible by 4 unless that year is divisible by 100. If it * is divisible by 100 it would be a leap year only if that year * is also divisible by 400. * * Returns: %TRUE if the year is a leap year */ gboolean g_date_is_leap_year (GDateYear year) { g_return_val_if_fail (g_date_valid_year (year), FALSE); return ( (((year % 4) == 0) && ((year % 100) != 0)) || (year % 400) == 0 ); } /** * g_date_get_days_in_month: * @month: month * @year: year * * Returns the number of days in a month, taking leap * years into account. * * Returns: number of days in @month during the @year */ guint8 g_date_get_days_in_month (GDateMonth month, GDateYear year) { gint idx; g_return_val_if_fail (g_date_valid_year (year), 0); g_return_val_if_fail (g_date_valid_month (month), 0); idx = g_date_is_leap_year (year) ? 1 : 0; return days_in_months[idx][month]; } /** * g_date_get_monday_weeks_in_year: * @year: a year * * Returns the number of weeks in the year, where weeks * are taken to start on Monday. Will be 52 or 53. The * date must be valid. (Years always have 52 7-day periods, * plus 1 or 2 extra days depending on whether it's a leap * year. This function is basically telling you how many * Mondays are in the year, i.e. there are 53 Mondays if * one of the extra days happens to be a Monday.) * * Returns: number of Mondays in the year */ guint8 g_date_get_monday_weeks_in_year (GDateYear year) { GDate d; g_return_val_if_fail (g_date_valid_year (year), 0); g_date_clear (&d, 1); g_date_set_dmy (&d, 1, 1, year); if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; g_date_set_dmy (&d, 31, 12, year); if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; if (g_date_is_leap_year (year)) { g_date_set_dmy (&d, 2, 1, year); if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; g_date_set_dmy (&d, 30, 12, year); if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53; } return 52; } /** * g_date_get_sunday_weeks_in_year: * @year: year to count weeks in * * Returns the number of weeks in the year, where weeks * are taken to start on Sunday. Will be 52 or 53. The * date must be valid. (Years always have 52 7-day periods, * plus 1 or 2 extra days depending on whether it's a leap * year. This function is basically telling you how many * Sundays are in the year, i.e. there are 53 Sundays if * one of the extra days happens to be a Sunday.) * * Returns: the number of weeks in @year */ guint8 g_date_get_sunday_weeks_in_year (GDateYear year) { GDate d; g_return_val_if_fail (g_date_valid_year (year), 0); g_date_clear (&d, 1); g_date_set_dmy (&d, 1, 1, year); if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; g_date_set_dmy (&d, 31, 12, year); if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; if (g_date_is_leap_year (year)) { g_date_set_dmy (&d, 2, 1, year); if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; g_date_set_dmy (&d, 30, 12, year); if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53; } return 52; } /** * g_date_compare: * @lhs: first date to compare * @rhs: second date to compare * * qsort()-style comparison function for dates. * Both dates must be valid. * * Returns: 0 for equal, less than zero if @lhs is less than @rhs, * greater than zero if @lhs is greater than @rhs */ gint g_date_compare (const GDate *lhs, const GDate *rhs) { g_return_val_if_fail (lhs != NULL, 0); g_return_val_if_fail (rhs != NULL, 0); g_return_val_if_fail (g_date_valid (lhs), 0); g_return_val_if_fail (g_date_valid (rhs), 0); /* Remember the self-comparison case! I think it works right now. */ while (TRUE) { if (lhs->julian && rhs->julian) { if (lhs->julian_days < rhs->julian_days) return -1; else if (lhs->julian_days > rhs->julian_days) return 1; else return 0; } else if (lhs->dmy && rhs->dmy) { if (lhs->year < rhs->year) return -1; else if (lhs->year > rhs->year) return 1; else { if (lhs->month < rhs->month) return -1; else if (lhs->month > rhs->month) return 1; else { if (lhs->day < rhs->day) return -1; else if (lhs->day > rhs->day) return 1; else return 0; } } } else { if (!lhs->julian) g_date_update_julian (lhs); if (!rhs->julian) g_date_update_julian (rhs); g_return_val_if_fail (lhs->julian, 0); g_return_val_if_fail (rhs->julian, 0); } } return 0; /* warnings */ } /** * g_date_to_struct_tm: * @date: a #GDate to set the struct tm from * @tm: (not nullable): struct tm to fill * * Fills in the date-related bits of a struct tm using the @date value. * Initializes the non-date parts with something safe but meaningless. */ void g_date_to_struct_tm (const GDate *d, struct tm *tm) { GDateWeekday day; g_return_if_fail (g_date_valid (d)); g_return_if_fail (tm != NULL); if (!d->dmy) g_date_update_dmy (d); g_return_if_fail (d->dmy != 0); /* zero all the irrelevant fields to be sure they're valid */ /* On Linux and maybe other systems, there are weird non-POSIX * fields on the end of struct tm that choke strftime if they * contain garbage. So we need to 0 the entire struct, not just the * fields we know to exist. */ memset (tm, 0x0, sizeof (struct tm)); tm->tm_mday = d->day; tm->tm_mon = d->month - 1; /* 0-11 goes in tm */ tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */ day = g_date_get_weekday (d); if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */ tm->tm_wday = (int)day; tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */ tm->tm_isdst = -1; /* -1 means "information not available" */ } /** * g_date_clamp: * @date: a #GDate to clamp * @min_date: minimum accepted value for @date * @max_date: maximum accepted value for @date * * If @date is prior to @min_date, sets @date equal to @min_date. * If @date falls after @max_date, sets @date equal to @max_date. * Otherwise, @date is unchanged. * Either of @min_date and @max_date may be %NULL. * All non-%NULL dates must be valid. */ void g_date_clamp (GDate *date, const GDate *min_date, const GDate *max_date) { g_return_if_fail (g_date_valid (date)); if (min_date != NULL) g_return_if_fail (g_date_valid (min_date)); if (max_date != NULL) g_return_if_fail (g_date_valid (max_date)); if (min_date != NULL && max_date != NULL) g_return_if_fail (g_date_compare (min_date, max_date) <= 0); if (min_date && g_date_compare (date, min_date) < 0) *date = *min_date; if (max_date && g_date_compare (max_date, date) < 0) *date = *max_date; } /** * g_date_order: * @date1: the first date * @date2: the second date * * Checks if @date1 is less than or equal to @date2, * and swap the values if this is not the case. */ void g_date_order (GDate *date1, GDate *date2) { g_return_if_fail (g_date_valid (date1)); g_return_if_fail (g_date_valid (date2)); if (g_date_compare (date1, date2) > 0) { GDate tmp = *date1; *date1 = *date2; *date2 = tmp; } } #ifdef G_OS_WIN32 static gboolean append_month_name (GArray *result, LCID lcid, SYSTEMTIME *systemtime, gboolean abbreviated, gboolean alternative) { int n; WORD base; LPCWSTR lpFormat; if (alternative) { base = abbreviated ? LOCALE_SABBREVMONTHNAME1 : LOCALE_SMONTHNAME1; n = GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, NULL, 0); if (n == 0) return FALSE; g_array_set_size (result, result->len + n); if (GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, ((wchar_t *) result->data) + result->len - n, n) != n) return FALSE; g_array_set_size (result, result->len - 1); } else { /* According to MSDN, this is the correct method to obtain * the form of the month name used when formatting a full * date; it must be a genitive case in some languages. * * (n == 0) indicates an error, whereas (n < 2) is something we’d never * expect from the given format string, and would break the subsequent code. */ lpFormat = abbreviated ? L"ddMMM" : L"ddMMMM"; n = GetDateFormatW (lcid, 0, systemtime, lpFormat, NULL, 0); if (n < 2) return FALSE; g_array_set_size (result, result->len + n); if (GetDateFormatW (lcid, 0, systemtime, lpFormat, ((wchar_t *) result->data) + result->len - n, n) != n) return FALSE; /* We have obtained a day number as two digits and the month name. * Now let's get rid of those two digits: overwrite them with the * month name. */ memmove (((wchar_t *) result->data) + result->len - n, ((wchar_t *) result->data) + result->len - n + 2, (n - 2) * sizeof (wchar_t)); g_array_set_size (result, result->len - 3); } return TRUE; } static gsize win32_strftime_helper (const GDate *d, const gchar *format, const struct tm *tm, gchar *s, gsize slen) { SYSTEMTIME systemtime; TIME_ZONE_INFORMATION tzinfo; LCID lcid; int n, k; GArray *result; const gchar *p; gunichar c, modifier; const wchar_t digits[] = L"0123456789"; gchar *convbuf; glong convlen = 0; gsize retval; systemtime.wYear = tm->tm_year + 1900; systemtime.wMonth = tm->tm_mon + 1; systemtime.wDayOfWeek = tm->tm_wday; systemtime.wDay = tm->tm_mday; systemtime.wHour = tm->tm_hour; systemtime.wMinute = tm->tm_min; systemtime.wSecond = tm->tm_sec; systemtime.wMilliseconds = 0; lcid = GetThreadLocale (); result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2)); p = format; while (*p) { c = g_utf8_get_char (p); if (c == '%') { p = g_utf8_next_char (p); if (!*p) { s[0] = '\0'; g_array_free (result, TRUE); return 0; } modifier = '\0'; c = g_utf8_get_char (p); if (c == 'E' || c == 'O') { /* "%OB", "%Ob", and "%Oh" are supported, ignore other modified * conversion specifiers for now. */ modifier = c; p = g_utf8_next_char (p); if (!*p) { s[0] = '\0'; g_array_free (result, TRUE); return 0; } c = g_utf8_get_char (p); } switch (c) { case 'a': if (systemtime.wDayOfWeek == 0) k = 6; else k = systemtime.wDayOfWeek - 1; n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0); g_array_set_size (result, result->len + n); GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); break; case 'A': if (systemtime.wDayOfWeek == 0) k = 6; else k = systemtime.wDayOfWeek - 1; n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0); g_array_set_size (result, result->len + n); GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); break; case 'b': case 'h': if (!append_month_name (result, lcid, &systemtime, TRUE, modifier == 'O')) { /* Ignore the error; this placeholder will be replaced with nothing */ } break; case 'B': if (!append_month_name (result, lcid, &systemtime, FALSE, modifier == 'O')) { /* Ignore the error; this placeholder will be replaced with nothing */ } break; case 'c': n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0); if (n > 0) { g_array_set_size (result, result->len + n); GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); } g_array_append_vals (result, L" ", 1); n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0); if (n > 0) { g_array_set_size (result, result->len + n); GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); } break; case 'C': g_array_append_vals (result, digits + systemtime.wYear/1000, 1); g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1); break; case 'd': g_array_append_vals (result, digits + systemtime.wDay/10, 1); g_array_append_vals (result, digits + systemtime.wDay%10, 1); break; case 'D': g_array_append_vals (result, digits + systemtime.wMonth/10, 1); g_array_append_vals (result, digits + systemtime.wMonth%10, 1); g_array_append_vals (result, L"/", 1); g_array_append_vals (result, digits + systemtime.wDay/10, 1); g_array_append_vals (result, digits + systemtime.wDay%10, 1); g_array_append_vals (result, L"/", 1); g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1); g_array_append_vals (result, digits + systemtime.wYear%10, 1); break; case 'e': if (systemtime.wDay >= 10) g_array_append_vals (result, digits + systemtime.wDay/10, 1); else g_array_append_vals (result, L" ", 1); g_array_append_vals (result, digits + systemtime.wDay%10, 1); break; /* A GDate has no time fields, so for now we can * hardcode all time conversions into zeros (or 12 for * %I). The alternative code snippets in the #else * branches are here ready to be taken into use when * needed by a g_strftime() or g_date_and_time_format() * or whatever. */ case 'H': #if 1 g_array_append_vals (result, L"00", 2); #else g_array_append_vals (result, digits + systemtime.wHour/10, 1); g_array_append_vals (result, digits + systemtime.wHour%10, 1); #endif break; case 'I': #if 1 g_array_append_vals (result, L"12", 2); #else if (systemtime.wHour == 0) g_array_append_vals (result, L"12", 2); else { g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1); g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1); } #endif break; case 'j': g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1); g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1); g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1); break; case 'm': g_array_append_vals (result, digits + systemtime.wMonth/10, 1); g_array_append_vals (result, digits + systemtime.wMonth%10, 1); break; case 'M': #if 1 g_array_append_vals (result, L"00", 2); #else g_array_append_vals (result, digits + systemtime.wMinute/10, 1); g_array_append_vals (result, digits + systemtime.wMinute%10, 1); #endif break; case 'n': g_array_append_vals (result, L"\n", 1); break; case 'p': n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0); if (n > 0) { g_array_set_size (result, result->len + n); GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); } break; case 'r': /* This is a rather odd format. Hard to say what to do. * Let's always use the POSIX %I:%M:%S %p */ #if 1 g_array_append_vals (result, L"12:00:00", 8); #else if (systemtime.wHour == 0) g_array_append_vals (result, L"12", 2); else { g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1); g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1); } g_array_append_vals (result, L":", 1); g_array_append_vals (result, digits + systemtime.wMinute/10, 1); g_array_append_vals (result, digits + systemtime.wMinute%10, 1); g_array_append_vals (result, L":", 1); g_array_append_vals (result, digits + systemtime.wSecond/10, 1); g_array_append_vals (result, digits + systemtime.wSecond%10, 1); g_array_append_vals (result, L" ", 1); #endif n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0); if (n > 0) { g_array_set_size (result, result->len + n); GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); } break; case 'R': #if 1 g_array_append_vals (result, L"00:00", 5); #else g_array_append_vals (result, digits + systemtime.wHour/10, 1); g_array_append_vals (result, digits + systemtime.wHour%10, 1); g_array_append_vals (result, L":", 1); g_array_append_vals (result, digits + systemtime.wMinute/10, 1); g_array_append_vals (result, digits + systemtime.wMinute%10, 1); #endif break; case 'S': #if 1 g_array_append_vals (result, L"00", 2); #else g_array_append_vals (result, digits + systemtime.wSecond/10, 1); g_array_append_vals (result, digits + systemtime.wSecond%10, 1); #endif break; case 't': g_array_append_vals (result, L"\t", 1); break; case 'T': #if 1 g_array_append_vals (result, L"00:00:00", 8); #else g_array_append_vals (result, digits + systemtime.wHour/10, 1); g_array_append_vals (result, digits + systemtime.wHour%10, 1); g_array_append_vals (result, L":", 1); g_array_append_vals (result, digits + systemtime.wMinute/10, 1); g_array_append_vals (result, digits + systemtime.wMinute%10, 1); g_array_append_vals (result, L":", 1); g_array_append_vals (result, digits + systemtime.wSecond/10, 1); g_array_append_vals (result, digits + systemtime.wSecond%10, 1); #endif break; case 'u': if (systemtime.wDayOfWeek == 0) g_array_append_vals (result, L"7", 1); else g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1); break; case 'U': n = g_date_get_sunday_week_of_year (d); g_array_append_vals (result, digits + n/10, 1); g_array_append_vals (result, digits + n%10, 1); break; case 'V': n = g_date_get_iso8601_week_of_year (d); g_array_append_vals (result, digits + n/10, 1); g_array_append_vals (result, digits + n%10, 1); break; case 'w': g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1); break; case 'W': n = g_date_get_monday_week_of_year (d); g_array_append_vals (result, digits + n/10, 1); g_array_append_vals (result, digits + n%10, 1); break; case 'x': n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0); if (n > 0) { g_array_set_size (result, result->len + n); GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); } break; case 'X': n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0); if (n > 0) { g_array_set_size (result, result->len + n); GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n); g_array_set_size (result, result->len - 1); } break; case 'y': g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1); g_array_append_vals (result, digits + systemtime.wYear%10, 1); break; case 'Y': g_array_append_vals (result, digits + systemtime.wYear/1000, 1); g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1); g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1); g_array_append_vals (result, digits + systemtime.wYear%10, 1); break; case 'Z': n = GetTimeZoneInformation (&tzinfo); if (n == TIME_ZONE_ID_UNKNOWN || n == TIME_ZONE_ID_STANDARD) g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName)); else if (n == TIME_ZONE_ID_DAYLIGHT) g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName)); break; case '%': g_array_append_vals (result, L"%", 1); break; } } else if (c <= 0xFFFF) { wchar_t wc = c; g_array_append_vals (result, &wc, 1); } else { glong nwc; wchar_t *ws; ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL); g_array_append_vals (result, ws, nwc); g_free (ws); } p = g_utf8_next_char (p); } convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL); g_array_free (result, TRUE); if (!convbuf) { s[0] = '\0'; return 0; } g_assert (convlen >= 0); if ((gsize) convlen >= slen) { /* Ensure only whole characters are copied into the buffer. */ gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen); g_assert (end != NULL); convlen = end - convbuf; /* Return 0 because the buffer isn't large enough. */ retval = 0; } else retval = convlen; memcpy (s, convbuf, convlen); s[convlen] = '\0'; g_free (convbuf); return retval; } #endif /** * g_date_strftime: * @s: destination buffer * @slen: buffer size * @format: format string * @date: valid #GDate * * Generates a printed representation of the date, in a * [locale][setlocale]-specific way. * Works just like the platform's C library strftime() function, * but only accepts date-related formats; time-related formats * give undefined results. Date must be valid. Unlike strftime() * (which uses the locale encoding), works on a UTF-8 format * string and stores a UTF-8 result. * * This function does not provide any conversion specifiers in * addition to those implemented by the platform's C library. * For example, don't expect that using g_date_strftime() would * make the \%F provided by the C99 strftime() work on Windows * where the C library only complies to C89. * * Returns: number of characters written to the buffer, or 0 the buffer was too small */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wformat-nonliteral" gsize g_date_strftime (gchar *s, gsize slen, const gchar *format, const GDate *d) { struct tm tm; #ifndef G_OS_WIN32 gsize locale_format_len = 0; gchar *locale_format; gsize tmplen; gchar *tmpbuf; gsize tmpbufsize; gsize convlen = 0; gchar *convbuf; GError *error = NULL; gsize retval; #endif g_return_val_if_fail (g_date_valid (d), 0); g_return_val_if_fail (slen > 0, 0); g_return_val_if_fail (format != NULL, 0); g_return_val_if_fail (s != NULL, 0); g_date_to_struct_tm (d, &tm); #ifdef G_OS_WIN32 if (!g_utf8_validate (format, -1, NULL)) { s[0] = '\0'; return 0; } return win32_strftime_helper (d, format, &tm, s, slen); #else locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error); if (error) { g_warning (G_STRLOC "Error converting format to locale encoding: %s", error->message); g_error_free (error); s[0] = '\0'; return 0; } tmpbufsize = MAX (128, locale_format_len * 2); while (TRUE) { tmpbuf = g_malloc (tmpbufsize); /* Set the first byte to something other than '\0', to be able to * recognize whether strftime actually failed or just returned "". */ tmpbuf[0] = '\1'; tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm); if (tmplen == 0 && tmpbuf[0] != '\0') { g_free (tmpbuf); tmpbufsize *= 2; if (tmpbufsize > 65536) { g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up"); g_free (locale_format); s[0] = '\0'; return 0; } } else break; } g_free (locale_format); convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error); g_free (tmpbuf); if (error) { g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s", error->message); g_error_free (error); g_assert (convbuf == NULL); s[0] = '\0'; return 0; } if (slen <= convlen) { /* Ensure only whole characters are copied into the buffer. */ gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen); g_assert (end != NULL); convlen = end - convbuf; /* Return 0 because the buffer isn't large enough. */ retval = 0; } else retval = convlen; memcpy (s, convbuf, convlen); s[convlen] = '\0'; g_free (convbuf); return retval; #endif } #pragma GCC diagnostic pop