glib2.0/glib/gsequence.c

2088 lines
51 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007
* Soeren Sandmann (sandmann@daimi.au.dk)
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "gsequence.h"
#include "gmem.h"
#include "gtestutils.h"
#include "gslice.h"
/**
* SECTION:sequence
* @title: Sequences
* @short_description: scalable lists
*
* The #GSequence data structure has the API of a list, but is
* implemented internally with a balanced binary tree. This means that
* most of the operations (access, search, insertion, deletion, ...) on
* #GSequence are O(log(n)) in average and O(n) in worst case for time
* complexity. But, note that maintaining a balanced sorted list of n
* elements is done in time O(n log(n)).
* The data contained in each element can be either integer values, by using
* of the [Type Conversion Macros][glib-Type-Conversion-Macros], or simply
* pointers to any type of data.
*
* A #GSequence is accessed through "iterators", represented by a
* #GSequenceIter. An iterator represents a position between two
* elements of the sequence. For example, the "begin" iterator
* represents the gap immediately before the first element of the
* sequence, and the "end" iterator represents the gap immediately
* after the last element. In an empty sequence, the begin and end
* iterators are the same.
*
* Some methods on #GSequence operate on ranges of items. For example
* g_sequence_foreach_range() will call a user-specified function on
* each element with the given range. The range is delimited by the
* gaps represented by the passed-in iterators, so if you pass in the
* begin and end iterators, the range in question is the entire
* sequence.
*
* The function g_sequence_get() is used with an iterator to access the
* element immediately following the gap that the iterator represents.
* The iterator is said to "point" to that element.
*
* Iterators are stable across most operations on a #GSequence. For
* example an iterator pointing to some element of a sequence will
* continue to point to that element even after the sequence is sorted.
* Even moving an element to another sequence using for example
* g_sequence_move_range() will not invalidate the iterators pointing
* to it. The only operation that will invalidate an iterator is when
* the element it points to is removed from any sequence.
*
* To sort the data, either use g_sequence_insert_sorted() or
* g_sequence_insert_sorted_iter() to add data to the #GSequence or, if
* you want to add a large amount of data, it is more efficient to call
* g_sequence_sort() or g_sequence_sort_iter() after doing unsorted
* insertions.
*/
/**
* GSequenceIter:
*
* The #GSequenceIter struct is an opaque data type representing an
* iterator pointing into a #GSequence.
*/
/**
* GSequenceIterCompareFunc:
* @a: a #GSequenceIter
* @b: a #GSequenceIter
* @user_data: user data
*
* A #GSequenceIterCompareFunc is a function used to compare iterators.
* It must return zero if the iterators compare equal, a negative value
* if @a comes before @b, and a positive value if @b comes before @a.
*
* Returns: zero if the iterators are equal, a negative value if @a
* comes before @b, and a positive value if @b comes before @a.
*/
typedef struct _GSequenceNode GSequenceNode;
/**
* GSequence:
*
* The #GSequence struct is an opaque data type representing a
* [sequence][glib-Sequences] data type.
*/
struct _GSequence
{
GSequenceNode * end_node;
GDestroyNotify data_destroy_notify;
gboolean access_prohibited;
/* The 'real_sequence' is used when temporary sequences are created
* to hold nodes that are being rearranged. The 'real_sequence' of such
* a temporary sequence points to the sequence that is actually being
* manipulated. The only reason we need this is so that when the
* sort/sort_changed/search_iter() functions call out to the application
* g_sequence_iter_get_sequence() will return the correct sequence.
*/
GSequence * real_sequence;
};
struct _GSequenceNode
{
gint n_nodes;
guint32 priority;
GSequenceNode * parent;
GSequenceNode * left;
GSequenceNode * right;
gpointer data; /* For the end node, this field points
* to the sequence
*/
};
/*
* Declaration of GSequenceNode methods
*/
static GSequenceNode *node_new (gpointer data);
static GSequenceNode *node_get_first (GSequenceNode *node);
static GSequenceNode *node_get_last (GSequenceNode *node);
static GSequenceNode *node_get_prev (GSequenceNode *node);
static GSequenceNode *node_get_next (GSequenceNode *node);
static gint node_get_pos (GSequenceNode *node);
static GSequenceNode *node_get_by_pos (GSequenceNode *node,
gint pos);
static GSequenceNode *node_find (GSequenceNode *haystack,
GSequenceNode *needle,
GSequenceNode *end,
GSequenceIterCompareFunc cmp,
gpointer user_data);
static GSequenceNode *node_find_closest (GSequenceNode *haystack,
GSequenceNode *needle,
GSequenceNode *end,
GSequenceIterCompareFunc cmp,
gpointer user_data);
static gint node_get_length (GSequenceNode *node);
static void node_free (GSequenceNode *node,
GSequence *seq);
static void node_cut (GSequenceNode *split);
static void node_insert_before (GSequenceNode *node,
GSequenceNode *new);
static void node_unlink (GSequenceNode *node);
static void node_join (GSequenceNode *left,
GSequenceNode *right);
static void node_insert_sorted (GSequenceNode *node,
GSequenceNode *new,
GSequenceNode *end,
GSequenceIterCompareFunc cmp_func,
gpointer cmp_data);
/*
* Various helper functions
*/
static void
check_seq_access (GSequence *seq)
{
if (G_UNLIKELY (seq->access_prohibited))
{
g_warning ("Accessing a sequence while it is "
"being sorted or searched is not allowed");
}
}
static GSequence *
get_sequence (GSequenceNode *node)
{
return (GSequence *)node_get_last (node)->data;
}
static gboolean
seq_is_end (GSequence *seq,
GSequenceIter *iter)
{
return seq->end_node == iter;
}
static gboolean
is_end (GSequenceIter *iter)
{
GSequenceIter *parent = iter->parent;
if (iter->right)
return FALSE;
if (!parent)
return TRUE;
while (parent->right == iter)
{
iter = parent;
parent = iter->parent;
if (!parent)
return TRUE;
}
return FALSE;
}
typedef struct
{
GCompareDataFunc cmp_func;
gpointer cmp_data;
GSequenceNode *end_node;
} SortInfo;
/* This function compares two iters using a normal compare
* function and user_data passed in in a SortInfo struct
*/
static gint
iter_compare (GSequenceIter *node1,
GSequenceIter *node2,
gpointer data)
{
const SortInfo *info = data;
gint retval;
if (node1 == info->end_node)
return 1;
if (node2 == info->end_node)
return -1;
retval = info->cmp_func (node1->data, node2->data, info->cmp_data);
return retval;
}
/*
* Public API
*/
/**
* g_sequence_new:
* @data_destroy: (nullable): a #GDestroyNotify function, or %NULL
*
* Creates a new GSequence. The @data_destroy function, if non-%NULL will
* be called on all items when the sequence is destroyed and on items that
* are removed from the sequence.
*
* Returns: (transfer full): a new #GSequence
*
* Since: 2.14
**/
GSequence *
g_sequence_new (GDestroyNotify data_destroy)
{
GSequence *seq = g_new (GSequence, 1);
seq->data_destroy_notify = data_destroy;
seq->end_node = node_new (seq);
seq->access_prohibited = FALSE;
seq->real_sequence = seq;
return seq;
}
/**
* g_sequence_free:
* @seq: a #GSequence
*
* Frees the memory allocated for @seq. If @seq has a data destroy
* function associated with it, that function is called on all items
* in @seq.
*
* Since: 2.14
*/
void
g_sequence_free (GSequence *seq)
{
g_return_if_fail (seq != NULL);
check_seq_access (seq);
node_free (seq->end_node, seq);
g_free (seq);
}
/**
* g_sequence_foreach_range:
* @begin: a #GSequenceIter
* @end: a #GSequenceIter
* @func: a #GFunc
* @user_data: user data passed to @func
*
* Calls @func for each item in the range (@begin, @end) passing
* @user_data to the function. @func must not modify the sequence
* itself.
*
* Since: 2.14
*/
void
g_sequence_foreach_range (GSequenceIter *begin,
GSequenceIter *end,
GFunc func,
gpointer user_data)
{
GSequence *seq;
GSequenceIter *iter;
g_return_if_fail (func != NULL);
g_return_if_fail (begin != NULL);
g_return_if_fail (end != NULL);
seq = get_sequence (begin);
seq->access_prohibited = TRUE;
iter = begin;
while (iter != end)
{
GSequenceIter *next = node_get_next (iter);
func (iter->data, user_data);
iter = next;
}
seq->access_prohibited = FALSE;
}
/**
* g_sequence_foreach:
* @seq: a #GSequence
* @func: the function to call for each item in @seq
* @user_data: user data passed to @func
*
* Calls @func for each item in the sequence passing @user_data
* to the function. @func must not modify the sequence itself.
*
* Since: 2.14
*/
void
g_sequence_foreach (GSequence *seq,
GFunc func,
gpointer user_data)
{
GSequenceIter *begin, *end;
check_seq_access (seq);
begin = g_sequence_get_begin_iter (seq);
end = g_sequence_get_end_iter (seq);
g_sequence_foreach_range (begin, end, func, user_data);
}
/**
* g_sequence_range_get_midpoint:
* @begin: a #GSequenceIter
* @end: a #GSequenceIter
*
* Finds an iterator somewhere in the range (@begin, @end). This
* iterator will be close to the middle of the range, but is not
* guaranteed to be exactly in the middle.
*
* The @begin and @end iterators must both point to the same sequence
* and @begin must come before or be equal to @end in the sequence.
*
* Returns: (transfer none): a #GSequenceIter pointing somewhere in the
* (@begin, @end) range
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_range_get_midpoint (GSequenceIter *begin,
GSequenceIter *end)
{
int begin_pos, end_pos, mid_pos;
g_return_val_if_fail (begin != NULL, NULL);
g_return_val_if_fail (end != NULL, NULL);
g_return_val_if_fail (get_sequence (begin) == get_sequence (end), NULL);
begin_pos = node_get_pos (begin);
end_pos = node_get_pos (end);
g_return_val_if_fail (end_pos >= begin_pos, NULL);
mid_pos = begin_pos + (end_pos - begin_pos) / 2;
return node_get_by_pos (begin, mid_pos);
}
/**
* g_sequence_iter_compare:
* @a: a #GSequenceIter
* @b: a #GSequenceIter
*
* Returns a negative number if @a comes before @b, 0 if they are equal,
* and a positive number if @a comes after @b.
*
* The @a and @b iterators must point into the same sequence.
*
* Returns: a negative number if @a comes before @b, 0 if they are
* equal, and a positive number if @a comes after @b
*
* Since: 2.14
*/
gint
g_sequence_iter_compare (GSequenceIter *a,
GSequenceIter *b)
{
gint a_pos, b_pos;
GSequence *seq_a, *seq_b;
g_return_val_if_fail (a != NULL, 0);
g_return_val_if_fail (b != NULL, 0);
seq_a = get_sequence (a);
seq_b = get_sequence (b);
g_return_val_if_fail (seq_a == seq_b, 0);
check_seq_access (seq_a);
check_seq_access (seq_b);
a_pos = node_get_pos (a);
b_pos = node_get_pos (b);
if (a_pos == b_pos)
return 0;
else if (a_pos > b_pos)
return 1;
else
return -1;
}
/**
* g_sequence_append:
* @seq: a #GSequence
* @data: the data for the new item
*
* Adds a new item to the end of @seq.
*
* Returns: (transfer none): an iterator pointing to the new item
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_append (GSequence *seq,
gpointer data)
{
GSequenceNode *node;
g_return_val_if_fail (seq != NULL, NULL);
check_seq_access (seq);
node = node_new (data);
node_insert_before (seq->end_node, node);
return node;
}
/**
* g_sequence_prepend:
* @seq: a #GSequence
* @data: the data for the new item
*
* Adds a new item to the front of @seq
*
* Returns: (transfer none): an iterator pointing to the new item
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_prepend (GSequence *seq,
gpointer data)
{
GSequenceNode *node, *first;
g_return_val_if_fail (seq != NULL, NULL);
check_seq_access (seq);
node = node_new (data);
first = node_get_first (seq->end_node);
node_insert_before (first, node);
return node;
}
/**
* g_sequence_insert_before:
* @iter: a #GSequenceIter
* @data: the data for the new item
*
* Inserts a new item just before the item pointed to by @iter.
*
* Returns: (transfer none): an iterator pointing to the new item
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_insert_before (GSequenceIter *iter,
gpointer data)
{
GSequence *seq;
GSequenceNode *node;
g_return_val_if_fail (iter != NULL, NULL);
seq = get_sequence (iter);
check_seq_access (seq);
node = node_new (data);
node_insert_before (iter, node);
return node;
}
/**
* g_sequence_remove:
* @iter: a #GSequenceIter
*
* Removes the item pointed to by @iter. It is an error to pass the
* end iterator to this function.
*
* If the sequence has a data destroy function associated with it, this
* function is called on the data for the removed item.
*
* Since: 2.14
*/
void
g_sequence_remove (GSequenceIter *iter)
{
GSequence *seq;
g_return_if_fail (iter != NULL);
seq = get_sequence (iter);
g_return_if_fail (!seq_is_end (seq, iter));
check_seq_access (seq);
node_unlink (iter);
node_free (iter, seq);
}
/**
* g_sequence_remove_range:
* @begin: a #GSequenceIter
* @end: a #GSequenceIter
*
* Removes all items in the (@begin, @end) range.
*
* If the sequence has a data destroy function associated with it, this
* function is called on the data for the removed items.
*
* Since: 2.14
*/
void
g_sequence_remove_range (GSequenceIter *begin,
GSequenceIter *end)
{
GSequence *seq_begin, *seq_end;
seq_begin = get_sequence (begin);
seq_end = get_sequence (end);
g_return_if_fail (seq_begin == seq_end);
/* check_seq_access() calls are done by g_sequence_move_range() */
g_sequence_move_range (NULL, begin, end);
}
/**
* g_sequence_move_range:
* @dest: a #GSequenceIter
* @begin: a #GSequenceIter
* @end: a #GSequenceIter
*
* Inserts the (@begin, @end) range at the destination pointed to by @dest.
* The @begin and @end iters must point into the same sequence. It is
* allowed for @dest to point to a different sequence than the one pointed
* into by @begin and @end.
*
* If @dest is %NULL, the range indicated by @begin and @end is
* removed from the sequence. If @dest points to a place within
* the (@begin, @end) range, the range does not move.
*
* Since: 2.14
*/
void
g_sequence_move_range (GSequenceIter *dest,
GSequenceIter *begin,
GSequenceIter *end)
{
GSequence *src_seq, *end_seq, *dest_seq = NULL;
GSequenceNode *first;
g_return_if_fail (begin != NULL);
g_return_if_fail (end != NULL);
src_seq = get_sequence (begin);
check_seq_access (src_seq);
end_seq = get_sequence (end);
check_seq_access (end_seq);
if (dest)
{
dest_seq = get_sequence (dest);
check_seq_access (dest_seq);
}
g_return_if_fail (src_seq == end_seq);
/* Dest points to begin or end? */
if (dest == begin || dest == end)
return;
/* begin comes after end? */
if (g_sequence_iter_compare (begin, end) >= 0)
return;
/* dest points somewhere in the (begin, end) range? */
if (dest && dest_seq == src_seq &&
g_sequence_iter_compare (dest, begin) > 0 &&
g_sequence_iter_compare (dest, end) < 0)
{
return;
}
first = node_get_first (begin);
node_cut (begin);
node_cut (end);
if (first != begin)
node_join (first, end);
if (dest)
{
first = node_get_first (dest);
node_cut (dest);
node_join (begin, dest);
if (dest != first)
node_join (first, begin);
}
else
{
node_free (begin, src_seq);
}
}
/**
* g_sequence_sort:
* @seq: a #GSequence
* @cmp_func: the function used to sort the sequence
* @cmp_data: user data passed to @cmp_func
*
* Sorts @seq using @cmp_func.
*
* @cmp_func is passed two items of @seq and should
* return 0 if they are equal, a negative value if the
* first comes before the second, and a positive value
* if the second comes before the first.
*
* Since: 2.14
*/
void
g_sequence_sort (GSequence *seq,
GCompareDataFunc cmp_func,
gpointer cmp_data)
{
SortInfo info;
info.cmp_func = cmp_func;
info.cmp_data = cmp_data;
info.end_node = seq->end_node;
check_seq_access (seq);
g_sequence_sort_iter (seq, iter_compare, &info);
}
/**
* g_sequence_insert_sorted:
* @seq: a #GSequence
* @data: the data to insert
* @cmp_func: the function used to compare items in the sequence
* @cmp_data: user data passed to @cmp_func.
*
* Inserts @data into @seq using @cmp_func to determine the new
* position. The sequence must already be sorted according to @cmp_func;
* otherwise the new position of @data is undefined.
*
* @cmp_func is called with two items of the @seq, and @cmp_data.
* It should return 0 if the items are equal, a negative value
* if the first item comes before the second, and a positive value
* if the second item comes before the first.
*
* Note that when adding a large amount of data to a #GSequence,
* it is more efficient to do unsorted insertions and then call
* g_sequence_sort() or g_sequence_sort_iter().
*
* Returns: (transfer none): a #GSequenceIter pointing to the new item.
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_insert_sorted (GSequence *seq,
gpointer data,
GCompareDataFunc cmp_func,
gpointer cmp_data)
{
SortInfo info;
g_return_val_if_fail (seq != NULL, NULL);
g_return_val_if_fail (cmp_func != NULL, NULL);
info.cmp_func = cmp_func;
info.cmp_data = cmp_data;
info.end_node = seq->end_node;
check_seq_access (seq);
return g_sequence_insert_sorted_iter (seq, data, iter_compare, &info);
}
/**
* g_sequence_sort_changed:
* @iter: A #GSequenceIter
* @cmp_func: the function used to compare items in the sequence
* @cmp_data: user data passed to @cmp_func.
*
* Moves the data pointed to by @iter to a new position as indicated by
* @cmp_func. This
* function should be called for items in a sequence already sorted according
* to @cmp_func whenever some aspect of an item changes so that @cmp_func
* may return different values for that item.
*
* @cmp_func is called with two items of the @seq, and @cmp_data.
* It should return 0 if the items are equal, a negative value if
* the first item comes before the second, and a positive value if
* the second item comes before the first.
*
* Since: 2.14
*/
void
g_sequence_sort_changed (GSequenceIter *iter,
GCompareDataFunc cmp_func,
gpointer cmp_data)
{
GSequence *seq;
SortInfo info;
g_return_if_fail (iter != NULL);
seq = get_sequence (iter);
/* check_seq_access() call is done by g_sequence_sort_changed_iter() */
g_return_if_fail (!seq_is_end (seq, iter));
info.cmp_func = cmp_func;
info.cmp_data = cmp_data;
info.end_node = seq->end_node;
g_sequence_sort_changed_iter (iter, iter_compare, &info);
}
/**
* g_sequence_search:
* @seq: a #GSequence
* @data: data for the new item
* @cmp_func: the function used to compare items in the sequence
* @cmp_data: user data passed to @cmp_func
*
* Returns an iterator pointing to the position where @data would
* be inserted according to @cmp_func and @cmp_data.
*
* @cmp_func is called with two items of the @seq, and @cmp_data.
* It should return 0 if the items are equal, a negative value if
* the first item comes before the second, and a positive value if
* the second item comes before the first.
*
* If you are simply searching for an existing element of the sequence,
* consider using g_sequence_lookup().
*
* This function will fail if the data contained in the sequence is
* unsorted.
*
* Returns: (transfer none): an #GSequenceIter pointing to the position where @data
* would have been inserted according to @cmp_func and @cmp_data
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_search (GSequence *seq,
gpointer data,
GCompareDataFunc cmp_func,
gpointer cmp_data)
{
SortInfo info;
g_return_val_if_fail (seq != NULL, NULL);
info.cmp_func = cmp_func;
info.cmp_data = cmp_data;
info.end_node = seq->end_node;
check_seq_access (seq);
return g_sequence_search_iter (seq, data, iter_compare, &info);
}
/**
* g_sequence_lookup:
* @seq: a #GSequence
* @data: data to look up
* @cmp_func: the function used to compare items in the sequence
* @cmp_data: user data passed to @cmp_func
*
* Returns an iterator pointing to the position of the first item found
* equal to @data according to @cmp_func and @cmp_data. If more than one
* item is equal, it is not guaranteed that it is the first which is
* returned. In that case, you can use g_sequence_iter_next() and
* g_sequence_iter_prev() to get others.
*
* @cmp_func is called with two items of the @seq, and @cmp_data.
* It should return 0 if the items are equal, a negative value if
* the first item comes before the second, and a positive value if
* the second item comes before the first.
*
* This function will fail if the data contained in the sequence is
* unsorted.
*
* Returns: (transfer none) (nullable): an #GSequenceIter pointing to the position of the
* first item found equal to @data according to @cmp_func and
* @cmp_data, or %NULL if no such item exists
*
* Since: 2.28
*/
GSequenceIter *
g_sequence_lookup (GSequence *seq,
gpointer data,
GCompareDataFunc cmp_func,
gpointer cmp_data)
{
SortInfo info;
g_return_val_if_fail (seq != NULL, NULL);
info.cmp_func = cmp_func;
info.cmp_data = cmp_data;
info.end_node = seq->end_node;
check_seq_access (seq);
return g_sequence_lookup_iter (seq, data, iter_compare, &info);
}
/**
* g_sequence_sort_iter:
* @seq: a #GSequence
* @cmp_func: the function used to compare iterators in the sequence
* @cmp_data: user data passed to @cmp_func
*
* Like g_sequence_sort(), but uses a #GSequenceIterCompareFunc instead
* of a #GCompareDataFunc as the compare function
*
* @cmp_func is called with two iterators pointing into @seq. It should
* return 0 if the iterators are equal, a negative value if the first
* iterator comes before the second, and a positive value if the second
* iterator comes before the first.
*
* Since: 2.14
*/
void
g_sequence_sort_iter (GSequence *seq,
GSequenceIterCompareFunc cmp_func,
gpointer cmp_data)
{
GSequence *tmp;
GSequenceNode *begin, *end;
g_return_if_fail (seq != NULL);
g_return_if_fail (cmp_func != NULL);
check_seq_access (seq);
begin = g_sequence_get_begin_iter (seq);
end = g_sequence_get_end_iter (seq);
tmp = g_sequence_new (NULL);
tmp->real_sequence = seq;
g_sequence_move_range (g_sequence_get_begin_iter (tmp), begin, end);
seq->access_prohibited = TRUE;
tmp->access_prohibited = TRUE;
while (!g_sequence_is_empty (tmp))
{
GSequenceNode *node = g_sequence_get_begin_iter (tmp);
node_insert_sorted (seq->end_node, node, seq->end_node,
cmp_func, cmp_data);
}
tmp->access_prohibited = FALSE;
seq->access_prohibited = FALSE;
g_sequence_free (tmp);
}
/**
* g_sequence_sort_changed_iter:
* @iter: a #GSequenceIter
* @iter_cmp: the function used to compare iterators in the sequence
* @cmp_data: user data passed to @cmp_func
*
* Like g_sequence_sort_changed(), but uses
* a #GSequenceIterCompareFunc instead of a #GCompareDataFunc as
* the compare function.
*
* @iter_cmp is called with two iterators pointing into the #GSequence that
* @iter points into. It should
* return 0 if the iterators are equal, a negative value if the first
* iterator comes before the second, and a positive value if the second
* iterator comes before the first.
*
* Since: 2.14
*/
void
g_sequence_sort_changed_iter (GSequenceIter *iter,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
GSequence *seq, *tmp_seq;
GSequenceIter *next, *prev;
g_return_if_fail (iter != NULL);
g_return_if_fail (iter_cmp != NULL);
seq = get_sequence (iter);
g_return_if_fail (!seq_is_end (seq, iter));
check_seq_access (seq);
/* If one of the neighbours is equal to iter, then
* don't move it. This ensures that sort_changed() is
* a stable operation.
*/
next = node_get_next (iter);
prev = node_get_prev (iter);
if (prev != iter && iter_cmp (prev, iter, cmp_data) == 0)
return;
if (!is_end (next) && iter_cmp (next, iter, cmp_data) == 0)
return;
seq->access_prohibited = TRUE;
tmp_seq = g_sequence_new (NULL);
tmp_seq->real_sequence = seq;
node_unlink (iter);
node_insert_before (tmp_seq->end_node, iter);
node_insert_sorted (seq->end_node, iter, seq->end_node,
iter_cmp, cmp_data);
g_sequence_free (tmp_seq);
seq->access_prohibited = FALSE;
}
/**
* g_sequence_insert_sorted_iter:
* @seq: a #GSequence
* @data: data for the new item
* @iter_cmp: the function used to compare iterators in the sequence
* @cmp_data: user data passed to @iter_cmp
*
* Like g_sequence_insert_sorted(), but uses
* a #GSequenceIterCompareFunc instead of a #GCompareDataFunc as
* the compare function.
*
* @iter_cmp is called with two iterators pointing into @seq.
* It should return 0 if the iterators are equal, a negative
* value if the first iterator comes before the second, and a
* positive value if the second iterator comes before the first.
*
* Note that when adding a large amount of data to a #GSequence,
* it is more efficient to do unsorted insertions and then call
* g_sequence_sort() or g_sequence_sort_iter().
*
* Returns: (transfer none): a #GSequenceIter pointing to the new item
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_insert_sorted_iter (GSequence *seq,
gpointer data,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
GSequenceNode *new_node;
GSequence *tmp_seq;
g_return_val_if_fail (seq != NULL, NULL);
g_return_val_if_fail (iter_cmp != NULL, NULL);
check_seq_access (seq);
seq->access_prohibited = TRUE;
/* Create a new temporary sequence and put the new node into
* that. The reason for this is that the user compare function
* will be called with the new node, and if it dereferences,
* "is_end" will be called on it. But that will crash if the
* node is not actually in a sequence.
*
* node_insert_sorted() makes sure the node is unlinked before
* it is inserted.
*
* The reason we need the "iter" versions at all is that that
* is the only kind of compare functions GtkTreeView can use.
*/
tmp_seq = g_sequence_new (NULL);
tmp_seq->real_sequence = seq;
new_node = g_sequence_append (tmp_seq, data);
node_insert_sorted (seq->end_node, new_node,
seq->end_node, iter_cmp, cmp_data);
g_sequence_free (tmp_seq);
seq->access_prohibited = FALSE;
return new_node;
}
/**
* g_sequence_search_iter:
* @seq: a #GSequence
* @data: data for the new item
* @iter_cmp: the function used to compare iterators in the sequence
* @cmp_data: user data passed to @iter_cmp
*
* Like g_sequence_search(), but uses a #GSequenceIterCompareFunc
* instead of a #GCompareDataFunc as the compare function.
*
* @iter_cmp is called with two iterators pointing into @seq.
* It should return 0 if the iterators are equal, a negative value
* if the first iterator comes before the second, and a positive
* value if the second iterator comes before the first.
*
* If you are simply searching for an existing element of the sequence,
* consider using g_sequence_lookup_iter().
*
* This function will fail if the data contained in the sequence is
* unsorted.
*
* Returns: (transfer none): a #GSequenceIter pointing to the position in @seq
* where @data would have been inserted according to @iter_cmp
* and @cmp_data
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_search_iter (GSequence *seq,
gpointer data,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
GSequenceNode *node;
GSequenceNode *dummy;
GSequence *tmp_seq;
g_return_val_if_fail (seq != NULL, NULL);
check_seq_access (seq);
seq->access_prohibited = TRUE;
tmp_seq = g_sequence_new (NULL);
tmp_seq->real_sequence = seq;
dummy = g_sequence_append (tmp_seq, data);
node = node_find_closest (seq->end_node, dummy,
seq->end_node, iter_cmp, cmp_data);
g_sequence_free (tmp_seq);
seq->access_prohibited = FALSE;
return node;
}
/**
* g_sequence_lookup_iter:
* @seq: a #GSequence
* @data: data to look up
* @iter_cmp: the function used to compare iterators in the sequence
* @cmp_data: user data passed to @iter_cmp
*
* Like g_sequence_lookup(), but uses a #GSequenceIterCompareFunc
* instead of a #GCompareDataFunc as the compare function.
*
* @iter_cmp is called with two iterators pointing into @seq.
* It should return 0 if the iterators are equal, a negative value
* if the first iterator comes before the second, and a positive
* value if the second iterator comes before the first.
*
* This function will fail if the data contained in the sequence is
* unsorted.
*
* Returns: (transfer none) (nullable): an #GSequenceIter pointing to the position of
* the first item found equal to @data according to @iter_cmp
* and @cmp_data, or %NULL if no such item exists
*
* Since: 2.28
*/
GSequenceIter *
g_sequence_lookup_iter (GSequence *seq,
gpointer data,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
GSequenceNode *node;
GSequenceNode *dummy;
GSequence *tmp_seq;
g_return_val_if_fail (seq != NULL, NULL);
check_seq_access (seq);
seq->access_prohibited = TRUE;
tmp_seq = g_sequence_new (NULL);
tmp_seq->real_sequence = seq;
dummy = g_sequence_append (tmp_seq, data);
node = node_find (seq->end_node, dummy,
seq->end_node, iter_cmp, cmp_data);
g_sequence_free (tmp_seq);
seq->access_prohibited = FALSE;
return node;
}
/**
* g_sequence_iter_get_sequence:
* @iter: a #GSequenceIter
*
* Returns the #GSequence that @iter points into.
*
* Returns: (transfer none): the #GSequence that @iter points into
*
* Since: 2.14
*/
GSequence *
g_sequence_iter_get_sequence (GSequenceIter *iter)
{
GSequence *seq;
g_return_val_if_fail (iter != NULL, NULL);
seq = get_sequence (iter);
/* For temporary sequences, this points to the sequence that
* is actually being manipulated
*/
return seq->real_sequence;
}
/**
* g_sequence_get:
* @iter: a #GSequenceIter
*
* Returns the data that @iter points to.
*
* Returns: (transfer none): the data that @iter points to
*
* Since: 2.14
*/
gpointer
g_sequence_get (GSequenceIter *iter)
{
g_return_val_if_fail (iter != NULL, NULL);
g_return_val_if_fail (!is_end (iter), NULL);
return iter->data;
}
/**
* g_sequence_set:
* @iter: a #GSequenceIter
* @data: new data for the item
*
* Changes the data for the item pointed to by @iter to be @data. If
* the sequence has a data destroy function associated with it, that
* function is called on the existing data that @iter pointed to.
*
* Since: 2.14
*/
void
g_sequence_set (GSequenceIter *iter,
gpointer data)
{
GSequence *seq;
g_return_if_fail (iter != NULL);
seq = get_sequence (iter);
g_return_if_fail (!seq_is_end (seq, iter));
/* If @data is identical to iter->data, it is destroyed
* here. This will work right in case of ref-counted objects. Also
* it is similar to what ghashtables do.
*
* For non-refcounted data it's a little less convenient, but
* code relying on self-setting not destroying would be
* pretty dubious anyway ...
*/
if (seq->data_destroy_notify)
seq->data_destroy_notify (iter->data);
iter->data = data;
}
/**
* g_sequence_get_length:
* @seq: a #GSequence
*
* Returns the positive length (>= 0) of @seq. Note that this method is
* O(h) where `h' is the height of the tree. It is thus more efficient
* to use g_sequence_is_empty() when comparing the length to zero.
*
* Returns: the length of @seq
*
* Since: 2.14
*/
gint
g_sequence_get_length (GSequence *seq)
{
return node_get_length (seq->end_node) - 1;
}
/**
* g_sequence_is_empty:
* @seq: a #GSequence
*
* Returns %TRUE if the sequence contains zero items.
*
* This function is functionally identical to checking the result of
* g_sequence_get_length() being equal to zero. However this function is
* implemented in O(1) running time.
*
* Returns: %TRUE if the sequence is empty, otherwise %FALSE.
*
* Since: 2.48
*/
gboolean
g_sequence_is_empty (GSequence *seq)
{
return (seq->end_node->parent == NULL) && (seq->end_node->left == NULL);
}
/**
* g_sequence_get_end_iter:
* @seq: a #GSequence
*
* Returns the end iterator for @seg
*
* Returns: (transfer none): the end iterator for @seq
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_get_end_iter (GSequence *seq)
{
g_return_val_if_fail (seq != NULL, NULL);
return seq->end_node;
}
/**
* g_sequence_get_begin_iter:
* @seq: a #GSequence
*
* Returns the begin iterator for @seq.
*
* Returns: (transfer none): the begin iterator for @seq.
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_get_begin_iter (GSequence *seq)
{
g_return_val_if_fail (seq != NULL, NULL);
return node_get_first (seq->end_node);
}
static int
clamp_position (GSequence *seq,
int pos)
{
gint len = g_sequence_get_length (seq);
if (pos > len || pos < 0)
pos = len;
return pos;
}
/**
* g_sequence_get_iter_at_pos:
* @seq: a #GSequence
* @pos: a position in @seq, or -1 for the end
*
* Returns the iterator at position @pos. If @pos is negative or larger
* than the number of items in @seq, the end iterator is returned.
*
* Returns: (transfer none): The #GSequenceIter at position @pos
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_get_iter_at_pos (GSequence *seq,
gint pos)
{
g_return_val_if_fail (seq != NULL, NULL);
pos = clamp_position (seq, pos);
return node_get_by_pos (seq->end_node, pos);
}
/**
* g_sequence_move:
* @src: a #GSequenceIter pointing to the item to move
* @dest: a #GSequenceIter pointing to the position to which
* the item is moved
*
* Moves the item pointed to by @src to the position indicated by @dest.
* After calling this function @dest will point to the position immediately
* after @src. It is allowed for @src and @dest to point into different
* sequences.
*
* Since: 2.14
**/
void
g_sequence_move (GSequenceIter *src,
GSequenceIter *dest)
{
g_return_if_fail (src != NULL);
g_return_if_fail (dest != NULL);
g_return_if_fail (!is_end (src));
if (src == dest)
return;
node_unlink (src);
node_insert_before (dest, src);
}
/* GSequenceIter */
/**
* g_sequence_iter_is_end:
* @iter: a #GSequenceIter
*
* Returns whether @iter is the end iterator
*
* Returns: Whether @iter is the end iterator
*
* Since: 2.14
*/
gboolean
g_sequence_iter_is_end (GSequenceIter *iter)
{
g_return_val_if_fail (iter != NULL, FALSE);
return is_end (iter);
}
/**
* g_sequence_iter_is_begin:
* @iter: a #GSequenceIter
*
* Returns whether @iter is the begin iterator
*
* Returns: whether @iter is the begin iterator
*
* Since: 2.14
*/
gboolean
g_sequence_iter_is_begin (GSequenceIter *iter)
{
g_return_val_if_fail (iter != NULL, FALSE);
return (node_get_prev (iter) == iter);
}
/**
* g_sequence_iter_get_position:
* @iter: a #GSequenceIter
*
* Returns the position of @iter
*
* Returns: the position of @iter
*
* Since: 2.14
*/
gint
g_sequence_iter_get_position (GSequenceIter *iter)
{
g_return_val_if_fail (iter != NULL, -1);
return node_get_pos (iter);
}
/**
* g_sequence_iter_next:
* @iter: a #GSequenceIter
*
* Returns an iterator pointing to the next position after @iter.
* If @iter is the end iterator, the end iterator is returned.
*
* Returns: (transfer none): a #GSequenceIter pointing to the next position after @iter
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_iter_next (GSequenceIter *iter)
{
g_return_val_if_fail (iter != NULL, NULL);
return node_get_next (iter);
}
/**
* g_sequence_iter_prev:
* @iter: a #GSequenceIter
*
* Returns an iterator pointing to the previous position before @iter.
* If @iter is the begin iterator, the begin iterator is returned.
*
* Returns: (transfer none): a #GSequenceIter pointing to the previous position
* before @iter
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_iter_prev (GSequenceIter *iter)
{
g_return_val_if_fail (iter != NULL, NULL);
return node_get_prev (iter);
}
/**
* g_sequence_iter_move:
* @iter: a #GSequenceIter
* @delta: A positive or negative number indicating how many positions away
* from @iter the returned #GSequenceIter will be
*
* Returns the #GSequenceIter which is @delta positions away from @iter.
* If @iter is closer than -@delta positions to the beginning of the sequence,
* the begin iterator is returned. If @iter is closer than @delta positions
* to the end of the sequence, the end iterator is returned.
*
* Returns: (transfer none): a #GSequenceIter which is @delta positions away from @iter
*
* Since: 2.14
*/
GSequenceIter *
g_sequence_iter_move (GSequenceIter *iter,
gint delta)
{
gint new_pos;
gint len;
g_return_val_if_fail (iter != NULL, NULL);
len = g_sequence_get_length (get_sequence (iter));
new_pos = node_get_pos (iter) + delta;
if (new_pos < 0)
new_pos = 0;
else if (new_pos > len)
new_pos = len;
return node_get_by_pos (iter, new_pos);
}
/**
* g_sequence_swap:
* @a: a #GSequenceIter
* @b: a #GSequenceIter
*
* Swaps the items pointed to by @a and @b. It is allowed for @a and @b
* to point into difference sequences.
*
* Since: 2.14
*/
void
g_sequence_swap (GSequenceIter *a,
GSequenceIter *b)
{
GSequenceNode *leftmost, *rightmost, *rightmost_next;
int a_pos, b_pos;
g_return_if_fail (!g_sequence_iter_is_end (a));
g_return_if_fail (!g_sequence_iter_is_end (b));
if (a == b)
return;
a_pos = g_sequence_iter_get_position (a);
b_pos = g_sequence_iter_get_position (b);
if (a_pos > b_pos)
{
leftmost = b;
rightmost = a;
}
else
{
leftmost = a;
rightmost = b;
}
rightmost_next = node_get_next (rightmost);
/* The situation is now like this:
*
* ..., leftmost, ......., rightmost, rightmost_next, ...
*
*/
g_sequence_move (rightmost, leftmost);
g_sequence_move (leftmost, rightmost_next);
}
/*
* Implementation of a treap
*
*
*/
static guint32
hash_uint32 (guint32 key)
{
/* This hash function is based on one found on Thomas Wang's
* web page at
*
* http://www.concentric.net/~Ttwang/tech/inthash.htm
*
*/
key = (key << 15) - key - 1;
key = key ^ (key >> 12);
key = key + (key << 2);
key = key ^ (key >> 4);
key = key + (key << 3) + (key << 11);
key = key ^ (key >> 16);
return key;
}
static inline guint
get_priority (GSequenceNode *node)
{
return node->priority;
}
static guint
make_priority (guint32 key)
{
key = hash_uint32 (key);
/* We rely on 0 being less than all other priorities */
return key? key : 1;
}
static GSequenceNode *
find_root (GSequenceNode *node)
{
while (node->parent)
node = node->parent;
return node;
}
static GSequenceNode *
node_new (gpointer data)
{
GSequenceNode *node = g_slice_new0 (GSequenceNode);
/*
* Make a random number quickly. Some binary magic is used to avoid
* the costs of proper RNG, such as locking around global GRand.
*
* Using just the node pointer alone is not enough, because in this
* case freeing and re-allocating sequence causes node's priorities
* to no longer be random. This happens for two reasons:
* 1) Nodes are freed from the root and the treap's property is that
* node's priority is >= than its children's priorities.
* 2) g_slice_new0() will reuse freed nodes in the order similar to
* the order of freeing.
* As a result, there are severe problems where building the treap is
* much slower (100x and more after a few sequence new/free
* iterations) and treap becomes more like a list (tree height
* approaches tree's number of elements), which increases costs of
* using the built treap.
*
* Note that for performance reasons, counter completely ignores
* multi-threading issues. This is fine because it's merely a source
* of additional randomness. Even if it fails to ++ sometimes, this
* won't really matter for its goal.
*
* Note that 64-bit counter is used to avoid undefined behavior on
* overflow.
*
* See https://gitlab.gnome.org/GNOME/glib/-/issues/2468
*/
static guint64 counter = 0;
guint32 hash_key = (guint32) GPOINTER_TO_UINT (node);
hash_key ^= (guint32) counter;
counter++;
node->n_nodes = 1;
node->priority = make_priority (hash_key);
node->data = data;
node->left = NULL;
node->right = NULL;
node->parent = NULL;
return node;
}
static GSequenceNode *
node_get_first (GSequenceNode *node)
{
node = find_root (node);
while (node->left)
node = node->left;
return node;
}
static GSequenceNode *
node_get_last (GSequenceNode *node)
{
node = find_root (node);
while (node->right)
node = node->right;
return node;
}
#define NODE_LEFT_CHILD(n) (((n)->parent) && ((n)->parent->left) == (n))
#define NODE_RIGHT_CHILD(n) (((n)->parent) && ((n)->parent->right) == (n))
static GSequenceNode *
node_get_next (GSequenceNode *node)
{
GSequenceNode *n = node;
if (n->right)
{
n = n->right;
while (n->left)
n = n->left;
}
else
{
while (NODE_RIGHT_CHILD (n))
n = n->parent;
if (n->parent)
n = n->parent;
else
n = node;
}
return n;
}
static GSequenceNode *
node_get_prev (GSequenceNode *node)
{
GSequenceNode *n = node;
if (n->left)
{
n = n->left;
while (n->right)
n = n->right;
}
else
{
while (NODE_LEFT_CHILD (n))
n = n->parent;
if (n->parent)
n = n->parent;
else
n = node;
}
return n;
}
#define N_NODES(n) ((n)? (n)->n_nodes : 0)
static gint
node_get_pos (GSequenceNode *node)
{
int n_smaller = 0;
if (node->left)
n_smaller = node->left->n_nodes;
while (node)
{
if (NODE_RIGHT_CHILD (node))
n_smaller += N_NODES (node->parent->left) + 1;
node = node->parent;
}
return n_smaller;
}
static GSequenceNode *
node_get_by_pos (GSequenceNode *node,
gint pos)
{
int i;
node = find_root (node);
while ((i = N_NODES (node->left)) != pos)
{
if (i < pos)
{
node = node->right;
pos -= (i + 1);
}
else
{
node = node->left;
}
}
return node;
}
static GSequenceNode *
node_find (GSequenceNode *haystack,
GSequenceNode *needle,
GSequenceNode *end,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
gint c;
haystack = find_root (haystack);
do
{
/* iter_cmp can't be passed the end node, since the function may
* be user-supplied
*/
if (haystack == end)
c = 1;
else
c = iter_cmp (haystack, needle, cmp_data);
if (c == 0)
break;
if (c > 0)
haystack = haystack->left;
else
haystack = haystack->right;
}
while (haystack != NULL);
return haystack;
}
static GSequenceNode *
node_find_closest (GSequenceNode *haystack,
GSequenceNode *needle,
GSequenceNode *end,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
GSequenceNode *best;
gint c;
haystack = find_root (haystack);
do
{
best = haystack;
/* iter_cmp can't be passed the end node, since the function may
* be user-supplied
*/
if (haystack == end)
c = 1;
else
c = iter_cmp (haystack, needle, cmp_data);
/* In the following we don't break even if c == 0. Instead we go on
* searching along the 'bigger' nodes, so that we find the last one
* that is equal to the needle.
*/
if (c > 0)
haystack = haystack->left;
else
haystack = haystack->right;
}
while (haystack != NULL);
/* If the best node is smaller or equal to the data, then move one step
* to the right to make sure the best one is strictly bigger than the data
*/
if (best != end && c <= 0)
best = node_get_next (best);
return best;
}
static gint
node_get_length (GSequenceNode *node)
{
node = find_root (node);
return node->n_nodes;
}
static void
real_node_free (GSequenceNode *node,
GSequence *seq)
{
if (node)
{
real_node_free (node->left, seq);
real_node_free (node->right, seq);
if (seq && seq->data_destroy_notify && node != seq->end_node)
seq->data_destroy_notify (node->data);
g_slice_free (GSequenceNode, node);
}
}
static void
node_free (GSequenceNode *node,
GSequence *seq)
{
node = find_root (node);
real_node_free (node, seq);
}
static void
node_update_fields (GSequenceNode *node)
{
int n_nodes = 1;
n_nodes += N_NODES (node->left);
n_nodes += N_NODES (node->right);
node->n_nodes = n_nodes;
}
static void
node_rotate (GSequenceNode *node)
{
GSequenceNode *tmp, *old;
g_assert (node->parent);
g_assert (node->parent != node);
if (NODE_LEFT_CHILD (node))
{
/* rotate right */
tmp = node->right;
node->right = node->parent;
node->parent = node->parent->parent;
if (node->parent)
{
if (node->parent->left == node->right)
node->parent->left = node;
else
node->parent->right = node;
}
g_assert (node->right);
node->right->parent = node;
node->right->left = tmp;
if (node->right->left)
node->right->left->parent = node->right;
old = node->right;
}
else
{
/* rotate left */
tmp = node->left;
node->left = node->parent;
node->parent = node->parent->parent;
if (node->parent)
{
if (node->parent->right == node->left)
node->parent->right = node;
else
node->parent->left = node;
}
g_assert (node->left);
node->left->parent = node;
node->left->right = tmp;
if (node->left->right)
node->left->right->parent = node->left;
old = node->left;
}
node_update_fields (old);
node_update_fields (node);
}
static void
node_update_fields_deep (GSequenceNode *node)
{
if (node)
{
node_update_fields (node);
node_update_fields_deep (node->parent);
}
}
static void
rotate_down (GSequenceNode *node,
guint priority)
{
guint left, right;
left = node->left ? get_priority (node->left) : 0;
right = node->right ? get_priority (node->right) : 0;
while (priority < left || priority < right)
{
if (left > right)
node_rotate (node->left);
else
node_rotate (node->right);
left = node->left ? get_priority (node->left) : 0;
right = node->right ? get_priority (node->right) : 0;
}
}
static void
node_cut (GSequenceNode *node)
{
while (node->parent)
node_rotate (node);
if (node->left)
node->left->parent = NULL;
node->left = NULL;
node_update_fields (node);
rotate_down (node, get_priority (node));
}
static void
node_join (GSequenceNode *left,
GSequenceNode *right)
{
GSequenceNode *fake = node_new (NULL);
fake->left = find_root (left);
fake->right = find_root (right);
fake->left->parent = fake;
fake->right->parent = fake;
node_update_fields (fake);
node_unlink (fake);
node_free (fake, NULL);
}
static void
node_insert_before (GSequenceNode *node,
GSequenceNode *new)
{
new->left = node->left;
if (new->left)
new->left->parent = new;
new->parent = node;
node->left = new;
node_update_fields_deep (new);
while (new->parent && get_priority (new) > get_priority (new->parent))
node_rotate (new);
rotate_down (new, get_priority (new));
}
static void
node_unlink (GSequenceNode *node)
{
rotate_down (node, 0);
if (NODE_RIGHT_CHILD (node))
node->parent->right = NULL;
else if (NODE_LEFT_CHILD (node))
node->parent->left = NULL;
if (node->parent)
node_update_fields_deep (node->parent);
node->parent = NULL;
}
static void
node_insert_sorted (GSequenceNode *node,
GSequenceNode *new,
GSequenceNode *end,
GSequenceIterCompareFunc iter_cmp,
gpointer cmp_data)
{
GSequenceNode *closest;
closest = node_find_closest (node, new, end, iter_cmp, cmp_data);
node_unlink (new);
node_insert_before (closest, new);
}