mirror of https://gitee.com/openkylin/glib2.0.git
1868 lines
54 KiB
C
1868 lines
54 KiB
C
/* gchecksum.h - data hashing functions
|
||
*
|
||
* Copyright (C) 2007 Emmanuele Bassi <ebassi@gnome.org>
|
||
*
|
||
* SPDX-License-Identifier: LGPL-2.1-or-later
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public License
|
||
* along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "config.h"
|
||
|
||
#include <string.h>
|
||
|
||
#include "gchecksum.h"
|
||
|
||
#include "gslice.h"
|
||
#include "gmem.h"
|
||
#include "gstrfuncs.h"
|
||
#include "gtestutils.h"
|
||
#include "gtypes.h"
|
||
#include "glibintl.h"
|
||
|
||
|
||
/**
|
||
* GChecksum:
|
||
*
|
||
* GLib provides a generic API for computing checksums (or ‘digests’)
|
||
* for a sequence of arbitrary bytes, using various hashing algorithms
|
||
* like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
|
||
* environments and specifications.
|
||
*
|
||
* To create a new `GChecksum`, use [ctor@GLib.Checksum.new]. To free
|
||
* a `GChecksum`, use [method@GLib.Checksum.free].
|
||
*
|
||
* GLib supports incremental checksums using the `GChecksum` data
|
||
* structure, by calling [method@GLib.Checksum.update] as long as there’s data
|
||
* available and then using [method@GLib.Checksum.get_string] or
|
||
* [method@GLib.Checksum.get_digest] to compute the checksum and return it
|
||
* either as a string in hexadecimal form, or as a raw sequence of bytes. To
|
||
* compute the checksum for binary blobs and nul-terminated strings in
|
||
* one go, use the convenience functions [func@GLib.compute_checksum_for_data]
|
||
* and [func@GLib.compute_checksum_for_string], respectively.
|
||
*
|
||
* Since: 2.16
|
||
**/
|
||
|
||
#define IS_VALID_TYPE(type) ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA384)
|
||
|
||
/* The fact that these are lower case characters is part of the ABI */
|
||
static const gchar hex_digits[] = "0123456789abcdef";
|
||
|
||
#define MD5_DATASIZE 64
|
||
#define MD5_DIGEST_LEN 16
|
||
|
||
typedef struct
|
||
{
|
||
guint32 buf[4];
|
||
guint32 bits[2];
|
||
|
||
union {
|
||
guchar data[MD5_DATASIZE];
|
||
guint32 data32[MD5_DATASIZE / 4];
|
||
} u;
|
||
|
||
guchar digest[MD5_DIGEST_LEN];
|
||
} Md5sum;
|
||
|
||
#define SHA1_DATASIZE 64
|
||
#define SHA1_DIGEST_LEN 20
|
||
|
||
typedef struct
|
||
{
|
||
guint32 buf[5];
|
||
guint32 bits[2];
|
||
|
||
/* we pack 64 unsigned chars into 16 32-bit unsigned integers */
|
||
guint32 data[16];
|
||
|
||
guchar digest[SHA1_DIGEST_LEN];
|
||
} Sha1sum;
|
||
|
||
#define SHA256_DATASIZE 64
|
||
#define SHA256_DIGEST_LEN 32
|
||
|
||
typedef struct
|
||
{
|
||
guint32 buf[8];
|
||
guint32 bits[2];
|
||
|
||
guint8 data[SHA256_DATASIZE];
|
||
|
||
guchar digest[SHA256_DIGEST_LEN];
|
||
} Sha256sum;
|
||
|
||
/* SHA2 is common thing for SHA-384, SHA-512, SHA-512/224 and SHA-512/256 */
|
||
#define SHA2_BLOCK_LEN 128 /* 1024 bits message block */
|
||
#define SHA384_DIGEST_LEN 48
|
||
#define SHA512_DIGEST_LEN 64
|
||
|
||
typedef struct
|
||
{
|
||
guint64 H[8];
|
||
|
||
guint8 block[SHA2_BLOCK_LEN];
|
||
guint8 block_len;
|
||
|
||
guint64 data_len[2];
|
||
|
||
guchar digest[SHA512_DIGEST_LEN];
|
||
} Sha512sum;
|
||
|
||
struct _GChecksum
|
||
{
|
||
GChecksumType type;
|
||
|
||
gchar *digest_str;
|
||
|
||
union {
|
||
Md5sum md5;
|
||
Sha1sum sha1;
|
||
Sha256sum sha256;
|
||
Sha512sum sha512;
|
||
} sum;
|
||
};
|
||
|
||
/* we need different byte swapping functions because MD5 expects buffers
|
||
* to be little-endian, while SHA1 and SHA256 expect them in big-endian
|
||
* form.
|
||
*/
|
||
|
||
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
|
||
#define md5_byte_reverse(buffer,length)
|
||
#else
|
||
/* assume that the passed buffer is integer aligned */
|
||
static inline void
|
||
md5_byte_reverse (guchar *buffer,
|
||
gulong length)
|
||
{
|
||
guint32 bit;
|
||
|
||
do
|
||
{
|
||
bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
|
||
((unsigned) buffer[1] << 8 | buffer[0]);
|
||
* (guint32 *) buffer = bit;
|
||
buffer += 4;
|
||
}
|
||
while (--length);
|
||
}
|
||
#endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */
|
||
|
||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||
#define sha_byte_reverse(buffer,length)
|
||
#else
|
||
static inline void
|
||
sha_byte_reverse (guint32 *buffer,
|
||
gint length)
|
||
{
|
||
length /= sizeof (guint32);
|
||
while (length--)
|
||
{
|
||
*buffer = GUINT32_SWAP_LE_BE (*buffer);
|
||
++buffer;
|
||
}
|
||
}
|
||
#endif /* G_BYTE_ORDER == G_BIG_ENDIAN */
|
||
|
||
static gchar *
|
||
digest_to_string (guint8 *digest,
|
||
gsize digest_len)
|
||
{
|
||
gsize i, len = digest_len * 2;
|
||
gchar *retval;
|
||
|
||
retval = g_new (gchar, len + 1);
|
||
|
||
for (i = 0; i < digest_len; i++)
|
||
{
|
||
guint8 byte = digest[i];
|
||
|
||
retval[2 * i] = hex_digits[byte >> 4];
|
||
retval[2 * i + 1] = hex_digits[byte & 0xf];
|
||
}
|
||
|
||
retval[len] = 0;
|
||
|
||
return retval;
|
||
}
|
||
|
||
/*
|
||
* MD5 Checksum
|
||
*/
|
||
|
||
/* This MD5 digest computation is based on the equivalent code
|
||
* written by Colin Plumb. It came with this notice:
|
||
*
|
||
* This code implements the MD5 message-digest algorithm.
|
||
* The algorithm is due to Ron Rivest. This code was
|
||
* written by Colin Plumb in 1993, no copyright is claimed.
|
||
* This code is in the public domain; do with it what you wish.
|
||
*
|
||
* Equivalent code is available from RSA Data Security, Inc.
|
||
* This code has been tested against that, and is equivalent,
|
||
* except that you don't need to include two pages of legalese
|
||
* with every copy.
|
||
*/
|
||
|
||
static void
|
||
md5_sum_init (Md5sum *md5)
|
||
{
|
||
/* arbitrary constants */
|
||
md5->buf[0] = 0x67452301;
|
||
md5->buf[1] = 0xefcdab89;
|
||
md5->buf[2] = 0x98badcfe;
|
||
md5->buf[3] = 0x10325476;
|
||
|
||
md5->bits[0] = md5->bits[1] = 0;
|
||
}
|
||
|
||
/*
|
||
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
||
* reflect the addition of 16 longwords of new data. md5_sum_update()
|
||
* blocks the data and converts bytes into longwords for this routine.
|
||
*/
|
||
static void
|
||
md5_transform (guint32 buf[4],
|
||
guint32 const in[16])
|
||
{
|
||
guint32 a, b, c, d;
|
||
|
||
/* The four core functions - F1 is optimized somewhat */
|
||
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
||
#define F2(x, y, z) F1 (z, x, y)
|
||
#define F3(x, y, z) (x ^ y ^ z)
|
||
#define F4(x, y, z) (y ^ (x | ~z))
|
||
|
||
/* This is the central step in the MD5 algorithm. */
|
||
#define md5_step(f, w, x, y, z, data, s) \
|
||
( w += f (x, y, z) + data, w = w << s | w >> (32 - s), w += x )
|
||
|
||
a = buf[0];
|
||
b = buf[1];
|
||
c = buf[2];
|
||
d = buf[3];
|
||
|
||
md5_step (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
|
||
md5_step (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
|
||
md5_step (F1, c, d, a, b, in[2] + 0x242070db, 17);
|
||
md5_step (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
|
||
md5_step (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
|
||
md5_step (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
|
||
md5_step (F1, c, d, a, b, in[6] + 0xa8304613, 17);
|
||
md5_step (F1, b, c, d, a, in[7] + 0xfd469501, 22);
|
||
md5_step (F1, a, b, c, d, in[8] + 0x698098d8, 7);
|
||
md5_step (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
|
||
md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
|
||
md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
|
||
md5_step (F1, a, b, c, d, in[12] + 0x6b901122, 7);
|
||
md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
|
||
md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
|
||
md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
|
||
|
||
md5_step (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
|
||
md5_step (F2, d, a, b, c, in[6] + 0xc040b340, 9);
|
||
md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
|
||
md5_step (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
|
||
md5_step (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
|
||
md5_step (F2, d, a, b, c, in[10] + 0x02441453, 9);
|
||
md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
|
||
md5_step (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
|
||
md5_step (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
|
||
md5_step (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
|
||
md5_step (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
|
||
md5_step (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
|
||
md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
|
||
md5_step (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
|
||
md5_step (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
|
||
md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
|
||
|
||
md5_step (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
|
||
md5_step (F3, d, a, b, c, in[8] + 0x8771f681, 11);
|
||
md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
|
||
md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
|
||
md5_step (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
|
||
md5_step (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
|
||
md5_step (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
|
||
md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
|
||
md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
|
||
md5_step (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
|
||
md5_step (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
|
||
md5_step (F3, b, c, d, a, in[6] + 0x04881d05, 23);
|
||
md5_step (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
|
||
md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
|
||
md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
|
||
md5_step (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
|
||
|
||
md5_step (F4, a, b, c, d, in[0] + 0xf4292244, 6);
|
||
md5_step (F4, d, a, b, c, in[7] + 0x432aff97, 10);
|
||
md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
|
||
md5_step (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
|
||
md5_step (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
|
||
md5_step (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
|
||
md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
|
||
md5_step (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
|
||
md5_step (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
|
||
md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
|
||
md5_step (F4, c, d, a, b, in[6] + 0xa3014314, 15);
|
||
md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
|
||
md5_step (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
|
||
md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
|
||
md5_step (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
|
||
md5_step (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
|
||
|
||
buf[0] += a;
|
||
buf[1] += b;
|
||
buf[2] += c;
|
||
buf[3] += d;
|
||
|
||
#undef F1
|
||
#undef F2
|
||
#undef F3
|
||
#undef F4
|
||
#undef md5_step
|
||
}
|
||
|
||
static void
|
||
md5_sum_update (Md5sum *md5,
|
||
const guchar *data,
|
||
gsize length)
|
||
{
|
||
guint32 bit;
|
||
|
||
bit = md5->bits[0];
|
||
md5->bits[0] = bit + ((guint32) length << 3);
|
||
|
||
/* carry from low to high */
|
||
if (md5->bits[0] < bit)
|
||
md5->bits[1] += 1;
|
||
|
||
md5->bits[1] += length >> 29;
|
||
|
||
/* bytes already in Md5sum->u.data */
|
||
bit = (bit >> 3) & 0x3f;
|
||
|
||
/* handle any leading odd-sized chunks */
|
||
if (bit)
|
||
{
|
||
guchar *p = md5->u.data + bit;
|
||
|
||
bit = MD5_DATASIZE - bit;
|
||
if (length < bit)
|
||
{
|
||
memcpy (p, data, length);
|
||
return;
|
||
}
|
||
|
||
memcpy (p, data, bit);
|
||
|
||
md5_byte_reverse (md5->u.data, 16);
|
||
md5_transform (md5->buf, md5->u.data32);
|
||
|
||
data += bit;
|
||
length -= bit;
|
||
}
|
||
|
||
/* process data in 64-byte chunks */
|
||
while (length >= MD5_DATASIZE)
|
||
{
|
||
memcpy (md5->u.data, data, MD5_DATASIZE);
|
||
|
||
md5_byte_reverse (md5->u.data, 16);
|
||
md5_transform (md5->buf, md5->u.data32);
|
||
|
||
data += MD5_DATASIZE;
|
||
length -= MD5_DATASIZE;
|
||
}
|
||
|
||
/* handle any remaining bytes of data */
|
||
memcpy (md5->u.data, data, length);
|
||
}
|
||
|
||
/* closes a checksum */
|
||
static void
|
||
md5_sum_close (Md5sum *md5)
|
||
{
|
||
guint count;
|
||
guchar *p;
|
||
|
||
/* Compute number of bytes mod 64 */
|
||
count = (md5->bits[0] >> 3) & 0x3F;
|
||
|
||
/* Set the first char of padding to 0x80.
|
||
* This is safe since there is always at least one byte free
|
||
*/
|
||
p = md5->u.data + count;
|
||
*p++ = 0x80;
|
||
|
||
/* Bytes of padding needed to make 64 bytes */
|
||
count = MD5_DATASIZE - 1 - count;
|
||
|
||
/* Pad out to 56 mod 64 */
|
||
if (count < 8)
|
||
{
|
||
/* Two lots of padding: Pad the first block to 64 bytes */
|
||
memset (p, 0, count);
|
||
|
||
md5_byte_reverse (md5->u.data, 16);
|
||
md5_transform (md5->buf, md5->u.data32);
|
||
|
||
/* Now fill the next block with 56 bytes */
|
||
memset (md5->u.data, 0, MD5_DATASIZE - 8);
|
||
}
|
||
else
|
||
{
|
||
/* Pad block to 56 bytes */
|
||
memset (p, 0, count - 8);
|
||
}
|
||
|
||
md5_byte_reverse (md5->u.data, 14);
|
||
|
||
/* Append length in bits and transform */
|
||
md5->u.data32[14] = md5->bits[0];
|
||
md5->u.data32[15] = md5->bits[1];
|
||
|
||
md5_transform (md5->buf, md5->u.data32);
|
||
md5_byte_reverse ((guchar *) md5->buf, 4);
|
||
|
||
memcpy (md5->digest, md5->buf, 16);
|
||
|
||
/* Reset buffers in case they contain sensitive data */
|
||
memset (md5->buf, 0, sizeof (md5->buf));
|
||
memset (md5->u.data, 0, sizeof (md5->u.data));
|
||
}
|
||
|
||
static gchar *
|
||
md5_sum_to_string (Md5sum *md5)
|
||
{
|
||
return digest_to_string (md5->digest, MD5_DIGEST_LEN);
|
||
}
|
||
|
||
static void
|
||
md5_sum_digest (Md5sum *md5,
|
||
guint8 *digest)
|
||
{
|
||
gint i;
|
||
|
||
for (i = 0; i < MD5_DIGEST_LEN; i++)
|
||
digest[i] = md5->digest[i];
|
||
}
|
||
|
||
/*
|
||
* SHA-1 Checksum
|
||
*/
|
||
|
||
/* The following implementation comes from D-Bus dbus-sha.c. I've changed
|
||
* it to use GLib types and to work more like the MD5 implementation above.
|
||
* I left the comments to have a history of this code.
|
||
* -- Emmanuele Bassi, ebassi@gnome.org
|
||
*/
|
||
|
||
/* The following comments have the history of where this code
|
||
* comes from. I actually copied it from GNet in GNOME CVS.
|
||
* - hp@redhat.com
|
||
*/
|
||
|
||
/*
|
||
* sha.h : Implementation of the Secure Hash Algorithm
|
||
*
|
||
* Part of the Python Cryptography Toolkit, version 1.0.0
|
||
*
|
||
* Copyright (C) 1995, A.M. Kuchling
|
||
*
|
||
* Distribute and use freely; there are no restrictions on further
|
||
* dissemination and usage except those imposed by the laws of your
|
||
* country of residence.
|
||
*
|
||
*/
|
||
|
||
/* SHA: NIST's Secure Hash Algorithm */
|
||
|
||
/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
|
||
in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
|
||
Modified to test for endianness on creation of SHA objects by AMK.
|
||
Also, the original specification of SHA was found to have a weakness
|
||
by NSA/NIST. This code implements the fixed version of SHA.
|
||
*/
|
||
|
||
/* Here's the first paragraph of Peter Gutmann's posting:
|
||
|
||
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
|
||
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
|
||
what's changed in the new version. The fix is a simple change which involves
|
||
adding a single rotate in the initial expansion function. It is unknown
|
||
whether this is an optimal solution to the problem which was discovered in the
|
||
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
|
||
effort (for example the reengineering of a great many Capstone chips).
|
||
*/
|
||
|
||
static void
|
||
sha1_sum_init (Sha1sum *sha1)
|
||
{
|
||
/* initialize constants */
|
||
sha1->buf[0] = 0x67452301L;
|
||
sha1->buf[1] = 0xEFCDAB89L;
|
||
sha1->buf[2] = 0x98BADCFEL;
|
||
sha1->buf[3] = 0x10325476L;
|
||
sha1->buf[4] = 0xC3D2E1F0L;
|
||
|
||
/* initialize bits */
|
||
sha1->bits[0] = sha1->bits[1] = 0;
|
||
}
|
||
|
||
/* The SHA f()-functions. */
|
||
|
||
#define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
|
||
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
|
||
#define f3(x,y,z) (( x & y) | (z & (x | y))) /* Rounds 40-59 */
|
||
#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
|
||
|
||
/* The SHA Mysterious Constants */
|
||
#define K1 0x5A827999L /* Rounds 0-19 */
|
||
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
||
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
||
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
||
|
||
/* 32-bit rotate left - kludged with shifts */
|
||
#define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))
|
||
|
||
/* The initial expanding function. The hash function is defined over an
|
||
80-word expanded input array W, where the first 16 are copies of the input
|
||
data, and the remaining 64 are defined by
|
||
|
||
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
|
||
|
||
This implementation generates these values on the fly in a circular
|
||
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
|
||
optimization.
|
||
|
||
The updated SHA changes the expanding function by adding a rotate of 1
|
||
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
|
||
for this information */
|
||
|
||
#define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i & 15] ^ \
|
||
W[(i - 14) & 15] ^ \
|
||
W[(i - 8) & 15] ^ \
|
||
W[(i - 3) & 15])))
|
||
|
||
|
||
/* The prototype SHA sub-round. The fundamental sub-round is:
|
||
|
||
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
|
||
b' = a;
|
||
c' = ROTL( 30, b );
|
||
d' = c;
|
||
e' = d;
|
||
|
||
but this is implemented by unrolling the loop 5 times and renaming the
|
||
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
|
||
This code is then replicated 20 times for each of the 4 functions, using
|
||
the next 20 values from the W[] array each time */
|
||
|
||
#define subRound(a, b, c, d, e, f, k, data) \
|
||
(e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))
|
||
|
||
static void
|
||
sha1_transform (guint32 buf[5],
|
||
guint32 in[16])
|
||
{
|
||
guint32 A, B, C, D, E;
|
||
|
||
A = buf[0];
|
||
B = buf[1];
|
||
C = buf[2];
|
||
D = buf[3];
|
||
E = buf[4];
|
||
|
||
/* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
|
||
subRound (A, B, C, D, E, f1, K1, in[0]);
|
||
subRound (E, A, B, C, D, f1, K1, in[1]);
|
||
subRound (D, E, A, B, C, f1, K1, in[2]);
|
||
subRound (C, D, E, A, B, f1, K1, in[3]);
|
||
subRound (B, C, D, E, A, f1, K1, in[4]);
|
||
subRound (A, B, C, D, E, f1, K1, in[5]);
|
||
subRound (E, A, B, C, D, f1, K1, in[6]);
|
||
subRound (D, E, A, B, C, f1, K1, in[7]);
|
||
subRound (C, D, E, A, B, f1, K1, in[8]);
|
||
subRound (B, C, D, E, A, f1, K1, in[9]);
|
||
subRound (A, B, C, D, E, f1, K1, in[10]);
|
||
subRound (E, A, B, C, D, f1, K1, in[11]);
|
||
subRound (D, E, A, B, C, f1, K1, in[12]);
|
||
subRound (C, D, E, A, B, f1, K1, in[13]);
|
||
subRound (B, C, D, E, A, f1, K1, in[14]);
|
||
subRound (A, B, C, D, E, f1, K1, in[15]);
|
||
subRound (E, A, B, C, D, f1, K1, expand (in, 16));
|
||
subRound (D, E, A, B, C, f1, K1, expand (in, 17));
|
||
subRound (C, D, E, A, B, f1, K1, expand (in, 18));
|
||
subRound (B, C, D, E, A, f1, K1, expand (in, 19));
|
||
|
||
subRound (A, B, C, D, E, f2, K2, expand (in, 20));
|
||
subRound (E, A, B, C, D, f2, K2, expand (in, 21));
|
||
subRound (D, E, A, B, C, f2, K2, expand (in, 22));
|
||
subRound (C, D, E, A, B, f2, K2, expand (in, 23));
|
||
subRound (B, C, D, E, A, f2, K2, expand (in, 24));
|
||
subRound (A, B, C, D, E, f2, K2, expand (in, 25));
|
||
subRound (E, A, B, C, D, f2, K2, expand (in, 26));
|
||
subRound (D, E, A, B, C, f2, K2, expand (in, 27));
|
||
subRound (C, D, E, A, B, f2, K2, expand (in, 28));
|
||
subRound (B, C, D, E, A, f2, K2, expand (in, 29));
|
||
subRound (A, B, C, D, E, f2, K2, expand (in, 30));
|
||
subRound (E, A, B, C, D, f2, K2, expand (in, 31));
|
||
subRound (D, E, A, B, C, f2, K2, expand (in, 32));
|
||
subRound (C, D, E, A, B, f2, K2, expand (in, 33));
|
||
subRound (B, C, D, E, A, f2, K2, expand (in, 34));
|
||
subRound (A, B, C, D, E, f2, K2, expand (in, 35));
|
||
subRound (E, A, B, C, D, f2, K2, expand (in, 36));
|
||
subRound (D, E, A, B, C, f2, K2, expand (in, 37));
|
||
subRound (C, D, E, A, B, f2, K2, expand (in, 38));
|
||
subRound (B, C, D, E, A, f2, K2, expand (in, 39));
|
||
|
||
subRound (A, B, C, D, E, f3, K3, expand (in, 40));
|
||
subRound (E, A, B, C, D, f3, K3, expand (in, 41));
|
||
subRound (D, E, A, B, C, f3, K3, expand (in, 42));
|
||
subRound (C, D, E, A, B, f3, K3, expand (in, 43));
|
||
subRound (B, C, D, E, A, f3, K3, expand (in, 44));
|
||
subRound (A, B, C, D, E, f3, K3, expand (in, 45));
|
||
subRound (E, A, B, C, D, f3, K3, expand (in, 46));
|
||
subRound (D, E, A, B, C, f3, K3, expand (in, 47));
|
||
subRound (C, D, E, A, B, f3, K3, expand (in, 48));
|
||
subRound (B, C, D, E, A, f3, K3, expand (in, 49));
|
||
subRound (A, B, C, D, E, f3, K3, expand (in, 50));
|
||
subRound (E, A, B, C, D, f3, K3, expand (in, 51));
|
||
subRound (D, E, A, B, C, f3, K3, expand (in, 52));
|
||
subRound (C, D, E, A, B, f3, K3, expand (in, 53));
|
||
subRound (B, C, D, E, A, f3, K3, expand (in, 54));
|
||
subRound (A, B, C, D, E, f3, K3, expand (in, 55));
|
||
subRound (E, A, B, C, D, f3, K3, expand (in, 56));
|
||
subRound (D, E, A, B, C, f3, K3, expand (in, 57));
|
||
subRound (C, D, E, A, B, f3, K3, expand (in, 58));
|
||
subRound (B, C, D, E, A, f3, K3, expand (in, 59));
|
||
|
||
subRound (A, B, C, D, E, f4, K4, expand (in, 60));
|
||
subRound (E, A, B, C, D, f4, K4, expand (in, 61));
|
||
subRound (D, E, A, B, C, f4, K4, expand (in, 62));
|
||
subRound (C, D, E, A, B, f4, K4, expand (in, 63));
|
||
subRound (B, C, D, E, A, f4, K4, expand (in, 64));
|
||
subRound (A, B, C, D, E, f4, K4, expand (in, 65));
|
||
subRound (E, A, B, C, D, f4, K4, expand (in, 66));
|
||
subRound (D, E, A, B, C, f4, K4, expand (in, 67));
|
||
subRound (C, D, E, A, B, f4, K4, expand (in, 68));
|
||
subRound (B, C, D, E, A, f4, K4, expand (in, 69));
|
||
subRound (A, B, C, D, E, f4, K4, expand (in, 70));
|
||
subRound (E, A, B, C, D, f4, K4, expand (in, 71));
|
||
subRound (D, E, A, B, C, f4, K4, expand (in, 72));
|
||
subRound (C, D, E, A, B, f4, K4, expand (in, 73));
|
||
subRound (B, C, D, E, A, f4, K4, expand (in, 74));
|
||
subRound (A, B, C, D, E, f4, K4, expand (in, 75));
|
||
subRound (E, A, B, C, D, f4, K4, expand (in, 76));
|
||
subRound (D, E, A, B, C, f4, K4, expand (in, 77));
|
||
subRound (C, D, E, A, B, f4, K4, expand (in, 78));
|
||
subRound (B, C, D, E, A, f4, K4, expand (in, 79));
|
||
|
||
/* Build message digest */
|
||
buf[0] += A;
|
||
buf[1] += B;
|
||
buf[2] += C;
|
||
buf[3] += D;
|
||
buf[4] += E;
|
||
}
|
||
|
||
#undef K1
|
||
#undef K2
|
||
#undef K3
|
||
#undef K4
|
||
#undef f1
|
||
#undef f2
|
||
#undef f3
|
||
#undef f4
|
||
#undef ROTL
|
||
#undef expand
|
||
#undef subRound
|
||
|
||
static void
|
||
sha1_sum_update (Sha1sum *sha1,
|
||
const guchar *buffer,
|
||
gsize count)
|
||
{
|
||
guint32 tmp;
|
||
guint dataCount;
|
||
|
||
/* Update bitcount */
|
||
tmp = sha1->bits[0];
|
||
if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
|
||
sha1->bits[1] += 1; /* Carry from low to high */
|
||
sha1->bits[1] += count >> 29;
|
||
|
||
/* Get count of bytes already in data */
|
||
dataCount = (guint) (tmp >> 3) & 0x3F;
|
||
|
||
/* Handle any leading odd-sized chunks */
|
||
if (dataCount)
|
||
{
|
||
guchar *p = (guchar *) sha1->data + dataCount;
|
||
|
||
dataCount = SHA1_DATASIZE - dataCount;
|
||
if (count < dataCount)
|
||
{
|
||
memcpy (p, buffer, count);
|
||
return;
|
||
}
|
||
|
||
memcpy (p, buffer, dataCount);
|
||
|
||
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
|
||
sha1_transform (sha1->buf, sha1->data);
|
||
|
||
buffer += dataCount;
|
||
count -= dataCount;
|
||
}
|
||
|
||
/* Process data in SHA1_DATASIZE chunks */
|
||
while (count >= SHA1_DATASIZE)
|
||
{
|
||
memcpy (sha1->data, buffer, SHA1_DATASIZE);
|
||
|
||
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
|
||
sha1_transform (sha1->buf, sha1->data);
|
||
|
||
buffer += SHA1_DATASIZE;
|
||
count -= SHA1_DATASIZE;
|
||
}
|
||
|
||
/* Handle any remaining bytes of data. */
|
||
memcpy (sha1->data, buffer, count);
|
||
}
|
||
|
||
/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
|
||
1 0* (64-bit count of bits processed, MSB-first) */
|
||
static void
|
||
sha1_sum_close (Sha1sum *sha1)
|
||
{
|
||
gint count;
|
||
guchar *data_p;
|
||
|
||
/* Compute number of bytes mod 64 */
|
||
count = (gint) ((sha1->bits[0] >> 3) & 0x3f);
|
||
|
||
/* Set the first char of padding to 0x80. This is safe since there is
|
||
always at least one byte free */
|
||
data_p = (guchar *) sha1->data + count;
|
||
*data_p++ = 0x80;
|
||
|
||
/* Bytes of padding needed to make 64 bytes */
|
||
count = SHA1_DATASIZE - 1 - count;
|
||
|
||
/* Pad out to 56 mod 64 */
|
||
if (count < 8)
|
||
{
|
||
/* Two lots of padding: Pad the first block to 64 bytes */
|
||
memset (data_p, 0, count);
|
||
|
||
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
|
||
sha1_transform (sha1->buf, sha1->data);
|
||
|
||
/* Now fill the next block with 56 bytes */
|
||
memset (sha1->data, 0, SHA1_DATASIZE - 8);
|
||
}
|
||
else
|
||
{
|
||
/* Pad block to 56 bytes */
|
||
memset (data_p, 0, count - 8);
|
||
}
|
||
|
||
/* Append length in bits and transform */
|
||
sha1->data[14] = sha1->bits[1];
|
||
sha1->data[15] = sha1->bits[0];
|
||
|
||
sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
|
||
sha1_transform (sha1->buf, sha1->data);
|
||
sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);
|
||
|
||
memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);
|
||
|
||
/* Reset buffers in case they contain sensitive data */
|
||
memset (sha1->buf, 0, sizeof (sha1->buf));
|
||
memset (sha1->data, 0, sizeof (sha1->data));
|
||
}
|
||
|
||
static gchar *
|
||
sha1_sum_to_string (Sha1sum *sha1)
|
||
{
|
||
return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
|
||
}
|
||
|
||
static void
|
||
sha1_sum_digest (Sha1sum *sha1,
|
||
guint8 *digest)
|
||
{
|
||
gint i;
|
||
|
||
for (i = 0; i < SHA1_DIGEST_LEN; i++)
|
||
digest[i] = sha1->digest[i];
|
||
}
|
||
|
||
/*
|
||
* SHA-256 Checksum
|
||
*/
|
||
|
||
/* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
|
||
*
|
||
* Copyright (C) 2006 Dave Benson
|
||
* Released under the terms of the GNU Lesser General Public License
|
||
*/
|
||
|
||
static void
|
||
sha256_sum_init (Sha256sum *sha256)
|
||
{
|
||
sha256->buf[0] = 0x6a09e667;
|
||
sha256->buf[1] = 0xbb67ae85;
|
||
sha256->buf[2] = 0x3c6ef372;
|
||
sha256->buf[3] = 0xa54ff53a;
|
||
sha256->buf[4] = 0x510e527f;
|
||
sha256->buf[5] = 0x9b05688c;
|
||
sha256->buf[6] = 0x1f83d9ab;
|
||
sha256->buf[7] = 0x5be0cd19;
|
||
|
||
sha256->bits[0] = sha256->bits[1] = 0;
|
||
}
|
||
|
||
#define GET_UINT32(n,b,i) G_STMT_START{ \
|
||
(n) = ((guint32) (b)[(i) ] << 24) \
|
||
| ((guint32) (b)[(i) + 1] << 16) \
|
||
| ((guint32) (b)[(i) + 2] << 8) \
|
||
| ((guint32) (b)[(i) + 3] ); } G_STMT_END
|
||
|
||
#define PUT_UINT32(n,b,i) G_STMT_START{ \
|
||
(b)[(i) ] = (guint8) ((n) >> 24); \
|
||
(b)[(i) + 1] = (guint8) ((n) >> 16); \
|
||
(b)[(i) + 2] = (guint8) ((n) >> 8); \
|
||
(b)[(i) + 3] = (guint8) ((n) ); } G_STMT_END
|
||
|
||
static void
|
||
sha256_transform (guint32 buf[8],
|
||
guint8 const data[64])
|
||
{
|
||
guint32 temp1, temp2, W[64];
|
||
guint32 A, B, C, D, E, F, G, H;
|
||
|
||
GET_UINT32 (W[0], data, 0);
|
||
GET_UINT32 (W[1], data, 4);
|
||
GET_UINT32 (W[2], data, 8);
|
||
GET_UINT32 (W[3], data, 12);
|
||
GET_UINT32 (W[4], data, 16);
|
||
GET_UINT32 (W[5], data, 20);
|
||
GET_UINT32 (W[6], data, 24);
|
||
GET_UINT32 (W[7], data, 28);
|
||
GET_UINT32 (W[8], data, 32);
|
||
GET_UINT32 (W[9], data, 36);
|
||
GET_UINT32 (W[10], data, 40);
|
||
GET_UINT32 (W[11], data, 44);
|
||
GET_UINT32 (W[12], data, 48);
|
||
GET_UINT32 (W[13], data, 52);
|
||
GET_UINT32 (W[14], data, 56);
|
||
GET_UINT32 (W[15], data, 60);
|
||
|
||
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
|
||
#define ROTR(x,n) (SHR (x,n) | (x << (32 - n)))
|
||
|
||
#define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^ SHR (x, 3))
|
||
#define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^ SHR (x,10))
|
||
#define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
|
||
#define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))
|
||
|
||
#define F0(x,y,z) ((x & y) | (z & (x | y)))
|
||
#define F1(x,y,z) (z ^ (x & (y ^ z)))
|
||
|
||
#define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + \
|
||
S0(W[t - 15]) + W[t - 16])
|
||
|
||
#define P(a,b,c,d,e,f,g,h,x,K) G_STMT_START { \
|
||
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
|
||
temp2 = S2(a) + F0(a,b,c); \
|
||
d += temp1; h = temp1 + temp2; } G_STMT_END
|
||
|
||
A = buf[0];
|
||
B = buf[1];
|
||
C = buf[2];
|
||
D = buf[3];
|
||
E = buf[4];
|
||
F = buf[5];
|
||
G = buf[6];
|
||
H = buf[7];
|
||
|
||
P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
|
||
P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
|
||
P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
|
||
P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
|
||
P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
|
||
P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
|
||
P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
|
||
P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
|
||
P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
|
||
P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
|
||
P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
|
||
P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
|
||
P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
|
||
P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
|
||
P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
|
||
P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
|
||
P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
|
||
P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
|
||
P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
|
||
P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
|
||
P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
|
||
P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
|
||
P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
|
||
P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
|
||
P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
|
||
P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
|
||
P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
|
||
P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
|
||
P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
|
||
P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
|
||
P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
|
||
P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
|
||
P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
|
||
P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
|
||
P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
|
||
P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
|
||
P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
|
||
P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
|
||
P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
|
||
P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
|
||
P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
|
||
P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
|
||
P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
|
||
P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
|
||
P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
|
||
P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
|
||
P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
|
||
P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
|
||
P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
|
||
P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
|
||
P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
|
||
P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
|
||
P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
|
||
P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
|
||
P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
|
||
P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
|
||
P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
|
||
P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
|
||
P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
|
||
P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
|
||
P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
|
||
P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
|
||
P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
|
||
P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
|
||
|
||
#undef SHR
|
||
#undef ROTR
|
||
#undef S0
|
||
#undef S1
|
||
#undef S2
|
||
#undef S3
|
||
#undef F0
|
||
#undef F1
|
||
#undef R
|
||
#undef P
|
||
|
||
buf[0] += A;
|
||
buf[1] += B;
|
||
buf[2] += C;
|
||
buf[3] += D;
|
||
buf[4] += E;
|
||
buf[5] += F;
|
||
buf[6] += G;
|
||
buf[7] += H;
|
||
}
|
||
|
||
static void
|
||
sha256_sum_update (Sha256sum *sha256,
|
||
const guchar *buffer,
|
||
gsize length)
|
||
{
|
||
guint32 left, fill;
|
||
const guint8 *input = buffer;
|
||
|
||
if (length == 0)
|
||
return;
|
||
|
||
left = sha256->bits[0] & 0x3F;
|
||
fill = 64 - left;
|
||
|
||
sha256->bits[0] += length;
|
||
sha256->bits[0] &= 0xFFFFFFFF;
|
||
|
||
if (sha256->bits[0] < length)
|
||
sha256->bits[1]++;
|
||
|
||
if (left > 0 && length >= fill)
|
||
{
|
||
memcpy ((sha256->data + left), input, fill);
|
||
|
||
sha256_transform (sha256->buf, sha256->data);
|
||
length -= fill;
|
||
input += fill;
|
||
|
||
left = 0;
|
||
}
|
||
|
||
while (length >= SHA256_DATASIZE)
|
||
{
|
||
sha256_transform (sha256->buf, input);
|
||
|
||
length -= 64;
|
||
input += 64;
|
||
}
|
||
|
||
if (length)
|
||
memcpy (sha256->data + left, input, length);
|
||
}
|
||
|
||
static guint8 sha256_padding[64] =
|
||
{
|
||
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||
};
|
||
|
||
static void
|
||
sha256_sum_close (Sha256sum *sha256)
|
||
{
|
||
guint32 last, padn;
|
||
guint32 high, low;
|
||
guint8 msglen[8];
|
||
|
||
high = (sha256->bits[0] >> 29)
|
||
| (sha256->bits[1] << 3);
|
||
low = (sha256->bits[0] << 3);
|
||
|
||
PUT_UINT32 (high, msglen, 0);
|
||
PUT_UINT32 (low, msglen, 4);
|
||
|
||
last = sha256->bits[0] & 0x3F;
|
||
padn = (last < 56) ? (56 - last) : (120 - last);
|
||
|
||
sha256_sum_update (sha256, sha256_padding, padn);
|
||
sha256_sum_update (sha256, msglen, 8);
|
||
|
||
PUT_UINT32 (sha256->buf[0], sha256->digest, 0);
|
||
PUT_UINT32 (sha256->buf[1], sha256->digest, 4);
|
||
PUT_UINT32 (sha256->buf[2], sha256->digest, 8);
|
||
PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
|
||
PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
|
||
PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
|
||
PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
|
||
PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
|
||
}
|
||
|
||
#undef PUT_UINT32
|
||
#undef GET_UINT32
|
||
|
||
static gchar *
|
||
sha256_sum_to_string (Sha256sum *sha256)
|
||
{
|
||
return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
|
||
}
|
||
|
||
static void
|
||
sha256_sum_digest (Sha256sum *sha256,
|
||
guint8 *digest)
|
||
{
|
||
gint i;
|
||
|
||
for (i = 0; i < SHA256_DIGEST_LEN; i++)
|
||
digest[i] = sha256->digest[i];
|
||
}
|
||
|
||
/*
|
||
* SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Checksums
|
||
*
|
||
* Implemented following FIPS-180-4 standard at
|
||
* http://csrc.nist.gov/publications/fips/fips180-4/fips180-4.pdf.
|
||
* References in the form [§x.y.z] map to sections in that document.
|
||
*
|
||
* Author(s): Eduardo Lima Mitev <elima@igalia.com>
|
||
* Igor Gnatenko <ignatenko@src.gnome.org>
|
||
*/
|
||
|
||
/* SHA-384, SHA-512, SHA-512/224 and SHA-512/256 functions [§4.1.3] */
|
||
#define Ch(x,y,z) ((x & y) ^ (~x & z))
|
||
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
|
||
#define SHR(n,x) (x >> n)
|
||
#define ROTR(n,x) (SHR (n, x) | (x << (64 - n)))
|
||
#define SIGMA0(x) (ROTR (28, x) ^ ROTR (34, x) ^ ROTR (39, x))
|
||
#define SIGMA1(x) (ROTR (14, x) ^ ROTR (18, x) ^ ROTR (41, x))
|
||
#define sigma0(x) (ROTR ( 1, x) ^ ROTR ( 8, x) ^ SHR ( 7, x))
|
||
#define sigma1(x) (ROTR (19, x) ^ ROTR (61, x) ^ SHR ( 6, x))
|
||
|
||
#define PUT_UINT64(n,b,i) G_STMT_START{ \
|
||
(b)[(i) ] = (guint8) (n >> 56); \
|
||
(b)[(i) + 1] = (guint8) (n >> 48); \
|
||
(b)[(i) + 2] = (guint8) (n >> 40); \
|
||
(b)[(i) + 3] = (guint8) (n >> 32); \
|
||
(b)[(i) + 4] = (guint8) (n >> 24); \
|
||
(b)[(i) + 5] = (guint8) (n >> 16); \
|
||
(b)[(i) + 6] = (guint8) (n >> 8); \
|
||
(b)[(i) + 7] = (guint8) (n ); } G_STMT_END
|
||
|
||
/* SHA-384 and SHA-512 constants [§4.2.3] */
|
||
static const guint64 SHA2_K[80] = {
|
||
G_GUINT64_CONSTANT (0x428a2f98d728ae22), G_GUINT64_CONSTANT (0x7137449123ef65cd),
|
||
G_GUINT64_CONSTANT (0xb5c0fbcfec4d3b2f), G_GUINT64_CONSTANT (0xe9b5dba58189dbbc),
|
||
G_GUINT64_CONSTANT (0x3956c25bf348b538), G_GUINT64_CONSTANT (0x59f111f1b605d019),
|
||
G_GUINT64_CONSTANT (0x923f82a4af194f9b), G_GUINT64_CONSTANT (0xab1c5ed5da6d8118),
|
||
G_GUINT64_CONSTANT (0xd807aa98a3030242), G_GUINT64_CONSTANT (0x12835b0145706fbe),
|
||
G_GUINT64_CONSTANT (0x243185be4ee4b28c), G_GUINT64_CONSTANT (0x550c7dc3d5ffb4e2),
|
||
G_GUINT64_CONSTANT (0x72be5d74f27b896f), G_GUINT64_CONSTANT (0x80deb1fe3b1696b1),
|
||
G_GUINT64_CONSTANT (0x9bdc06a725c71235), G_GUINT64_CONSTANT (0xc19bf174cf692694),
|
||
G_GUINT64_CONSTANT (0xe49b69c19ef14ad2), G_GUINT64_CONSTANT (0xefbe4786384f25e3),
|
||
G_GUINT64_CONSTANT (0x0fc19dc68b8cd5b5), G_GUINT64_CONSTANT (0x240ca1cc77ac9c65),
|
||
G_GUINT64_CONSTANT (0x2de92c6f592b0275), G_GUINT64_CONSTANT (0x4a7484aa6ea6e483),
|
||
G_GUINT64_CONSTANT (0x5cb0a9dcbd41fbd4), G_GUINT64_CONSTANT (0x76f988da831153b5),
|
||
G_GUINT64_CONSTANT (0x983e5152ee66dfab), G_GUINT64_CONSTANT (0xa831c66d2db43210),
|
||
G_GUINT64_CONSTANT (0xb00327c898fb213f), G_GUINT64_CONSTANT (0xbf597fc7beef0ee4),
|
||
G_GUINT64_CONSTANT (0xc6e00bf33da88fc2), G_GUINT64_CONSTANT (0xd5a79147930aa725),
|
||
G_GUINT64_CONSTANT (0x06ca6351e003826f), G_GUINT64_CONSTANT (0x142929670a0e6e70),
|
||
G_GUINT64_CONSTANT (0x27b70a8546d22ffc), G_GUINT64_CONSTANT (0x2e1b21385c26c926),
|
||
G_GUINT64_CONSTANT (0x4d2c6dfc5ac42aed), G_GUINT64_CONSTANT (0x53380d139d95b3df),
|
||
G_GUINT64_CONSTANT (0x650a73548baf63de), G_GUINT64_CONSTANT (0x766a0abb3c77b2a8),
|
||
G_GUINT64_CONSTANT (0x81c2c92e47edaee6), G_GUINT64_CONSTANT (0x92722c851482353b),
|
||
G_GUINT64_CONSTANT (0xa2bfe8a14cf10364), G_GUINT64_CONSTANT (0xa81a664bbc423001),
|
||
G_GUINT64_CONSTANT (0xc24b8b70d0f89791), G_GUINT64_CONSTANT (0xc76c51a30654be30),
|
||
G_GUINT64_CONSTANT (0xd192e819d6ef5218), G_GUINT64_CONSTANT (0xd69906245565a910),
|
||
G_GUINT64_CONSTANT (0xf40e35855771202a), G_GUINT64_CONSTANT (0x106aa07032bbd1b8),
|
||
G_GUINT64_CONSTANT (0x19a4c116b8d2d0c8), G_GUINT64_CONSTANT (0x1e376c085141ab53),
|
||
G_GUINT64_CONSTANT (0x2748774cdf8eeb99), G_GUINT64_CONSTANT (0x34b0bcb5e19b48a8),
|
||
G_GUINT64_CONSTANT (0x391c0cb3c5c95a63), G_GUINT64_CONSTANT (0x4ed8aa4ae3418acb),
|
||
G_GUINT64_CONSTANT (0x5b9cca4f7763e373), G_GUINT64_CONSTANT (0x682e6ff3d6b2b8a3),
|
||
G_GUINT64_CONSTANT (0x748f82ee5defb2fc), G_GUINT64_CONSTANT (0x78a5636f43172f60),
|
||
G_GUINT64_CONSTANT (0x84c87814a1f0ab72), G_GUINT64_CONSTANT (0x8cc702081a6439ec),
|
||
G_GUINT64_CONSTANT (0x90befffa23631e28), G_GUINT64_CONSTANT (0xa4506cebde82bde9),
|
||
G_GUINT64_CONSTANT (0xbef9a3f7b2c67915), G_GUINT64_CONSTANT (0xc67178f2e372532b),
|
||
G_GUINT64_CONSTANT (0xca273eceea26619c), G_GUINT64_CONSTANT (0xd186b8c721c0c207),
|
||
G_GUINT64_CONSTANT (0xeada7dd6cde0eb1e), G_GUINT64_CONSTANT (0xf57d4f7fee6ed178),
|
||
G_GUINT64_CONSTANT (0x06f067aa72176fba), G_GUINT64_CONSTANT (0x0a637dc5a2c898a6),
|
||
G_GUINT64_CONSTANT (0x113f9804bef90dae), G_GUINT64_CONSTANT (0x1b710b35131c471b),
|
||
G_GUINT64_CONSTANT (0x28db77f523047d84), G_GUINT64_CONSTANT (0x32caab7b40c72493),
|
||
G_GUINT64_CONSTANT (0x3c9ebe0a15c9bebc), G_GUINT64_CONSTANT (0x431d67c49c100d4c),
|
||
G_GUINT64_CONSTANT (0x4cc5d4becb3e42b6), G_GUINT64_CONSTANT (0x597f299cfc657e2a),
|
||
G_GUINT64_CONSTANT (0x5fcb6fab3ad6faec), G_GUINT64_CONSTANT (0x6c44198c4a475817)
|
||
};
|
||
|
||
|
||
static void
|
||
sha384_sum_init (Sha512sum *sha512)
|
||
{
|
||
/* Initial Hash Value [§5.3.4] */
|
||
sha512->H[0] = G_GUINT64_CONSTANT (0xcbbb9d5dc1059ed8);
|
||
sha512->H[1] = G_GUINT64_CONSTANT (0x629a292a367cd507);
|
||
sha512->H[2] = G_GUINT64_CONSTANT (0x9159015a3070dd17);
|
||
sha512->H[3] = G_GUINT64_CONSTANT (0x152fecd8f70e5939);
|
||
sha512->H[4] = G_GUINT64_CONSTANT (0x67332667ffc00b31);
|
||
sha512->H[5] = G_GUINT64_CONSTANT (0x8eb44a8768581511);
|
||
sha512->H[6] = G_GUINT64_CONSTANT (0xdb0c2e0d64f98fa7);
|
||
sha512->H[7] = G_GUINT64_CONSTANT (0x47b5481dbefa4fa4);
|
||
|
||
sha512->block_len = 0;
|
||
|
||
sha512->data_len[0] = 0;
|
||
sha512->data_len[1] = 0;
|
||
}
|
||
|
||
static void
|
||
sha512_sum_init (Sha512sum *sha512)
|
||
{
|
||
/* Initial Hash Value [§5.3.5] */
|
||
sha512->H[0] = G_GUINT64_CONSTANT (0x6a09e667f3bcc908);
|
||
sha512->H[1] = G_GUINT64_CONSTANT (0xbb67ae8584caa73b);
|
||
sha512->H[2] = G_GUINT64_CONSTANT (0x3c6ef372fe94f82b);
|
||
sha512->H[3] = G_GUINT64_CONSTANT (0xa54ff53a5f1d36f1);
|
||
sha512->H[4] = G_GUINT64_CONSTANT (0x510e527fade682d1);
|
||
sha512->H[5] = G_GUINT64_CONSTANT (0x9b05688c2b3e6c1f);
|
||
sha512->H[6] = G_GUINT64_CONSTANT (0x1f83d9abfb41bd6b);
|
||
sha512->H[7] = G_GUINT64_CONSTANT (0x5be0cd19137e2179);
|
||
|
||
sha512->block_len = 0;
|
||
|
||
sha512->data_len[0] = 0;
|
||
sha512->data_len[1] = 0;
|
||
}
|
||
|
||
static void
|
||
sha512_transform (guint64 H[8],
|
||
guint8 const data[SHA2_BLOCK_LEN])
|
||
{
|
||
gint i;
|
||
gint t;
|
||
guint64 a, b, c, d, e, f, g, h;
|
||
guint64 M[16];
|
||
guint64 W[80];
|
||
|
||
/* SHA-512 hash computation [§6.4.2] */
|
||
|
||
/* prepare the message schedule */
|
||
for (i = 0; i < 16; i++)
|
||
{
|
||
gint p = i * 8;
|
||
|
||
M[i] =
|
||
((guint64) data[p + 0] << 56) |
|
||
((guint64) data[p + 1] << 48) |
|
||
((guint64) data[p + 2] << 40) |
|
||
((guint64) data[p + 3] << 32) |
|
||
((guint64) data[p + 4] << 24) |
|
||
((guint64) data[p + 5] << 16) |
|
||
((guint64) data[p + 6] << 8) |
|
||
((guint64) data[p + 7] );
|
||
}
|
||
|
||
for (t = 0; t < 80; t++)
|
||
if (t < 16)
|
||
W[t] = M[t];
|
||
else
|
||
W[t] = sigma1 (W[t - 2]) + W[t - 7] + sigma0 (W[t - 15]) + W[t - 16];
|
||
|
||
/* initialize the eight working variables */
|
||
a = H[0];
|
||
b = H[1];
|
||
c = H[2];
|
||
d = H[3];
|
||
e = H[4];
|
||
f = H[5];
|
||
g = H[6];
|
||
h = H[7];
|
||
|
||
for (t = 0; t < 80; t++)
|
||
{
|
||
guint64 T1, T2;
|
||
|
||
T1 = h + SIGMA1 (e) + Ch (e, f, g) + SHA2_K[t] + W[t];
|
||
T2 = SIGMA0 (a) + Maj (a, b, c);
|
||
h = g;
|
||
g = f;
|
||
f = e;
|
||
e = d + T1;
|
||
d = c;
|
||
c = b;
|
||
b = a;
|
||
a = T1 + T2;
|
||
}
|
||
|
||
/* Compute the intermediate hash value H */
|
||
H[0] += a;
|
||
H[1] += b;
|
||
H[2] += c;
|
||
H[3] += d;
|
||
H[4] += e;
|
||
H[5] += f;
|
||
H[6] += g;
|
||
H[7] += h;
|
||
}
|
||
|
||
static void
|
||
sha512_sum_update (Sha512sum *sha512,
|
||
const guchar *buffer,
|
||
gsize length)
|
||
{
|
||
gsize block_left, offset = 0;
|
||
|
||
if (length == 0)
|
||
return;
|
||
|
||
sha512->data_len[0] += length * 8;
|
||
if (sha512->data_len[0] < length)
|
||
sha512->data_len[1]++;
|
||
|
||
/* try to fill current block */
|
||
block_left = SHA2_BLOCK_LEN - sha512->block_len;
|
||
if (block_left > 0)
|
||
{
|
||
gsize fill_len;
|
||
|
||
fill_len = MIN (block_left, length);
|
||
memcpy (sha512->block + sha512->block_len, buffer, fill_len);
|
||
sha512->block_len += fill_len;
|
||
length -= fill_len;
|
||
offset += fill_len;
|
||
|
||
if (sha512->block_len == SHA2_BLOCK_LEN)
|
||
{
|
||
sha512_transform (sha512->H, sha512->block);
|
||
sha512->block_len = 0;
|
||
}
|
||
}
|
||
|
||
/* process complete blocks */
|
||
while (length >= SHA2_BLOCK_LEN)
|
||
{
|
||
memcpy (sha512->block, buffer + offset, SHA2_BLOCK_LEN);
|
||
|
||
sha512_transform (sha512->H, sha512->block);
|
||
|
||
length -= SHA2_BLOCK_LEN;
|
||
offset += SHA2_BLOCK_LEN;
|
||
}
|
||
|
||
/* keep remaining data for next block */
|
||
if (length > 0)
|
||
{
|
||
memcpy (sha512->block, buffer + offset, length);
|
||
sha512->block_len = length;
|
||
}
|
||
}
|
||
|
||
static void
|
||
sha512_sum_close (Sha512sum *sha512)
|
||
{
|
||
guint l;
|
||
gint zeros;
|
||
guint8 pad[SHA2_BLOCK_LEN * 2] = { 0, };
|
||
guint pad_len = 0;
|
||
gint i;
|
||
|
||
/* apply padding [§5.1.2] */
|
||
l = sha512->block_len * 8;
|
||
zeros = 896 - (l + 1);
|
||
|
||
if (zeros < 0)
|
||
zeros += 128 * 8;
|
||
|
||
pad[0] = 0x80; /* 1000 0000 */
|
||
zeros -= 7;
|
||
pad_len++;
|
||
|
||
memset (pad + pad_len, 0x00, zeros / 8);
|
||
pad_len += zeros / 8;
|
||
zeros = zeros % 8;
|
||
(void) zeros; /* don’t care about the dead store */
|
||
|
||
/* put message bit length at the end of padding */
|
||
PUT_UINT64 (sha512->data_len[1], pad, pad_len);
|
||
pad_len += 8;
|
||
|
||
PUT_UINT64 (sha512->data_len[0], pad, pad_len);
|
||
pad_len += 8;
|
||
|
||
/* update checksum with the padded block */
|
||
sha512_sum_update (sha512, pad, pad_len);
|
||
|
||
/* copy resulting 64-bit words into digest */
|
||
for (i = 0; i < 8; i++)
|
||
PUT_UINT64 (sha512->H[i], sha512->digest, i * 8);
|
||
}
|
||
|
||
static gchar *
|
||
sha384_sum_to_string (Sha512sum *sha512)
|
||
{
|
||
return digest_to_string (sha512->digest, SHA384_DIGEST_LEN);
|
||
}
|
||
|
||
static gchar *
|
||
sha512_sum_to_string (Sha512sum *sha512)
|
||
{
|
||
return digest_to_string (sha512->digest, SHA512_DIGEST_LEN);
|
||
}
|
||
|
||
static void
|
||
sha384_sum_digest (Sha512sum *sha512,
|
||
guint8 *digest)
|
||
{
|
||
memcpy (digest, sha512->digest, SHA384_DIGEST_LEN);
|
||
}
|
||
|
||
static void
|
||
sha512_sum_digest (Sha512sum *sha512,
|
||
guint8 *digest)
|
||
{
|
||
memcpy (digest, sha512->digest, SHA512_DIGEST_LEN);
|
||
}
|
||
|
||
#undef Ch
|
||
#undef Maj
|
||
#undef SHR
|
||
#undef ROTR
|
||
#undef SIGMA0
|
||
#undef SIGMA1
|
||
#undef sigma0
|
||
#undef sigma1
|
||
|
||
#undef PUT_UINT64
|
||
|
||
/*
|
||
* Public API
|
||
*/
|
||
|
||
/**
|
||
* g_checksum_type_get_length:
|
||
* @checksum_type: a #GChecksumType
|
||
*
|
||
* Gets the length in bytes of digests of type @checksum_type
|
||
*
|
||
* Returns: the checksum length, or -1 if @checksum_type is
|
||
* not supported.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
gssize
|
||
g_checksum_type_get_length (GChecksumType checksum_type)
|
||
{
|
||
gssize len = -1;
|
||
|
||
switch (checksum_type)
|
||
{
|
||
case G_CHECKSUM_MD5:
|
||
len = MD5_DIGEST_LEN;
|
||
break;
|
||
case G_CHECKSUM_SHA1:
|
||
len = SHA1_DIGEST_LEN;
|
||
break;
|
||
case G_CHECKSUM_SHA256:
|
||
len = SHA256_DIGEST_LEN;
|
||
break;
|
||
case G_CHECKSUM_SHA384:
|
||
len = SHA384_DIGEST_LEN;
|
||
break;
|
||
case G_CHECKSUM_SHA512:
|
||
len = SHA512_DIGEST_LEN;
|
||
break;
|
||
default:
|
||
len = -1;
|
||
break;
|
||
}
|
||
|
||
return len;
|
||
}
|
||
|
||
/**
|
||
* g_checksum_new:
|
||
* @checksum_type: the desired type of checksum
|
||
*
|
||
* Creates a new #GChecksum, using the checksum algorithm @checksum_type.
|
||
* If the @checksum_type is not known, %NULL is returned.
|
||
* A #GChecksum can be used to compute the checksum, or digest, of an
|
||
* arbitrary binary blob, using different hashing algorithms.
|
||
*
|
||
* A #GChecksum works by feeding a binary blob through g_checksum_update()
|
||
* until there is data to be checked; the digest can then be extracted
|
||
* using g_checksum_get_string(), which will return the checksum as a
|
||
* hexadecimal string; or g_checksum_get_digest(), which will return a
|
||
* vector of raw bytes. Once either g_checksum_get_string() or
|
||
* g_checksum_get_digest() have been called on a #GChecksum, the checksum
|
||
* will be closed and it won't be possible to call g_checksum_update()
|
||
* on it anymore.
|
||
*
|
||
* Returns: (transfer full) (nullable): the newly created #GChecksum, or %NULL.
|
||
* Use g_checksum_free() to free the memory allocated by it.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
GChecksum *
|
||
g_checksum_new (GChecksumType checksum_type)
|
||
{
|
||
GChecksum *checksum;
|
||
|
||
if (! IS_VALID_TYPE (checksum_type))
|
||
return NULL;
|
||
|
||
checksum = g_slice_new0 (GChecksum);
|
||
checksum->type = checksum_type;
|
||
|
||
g_checksum_reset (checksum);
|
||
|
||
return checksum;
|
||
}
|
||
|
||
/**
|
||
* g_checksum_reset:
|
||
* @checksum: the #GChecksum to reset
|
||
*
|
||
* Resets the state of the @checksum back to its initial state.
|
||
*
|
||
* Since: 2.18
|
||
**/
|
||
void
|
||
g_checksum_reset (GChecksum *checksum)
|
||
{
|
||
g_return_if_fail (checksum != NULL);
|
||
|
||
g_free (checksum->digest_str);
|
||
checksum->digest_str = NULL;
|
||
|
||
switch (checksum->type)
|
||
{
|
||
case G_CHECKSUM_MD5:
|
||
md5_sum_init (&(checksum->sum.md5));
|
||
break;
|
||
case G_CHECKSUM_SHA1:
|
||
sha1_sum_init (&(checksum->sum.sha1));
|
||
break;
|
||
case G_CHECKSUM_SHA256:
|
||
sha256_sum_init (&(checksum->sum.sha256));
|
||
break;
|
||
case G_CHECKSUM_SHA384:
|
||
sha384_sum_init (&(checksum->sum.sha512));
|
||
break;
|
||
case G_CHECKSUM_SHA512:
|
||
sha512_sum_init (&(checksum->sum.sha512));
|
||
break;
|
||
default:
|
||
g_assert_not_reached ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* g_checksum_copy:
|
||
* @checksum: the #GChecksum to copy
|
||
*
|
||
* Copies a #GChecksum. If @checksum has been closed, by calling
|
||
* g_checksum_get_string() or g_checksum_get_digest(), the copied
|
||
* checksum will be closed as well.
|
||
*
|
||
* Returns: (transfer full): the copy of the passed #GChecksum. Use
|
||
* g_checksum_free() when finished using it.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
GChecksum *
|
||
g_checksum_copy (const GChecksum *checksum)
|
||
{
|
||
GChecksum *copy;
|
||
|
||
g_return_val_if_fail (checksum != NULL, NULL);
|
||
|
||
copy = g_slice_new (GChecksum);
|
||
*copy = *checksum;
|
||
|
||
copy->digest_str = g_strdup (checksum->digest_str);
|
||
|
||
return copy;
|
||
}
|
||
|
||
/**
|
||
* g_checksum_free:
|
||
* @checksum: a #GChecksum
|
||
*
|
||
* Frees the memory allocated for @checksum.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
void
|
||
g_checksum_free (GChecksum *checksum)
|
||
{
|
||
if (G_LIKELY (checksum))
|
||
{
|
||
g_free (checksum->digest_str);
|
||
|
||
g_slice_free (GChecksum, checksum);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* g_checksum_update:
|
||
* @checksum: a #GChecksum
|
||
* @data: (array length=length) (element-type guint8): buffer used to compute the checksum
|
||
* @length: size of the buffer, or -1 if it is a null-terminated string.
|
||
*
|
||
* Feeds @data into an existing #GChecksum. The checksum must still be
|
||
* open, that is g_checksum_get_string() or g_checksum_get_digest() must
|
||
* not have been called on @checksum.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
void
|
||
g_checksum_update (GChecksum *checksum,
|
||
const guchar *data,
|
||
gssize length)
|
||
{
|
||
g_return_if_fail (checksum != NULL);
|
||
g_return_if_fail (length == 0 || data != NULL);
|
||
|
||
if (length < 0)
|
||
length = strlen ((const gchar *) data);
|
||
|
||
if (checksum->digest_str)
|
||
{
|
||
g_warning ("The checksum '%s' has been closed and cannot be updated "
|
||
"anymore.",
|
||
checksum->digest_str);
|
||
return;
|
||
}
|
||
|
||
switch (checksum->type)
|
||
{
|
||
case G_CHECKSUM_MD5:
|
||
md5_sum_update (&(checksum->sum.md5), data, length);
|
||
break;
|
||
case G_CHECKSUM_SHA1:
|
||
sha1_sum_update (&(checksum->sum.sha1), data, length);
|
||
break;
|
||
case G_CHECKSUM_SHA256:
|
||
sha256_sum_update (&(checksum->sum.sha256), data, length);
|
||
break;
|
||
case G_CHECKSUM_SHA384:
|
||
case G_CHECKSUM_SHA512:
|
||
sha512_sum_update (&(checksum->sum.sha512), data, length);
|
||
break;
|
||
default:
|
||
g_assert_not_reached ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* g_checksum_get_string:
|
||
* @checksum: a #GChecksum
|
||
*
|
||
* Gets the digest as a hexadecimal string.
|
||
*
|
||
* Once this function has been called the #GChecksum can no longer be
|
||
* updated with g_checksum_update().
|
||
*
|
||
* The hexadecimal characters will be lower case.
|
||
*
|
||
* Returns: the hexadecimal representation of the checksum. The
|
||
* returned string is owned by the checksum and should not be modified
|
||
* or freed.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
const gchar *
|
||
g_checksum_get_string (GChecksum *checksum)
|
||
{
|
||
gchar *str = NULL;
|
||
|
||
g_return_val_if_fail (checksum != NULL, NULL);
|
||
|
||
if (checksum->digest_str)
|
||
return checksum->digest_str;
|
||
|
||
switch (checksum->type)
|
||
{
|
||
case G_CHECKSUM_MD5:
|
||
md5_sum_close (&(checksum->sum.md5));
|
||
str = md5_sum_to_string (&(checksum->sum.md5));
|
||
break;
|
||
case G_CHECKSUM_SHA1:
|
||
sha1_sum_close (&(checksum->sum.sha1));
|
||
str = sha1_sum_to_string (&(checksum->sum.sha1));
|
||
break;
|
||
case G_CHECKSUM_SHA256:
|
||
sha256_sum_close (&(checksum->sum.sha256));
|
||
str = sha256_sum_to_string (&(checksum->sum.sha256));
|
||
break;
|
||
case G_CHECKSUM_SHA384:
|
||
sha512_sum_close (&(checksum->sum.sha512));
|
||
str = sha384_sum_to_string (&(checksum->sum.sha512));
|
||
break;
|
||
case G_CHECKSUM_SHA512:
|
||
sha512_sum_close (&(checksum->sum.sha512));
|
||
str = sha512_sum_to_string (&(checksum->sum.sha512));
|
||
break;
|
||
default:
|
||
g_assert_not_reached ();
|
||
break;
|
||
}
|
||
|
||
checksum->digest_str = str;
|
||
|
||
return checksum->digest_str;
|
||
}
|
||
|
||
/**
|
||
* g_checksum_get_digest: (skip)
|
||
* @checksum: a #GChecksum
|
||
* @buffer: (array length=digest_len): output buffer
|
||
* @digest_len: (inout): an inout parameter. The caller initializes it to the size of @buffer.
|
||
* After the call it contains the length of the digest.
|
||
*
|
||
* Gets the digest from @checksum as a raw binary vector and places it
|
||
* into @buffer. The size of the digest depends on the type of checksum.
|
||
*
|
||
* Once this function has been called, the #GChecksum is closed and can
|
||
* no longer be updated with g_checksum_update().
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
void
|
||
g_checksum_get_digest (GChecksum *checksum,
|
||
guint8 *buffer,
|
||
gsize *digest_len)
|
||
{
|
||
gboolean checksum_open = FALSE;
|
||
gchar *str = NULL;
|
||
gsize len;
|
||
|
||
g_return_if_fail (checksum != NULL);
|
||
|
||
len = g_checksum_type_get_length (checksum->type);
|
||
g_return_if_fail (*digest_len >= len);
|
||
|
||
checksum_open = !!(checksum->digest_str == NULL);
|
||
|
||
switch (checksum->type)
|
||
{
|
||
case G_CHECKSUM_MD5:
|
||
if (checksum_open)
|
||
{
|
||
md5_sum_close (&(checksum->sum.md5));
|
||
str = md5_sum_to_string (&(checksum->sum.md5));
|
||
}
|
||
md5_sum_digest (&(checksum->sum.md5), buffer);
|
||
break;
|
||
case G_CHECKSUM_SHA1:
|
||
if (checksum_open)
|
||
{
|
||
sha1_sum_close (&(checksum->sum.sha1));
|
||
str = sha1_sum_to_string (&(checksum->sum.sha1));
|
||
}
|
||
sha1_sum_digest (&(checksum->sum.sha1), buffer);
|
||
break;
|
||
case G_CHECKSUM_SHA256:
|
||
if (checksum_open)
|
||
{
|
||
sha256_sum_close (&(checksum->sum.sha256));
|
||
str = sha256_sum_to_string (&(checksum->sum.sha256));
|
||
}
|
||
sha256_sum_digest (&(checksum->sum.sha256), buffer);
|
||
break;
|
||
case G_CHECKSUM_SHA384:
|
||
if (checksum_open)
|
||
{
|
||
sha512_sum_close (&(checksum->sum.sha512));
|
||
str = sha384_sum_to_string (&(checksum->sum.sha512));
|
||
}
|
||
sha384_sum_digest (&(checksum->sum.sha512), buffer);
|
||
break;
|
||
case G_CHECKSUM_SHA512:
|
||
if (checksum_open)
|
||
{
|
||
sha512_sum_close (&(checksum->sum.sha512));
|
||
str = sha512_sum_to_string (&(checksum->sum.sha512));
|
||
}
|
||
sha512_sum_digest (&(checksum->sum.sha512), buffer);
|
||
break;
|
||
default:
|
||
g_assert_not_reached ();
|
||
break;
|
||
}
|
||
|
||
if (str)
|
||
checksum->digest_str = str;
|
||
|
||
*digest_len = len;
|
||
}
|
||
|
||
/**
|
||
* g_compute_checksum_for_data:
|
||
* @checksum_type: a #GChecksumType
|
||
* @data: (array length=length) (element-type guint8): binary blob to compute the digest of
|
||
* @length: length of @data
|
||
*
|
||
* Computes the checksum for a binary @data of @length. This is a
|
||
* convenience wrapper for g_checksum_new(), g_checksum_get_string()
|
||
* and g_checksum_free().
|
||
*
|
||
* The hexadecimal string returned will be in lower case.
|
||
*
|
||
* Returns: (transfer full) (nullable): the digest of the binary data as a
|
||
* string in hexadecimal, or %NULL if g_checksum_new() fails for
|
||
* @checksum_type. The returned string should be freed with g_free() when
|
||
* done using it.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
gchar *
|
||
g_compute_checksum_for_data (GChecksumType checksum_type,
|
||
const guchar *data,
|
||
gsize length)
|
||
{
|
||
GChecksum *checksum;
|
||
gchar *retval;
|
||
|
||
g_return_val_if_fail (length == 0 || data != NULL, NULL);
|
||
|
||
checksum = g_checksum_new (checksum_type);
|
||
if (!checksum)
|
||
return NULL;
|
||
|
||
g_checksum_update (checksum, data, length);
|
||
retval = g_strdup (g_checksum_get_string (checksum));
|
||
g_checksum_free (checksum);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* g_compute_checksum_for_string:
|
||
* @checksum_type: a #GChecksumType
|
||
* @str: the string to compute the checksum of
|
||
* @length: the length of the string, or -1 if the string is null-terminated.
|
||
*
|
||
* Computes the checksum of a string.
|
||
*
|
||
* The hexadecimal string returned will be in lower case.
|
||
*
|
||
* Returns: (transfer full) (nullable): the checksum as a hexadecimal string,
|
||
* or %NULL if g_checksum_new() fails for @checksum_type. The returned string
|
||
* should be freed with g_free() when done using it.
|
||
*
|
||
* Since: 2.16
|
||
*/
|
||
gchar *
|
||
g_compute_checksum_for_string (GChecksumType checksum_type,
|
||
const gchar *str,
|
||
gssize length)
|
||
{
|
||
g_return_val_if_fail (length == 0 || str != NULL, NULL);
|
||
|
||
if (length < 0)
|
||
length = strlen (str);
|
||
|
||
return g_compute_checksum_for_data (checksum_type, (const guchar *) str, length);
|
||
}
|
||
|
||
/**
|
||
* g_compute_checksum_for_bytes:
|
||
* @checksum_type: a #GChecksumType
|
||
* @data: binary blob to compute the digest of
|
||
*
|
||
* Computes the checksum for a binary @data. This is a
|
||
* convenience wrapper for g_checksum_new(), g_checksum_get_string()
|
||
* and g_checksum_free().
|
||
*
|
||
* The hexadecimal string returned will be in lower case.
|
||
*
|
||
* Returns: (transfer full) (nullable): the digest of the binary data as a
|
||
* string in hexadecimal, or %NULL if g_checksum_new() fails for
|
||
* @checksum_type. The returned string should be freed with g_free() when
|
||
* done using it.
|
||
*
|
||
* Since: 2.34
|
||
*/
|
||
gchar *
|
||
g_compute_checksum_for_bytes (GChecksumType checksum_type,
|
||
GBytes *data)
|
||
{
|
||
gconstpointer byte_data;
|
||
gsize length;
|
||
|
||
g_return_val_if_fail (data != NULL, NULL);
|
||
|
||
byte_data = g_bytes_get_data (data, &length);
|
||
return g_compute_checksum_for_data (checksum_type, byte_data, length);
|
||
}
|