mirror of https://gitee.com/openkylin/glib2.0.git
2760 lines
71 KiB
C
2760 lines
71 KiB
C
/* GLIB - Library of useful routines for C programming
|
||
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
||
*
|
||
* SPDX-License-Identifier: LGPL-2.1-or-later
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
/*
|
||
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
||
* file for a list of people on the GLib Team. See the ChangeLog
|
||
* files for a list of changes. These files are distributed with
|
||
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
||
*/
|
||
|
||
/*
|
||
* MT safe
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "glibconfig.h"
|
||
|
||
#define DEBUG_MSG(x) /* */
|
||
#ifdef G_ENABLE_DEBUG
|
||
/* #define DEBUG_MSG(args) g_message args ; */
|
||
#endif
|
||
|
||
#include <time.h>
|
||
#include <string.h>
|
||
#include <stdlib.h>
|
||
#include <locale.h>
|
||
|
||
#ifdef G_OS_WIN32
|
||
#include <windows.h>
|
||
#endif
|
||
|
||
#include "gdate.h"
|
||
|
||
#include "gconvert.h"
|
||
#include "gmem.h"
|
||
#include "gstrfuncs.h"
|
||
#include "gtestutils.h"
|
||
#include "gthread.h"
|
||
#include "gunicode.h"
|
||
|
||
#ifdef G_OS_WIN32
|
||
#include "garray.h"
|
||
#endif
|
||
|
||
/**
|
||
* SECTION:date
|
||
* @title: Date and Time Functions
|
||
* @short_description: calendrical calculations and miscellaneous time stuff
|
||
*
|
||
* The #GDate data structure represents a day between January 1, Year 1,
|
||
* and sometime a few thousand years in the future (right now it will go
|
||
* to the year 65535 or so, but g_date_set_parse() only parses up to the
|
||
* year 8000 or so - just count on "a few thousand"). #GDate is meant to
|
||
* represent everyday dates, not astronomical dates or historical dates
|
||
* or ISO timestamps or the like. It extrapolates the current Gregorian
|
||
* calendar forward and backward in time; there is no attempt to change
|
||
* the calendar to match time periods or locations. #GDate does not store
|
||
* time information; it represents a day.
|
||
*
|
||
* The #GDate implementation has several nice features; it is only a
|
||
* 64-bit struct, so storing large numbers of dates is very efficient. It
|
||
* can keep both a Julian and day-month-year representation of the date,
|
||
* since some calculations are much easier with one representation or the
|
||
* other. A Julian representation is simply a count of days since some
|
||
* fixed day in the past; for #GDate the fixed day is January 1, 1 AD.
|
||
* ("Julian" dates in the #GDate API aren't really Julian dates in the
|
||
* technical sense; technically, Julian dates count from the start of the
|
||
* Julian period, Jan 1, 4713 BC).
|
||
*
|
||
* #GDate is simple to use. First you need a "blank" date; you can get a
|
||
* dynamically allocated date from g_date_new(), or you can declare an
|
||
* automatic variable or array and initialize it by
|
||
* calling g_date_clear(). A cleared date is safe; it's safe to call
|
||
* g_date_set_dmy() and the other mutator functions to initialize the
|
||
* value of a cleared date. However, a cleared date is initially
|
||
* invalid, meaning that it doesn't represent a day that exists.
|
||
* It is undefined to call any of the date calculation routines on an
|
||
* invalid date. If you obtain a date from a user or other
|
||
* unpredictable source, you should check its validity with the
|
||
* g_date_valid() predicate. g_date_valid() is also used to check for
|
||
* errors with g_date_set_parse() and other functions that can
|
||
* fail. Dates can be invalidated by calling g_date_clear() again.
|
||
*
|
||
* It is very important to use the API to access the #GDate
|
||
* struct. Often only the day-month-year or only the Julian
|
||
* representation is valid. Sometimes neither is valid. Use the API.
|
||
*
|
||
* GLib also features #GDateTime which represents a precise time.
|
||
*/
|
||
|
||
/**
|
||
* G_USEC_PER_SEC:
|
||
*
|
||
* Number of microseconds in one second (1 million).
|
||
* This macro is provided for code readability.
|
||
*/
|
||
|
||
/**
|
||
* GTimeVal:
|
||
* @tv_sec: seconds
|
||
* @tv_usec: microseconds
|
||
*
|
||
* Represents a precise time, with seconds and microseconds.
|
||
*
|
||
* Similar to the struct timeval returned by the `gettimeofday()`
|
||
* UNIX system call.
|
||
*
|
||
* GLib is attempting to unify around the use of 64-bit integers to
|
||
* represent microsecond-precision time. As such, this type will be
|
||
* removed from a future version of GLib. A consequence of using `glong` for
|
||
* `tv_sec` is that on 32-bit systems `GTimeVal` is subject to the year 2038
|
||
* problem.
|
||
*
|
||
* Deprecated: 2.62: Use #GDateTime or #guint64 instead.
|
||
*/
|
||
|
||
/**
|
||
* GDate:
|
||
* @julian_days: the Julian representation of the date
|
||
* @julian: this bit is set if @julian_days is valid
|
||
* @dmy: this is set if @day, @month and @year are valid
|
||
* @day: the day of the day-month-year representation of the date,
|
||
* as a number between 1 and 31
|
||
* @month: the day of the day-month-year representation of the date,
|
||
* as a number between 1 and 12
|
||
* @year: the day of the day-month-year representation of the date
|
||
*
|
||
* Represents a day between January 1, Year 1 and a few thousand years in
|
||
* the future. None of its members should be accessed directly.
|
||
*
|
||
* If the `GDate` is obtained from g_date_new(), it will be safe
|
||
* to mutate but invalid and thus not safe for calendrical computations.
|
||
*
|
||
* If it's declared on the stack, it will contain garbage so must be
|
||
* initialized with g_date_clear(). g_date_clear() makes the date invalid
|
||
* but safe. An invalid date doesn't represent a day, it's "empty." A date
|
||
* becomes valid after you set it to a Julian day or you set a day, month,
|
||
* and year.
|
||
*/
|
||
|
||
/**
|
||
* GTime:
|
||
*
|
||
* Simply a replacement for `time_t`. It has been deprecated
|
||
* since it is not equivalent to `time_t` on 64-bit platforms
|
||
* with a 64-bit `time_t`.
|
||
*
|
||
* Unrelated to #GTimer.
|
||
*
|
||
* Note that #GTime is defined to always be a 32-bit integer,
|
||
* unlike `time_t` which may be 64-bit on some systems. Therefore,
|
||
* #GTime will overflow in the year 2038, and you cannot use the
|
||
* address of a #GTime variable as argument to the UNIX time()
|
||
* function.
|
||
*
|
||
* Instead, do the following:
|
||
*
|
||
* |[<!-- language="C" -->
|
||
* time_t ttime;
|
||
* GTime gtime;
|
||
*
|
||
* time (&ttime);
|
||
* gtime = (GTime)ttime;
|
||
* ]|
|
||
*
|
||
* Deprecated: 2.62: This is not [Y2038-safe](https://en.wikipedia.org/wiki/Year_2038_problem).
|
||
* Use #GDateTime or #time_t instead.
|
||
*/
|
||
|
||
/**
|
||
* GDateDMY:
|
||
* @G_DATE_DAY: a day
|
||
* @G_DATE_MONTH: a month
|
||
* @G_DATE_YEAR: a year
|
||
*
|
||
* This enumeration isn't used in the API, but may be useful if you need
|
||
* to mark a number as a day, month, or year.
|
||
*/
|
||
|
||
/**
|
||
* GDateDay:
|
||
*
|
||
* Integer representing a day of the month; between 1 and 31.
|
||
*
|
||
* The %G_DATE_BAD_DAY value represents an invalid day of the month.
|
||
*/
|
||
|
||
/**
|
||
* GDateMonth:
|
||
* @G_DATE_BAD_MONTH: invalid value
|
||
* @G_DATE_JANUARY: January
|
||
* @G_DATE_FEBRUARY: February
|
||
* @G_DATE_MARCH: March
|
||
* @G_DATE_APRIL: April
|
||
* @G_DATE_MAY: May
|
||
* @G_DATE_JUNE: June
|
||
* @G_DATE_JULY: July
|
||
* @G_DATE_AUGUST: August
|
||
* @G_DATE_SEPTEMBER: September
|
||
* @G_DATE_OCTOBER: October
|
||
* @G_DATE_NOVEMBER: November
|
||
* @G_DATE_DECEMBER: December
|
||
*
|
||
* Enumeration representing a month; values are %G_DATE_JANUARY,
|
||
* %G_DATE_FEBRUARY, etc. %G_DATE_BAD_MONTH is the invalid value.
|
||
*/
|
||
|
||
/**
|
||
* GDateYear:
|
||
*
|
||
* Integer type representing a year.
|
||
*
|
||
* The %G_DATE_BAD_YEAR value is the invalid value. The year
|
||
* must be 1 or higher; negative ([BCE](https://en.wikipedia.org/wiki/Common_Era))
|
||
* years are not allowed.
|
||
*
|
||
* The year is represented with four digits.
|
||
*/
|
||
|
||
/**
|
||
* GDateWeekday:
|
||
* @G_DATE_BAD_WEEKDAY: invalid value
|
||
* @G_DATE_MONDAY: Monday
|
||
* @G_DATE_TUESDAY: Tuesday
|
||
* @G_DATE_WEDNESDAY: Wednesday
|
||
* @G_DATE_THURSDAY: Thursday
|
||
* @G_DATE_FRIDAY: Friday
|
||
* @G_DATE_SATURDAY: Saturday
|
||
* @G_DATE_SUNDAY: Sunday
|
||
*
|
||
* Enumeration representing a day of the week; %G_DATE_MONDAY,
|
||
* %G_DATE_TUESDAY, etc. %G_DATE_BAD_WEEKDAY is an invalid weekday.
|
||
*/
|
||
|
||
/**
|
||
* G_DATE_BAD_DAY:
|
||
*
|
||
* Represents an invalid #GDateDay.
|
||
*/
|
||
|
||
/**
|
||
* G_DATE_BAD_JULIAN:
|
||
*
|
||
* Represents an invalid Julian day number.
|
||
*/
|
||
|
||
/**
|
||
* G_DATE_BAD_YEAR:
|
||
*
|
||
* Represents an invalid year.
|
||
*/
|
||
|
||
/**
|
||
* g_date_new:
|
||
*
|
||
* Allocates a #GDate and initializes
|
||
* it to a safe state. The new date will
|
||
* be cleared (as if you'd called g_date_clear()) but invalid (it won't
|
||
* represent an existing day). Free the return value with g_date_free().
|
||
*
|
||
* Returns: a newly-allocated #GDate
|
||
*/
|
||
GDate*
|
||
g_date_new (void)
|
||
{
|
||
GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */
|
||
|
||
return d;
|
||
}
|
||
|
||
/**
|
||
* g_date_new_dmy:
|
||
* @day: day of the month
|
||
* @month: month of the year
|
||
* @year: year
|
||
*
|
||
* Create a new #GDate representing the given day-month-year triplet.
|
||
*
|
||
* The triplet you pass in must represent a valid date. Use g_date_valid_dmy()
|
||
* if needed to validate it. The returned #GDate is guaranteed to be non-%NULL
|
||
* and valid.
|
||
*
|
||
* Returns: (transfer full) (not nullable): a newly-allocated #GDate
|
||
* initialized with @day, @month, and @year
|
||
*/
|
||
GDate*
|
||
g_date_new_dmy (GDateDay day,
|
||
GDateMonth m,
|
||
GDateYear y)
|
||
{
|
||
GDate *d;
|
||
g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL);
|
||
|
||
d = g_new (GDate, 1);
|
||
|
||
d->julian = FALSE;
|
||
d->dmy = TRUE;
|
||
|
||
d->month = m;
|
||
d->day = day;
|
||
d->year = y;
|
||
|
||
g_assert (g_date_valid (d));
|
||
|
||
return d;
|
||
}
|
||
|
||
/**
|
||
* g_date_new_julian:
|
||
* @julian_day: days since January 1, Year 1
|
||
*
|
||
* Create a new #GDate representing the given Julian date.
|
||
*
|
||
* The @julian_day you pass in must be valid. Use g_date_valid_julian() if
|
||
* needed to validate it. The returned #GDate is guaranteed to be non-%NULL and
|
||
* valid.
|
||
*
|
||
* Returns: (transfer full) (not nullable): a newly-allocated #GDate initialized
|
||
* with @julian_day
|
||
*/
|
||
GDate*
|
||
g_date_new_julian (guint32 julian_day)
|
||
{
|
||
GDate *d;
|
||
g_return_val_if_fail (g_date_valid_julian (julian_day), NULL);
|
||
|
||
d = g_new (GDate, 1);
|
||
|
||
d->julian = TRUE;
|
||
d->dmy = FALSE;
|
||
|
||
d->julian_days = julian_day;
|
||
|
||
g_assert (g_date_valid (d));
|
||
|
||
return d;
|
||
}
|
||
|
||
/**
|
||
* g_date_free:
|
||
* @date: a #GDate to free
|
||
*
|
||
* Frees a #GDate returned from g_date_new().
|
||
*/
|
||
void
|
||
g_date_free (GDate *date)
|
||
{
|
||
g_return_if_fail (date != NULL);
|
||
|
||
g_free (date);
|
||
}
|
||
|
||
/**
|
||
* g_date_copy:
|
||
* @date: a #GDate to copy
|
||
*
|
||
* Copies a GDate to a newly-allocated GDate. If the input was invalid
|
||
* (as determined by g_date_valid()), the invalid state will be copied
|
||
* as is into the new object.
|
||
*
|
||
* Returns: (transfer full): a newly-allocated #GDate initialized from @date
|
||
*
|
||
* Since: 2.56
|
||
*/
|
||
GDate *
|
||
g_date_copy (const GDate *date)
|
||
{
|
||
GDate *res;
|
||
g_return_val_if_fail (date != NULL, NULL);
|
||
|
||
if (g_date_valid (date))
|
||
res = g_date_new_julian (g_date_get_julian (date));
|
||
else
|
||
{
|
||
res = g_date_new ();
|
||
*res = *date;
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/**
|
||
* g_date_valid:
|
||
* @date: a #GDate to check
|
||
*
|
||
* Returns %TRUE if the #GDate represents an existing day. The date must not
|
||
* contain garbage; it should have been initialized with g_date_clear()
|
||
* if it wasn't allocated by one of the g_date_new() variants.
|
||
*
|
||
* Returns: Whether the date is valid
|
||
*/
|
||
gboolean
|
||
g_date_valid (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (d != NULL, FALSE);
|
||
|
||
return (d->julian || d->dmy);
|
||
}
|
||
|
||
static const guint8 days_in_months[2][13] =
|
||
{ /* error, jan feb mar apr may jun jul aug sep oct nov dec */
|
||
{ 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
|
||
{ 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */
|
||
};
|
||
|
||
static const guint16 days_in_year[2][14] =
|
||
{ /* 0, jan feb mar apr may jun jul aug sep oct nov dec */
|
||
{ 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
|
||
{ 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
|
||
};
|
||
|
||
/**
|
||
* g_date_valid_month:
|
||
* @month: month
|
||
*
|
||
* Returns %TRUE if the month value is valid. The 12 #GDateMonth
|
||
* enumeration values are the only valid months.
|
||
*
|
||
* Returns: %TRUE if the month is valid
|
||
*/
|
||
gboolean
|
||
g_date_valid_month (GDateMonth m)
|
||
{
|
||
return (((gint) m > G_DATE_BAD_MONTH) && ((gint) m < 13));
|
||
}
|
||
|
||
/**
|
||
* g_date_valid_year:
|
||
* @year: year
|
||
*
|
||
* Returns %TRUE if the year is valid. Any year greater than 0 is valid,
|
||
* though there is a 16-bit limit to what #GDate will understand.
|
||
*
|
||
* Returns: %TRUE if the year is valid
|
||
*/
|
||
gboolean
|
||
g_date_valid_year (GDateYear y)
|
||
{
|
||
return ( y > G_DATE_BAD_YEAR );
|
||
}
|
||
|
||
/**
|
||
* g_date_valid_day:
|
||
* @day: day to check
|
||
*
|
||
* Returns %TRUE if the day of the month is valid (a day is valid if it's
|
||
* between 1 and 31 inclusive).
|
||
*
|
||
* Returns: %TRUE if the day is valid
|
||
*/
|
||
|
||
gboolean
|
||
g_date_valid_day (GDateDay d)
|
||
{
|
||
return ( (d > G_DATE_BAD_DAY) && (d < 32) );
|
||
}
|
||
|
||
/**
|
||
* g_date_valid_weekday:
|
||
* @weekday: weekday
|
||
*
|
||
* Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration
|
||
* values are the only valid weekdays.
|
||
*
|
||
* Returns: %TRUE if the weekday is valid
|
||
*/
|
||
gboolean
|
||
g_date_valid_weekday (GDateWeekday w)
|
||
{
|
||
return (((gint) w > G_DATE_BAD_WEEKDAY) && ((gint) w < 8));
|
||
}
|
||
|
||
/**
|
||
* g_date_valid_julian:
|
||
* @julian_date: Julian day to check
|
||
*
|
||
* Returns %TRUE if the Julian day is valid. Anything greater than zero
|
||
* is basically a valid Julian, though there is a 32-bit limit.
|
||
*
|
||
* Returns: %TRUE if the Julian day is valid
|
||
*/
|
||
gboolean
|
||
g_date_valid_julian (guint32 j)
|
||
{
|
||
return (j > G_DATE_BAD_JULIAN);
|
||
}
|
||
|
||
/**
|
||
* g_date_valid_dmy:
|
||
* @day: day
|
||
* @month: month
|
||
* @year: year
|
||
*
|
||
* Returns %TRUE if the day-month-year triplet forms a valid, existing day
|
||
* in the range of days #GDate understands (Year 1 or later, no more than
|
||
* a few thousand years in the future).
|
||
*
|
||
* Returns: %TRUE if the date is a valid one
|
||
*/
|
||
gboolean
|
||
g_date_valid_dmy (GDateDay d,
|
||
GDateMonth m,
|
||
GDateYear y)
|
||
{
|
||
/* No need to check the upper bound of @y, because #GDateYear is 16 bits wide,
|
||
* just like #GDate.year. */
|
||
return ( (m > G_DATE_BAD_MONTH) &&
|
||
(m < 13) &&
|
||
(d > G_DATE_BAD_DAY) &&
|
||
(y > G_DATE_BAD_YEAR) && /* must check before using g_date_is_leap_year */
|
||
(d <= (g_date_is_leap_year (y) ?
|
||
days_in_months[1][m] : days_in_months[0][m])) );
|
||
}
|
||
|
||
|
||
/* "Julian days" just means an absolute number of days, where Day 1 ==
|
||
* Jan 1, Year 1
|
||
*/
|
||
static void
|
||
g_date_update_julian (const GDate *const_d)
|
||
{
|
||
GDate *d = (GDate *) const_d;
|
||
GDateYear year;
|
||
gint idx;
|
||
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (d->dmy != 0);
|
||
g_return_if_fail (!d->julian);
|
||
g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year));
|
||
|
||
/* What we actually do is: multiply years * 365 days in the year,
|
||
* add the number of years divided by 4, subtract the number of
|
||
* years divided by 100 and add the number of years divided by 400,
|
||
* which accounts for leap year stuff. Code from Steffen Beyer's
|
||
* DateCalc.
|
||
*/
|
||
|
||
year = d->year - 1; /* we know d->year > 0 since it's valid */
|
||
|
||
d->julian_days = year * 365U;
|
||
d->julian_days += (year >>= 2); /* divide by 4 and add */
|
||
d->julian_days -= (year /= 25); /* divides original # years by 100 */
|
||
d->julian_days += year >> 2; /* divides by 4, which divides original by 400 */
|
||
|
||
idx = g_date_is_leap_year (d->year) ? 1 : 0;
|
||
|
||
d->julian_days += days_in_year[idx][d->month] + d->day;
|
||
|
||
g_return_if_fail (g_date_valid_julian (d->julian_days));
|
||
|
||
d->julian = TRUE;
|
||
}
|
||
|
||
static void
|
||
g_date_update_dmy (const GDate *const_d)
|
||
{
|
||
GDate *d = (GDate *) const_d;
|
||
GDateYear y;
|
||
GDateMonth m;
|
||
GDateDay day;
|
||
|
||
guint32 A, B, C, D, E, M;
|
||
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (d->julian);
|
||
g_return_if_fail (!d->dmy);
|
||
g_return_if_fail (g_date_valid_julian (d->julian_days));
|
||
|
||
/* Formula taken from the Calendar FAQ; the formula was for the
|
||
* Julian Period which starts on 1 January 4713 BC, so we add
|
||
* 1,721,425 to the number of days before doing the formula.
|
||
*
|
||
* I'm sure this can be simplified for our 1 January 1 AD period
|
||
* start, but I can't figure out how to unpack the formula.
|
||
*/
|
||
|
||
A = d->julian_days + 1721425 + 32045;
|
||
B = ( 4 *(A + 36524) )/ 146097 - 1;
|
||
C = A - (146097 * B)/4;
|
||
D = ( 4 * (C + 365) ) / 1461 - 1;
|
||
E = C - ((1461*D) / 4);
|
||
M = (5 * (E - 1) + 2)/153;
|
||
|
||
m = M + 3 - (12*(M/10));
|
||
day = E - (153*M + 2)/5;
|
||
y = 100 * B + D - 4800 + (M/10);
|
||
|
||
#ifdef G_ENABLE_DEBUG
|
||
if (!g_date_valid_dmy (day, m, y))
|
||
g_warning ("OOPS julian: %u computed dmy: %u %u %u",
|
||
d->julian_days, day, m, y);
|
||
#endif
|
||
|
||
d->month = m;
|
||
d->day = day;
|
||
d->year = y;
|
||
|
||
d->dmy = TRUE;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_weekday:
|
||
* @date: a #GDate
|
||
*
|
||
* Returns the day of the week for a #GDate. The date must be valid.
|
||
*
|
||
* Returns: day of the week as a #GDateWeekday.
|
||
*/
|
||
GDateWeekday
|
||
g_date_get_weekday (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY);
|
||
|
||
if (!d->julian)
|
||
g_date_update_julian (d);
|
||
|
||
g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY);
|
||
|
||
return ((d->julian_days - 1) % 7) + 1;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_month:
|
||
* @date: a #GDate to get the month from
|
||
*
|
||
* Returns the month of the year. The date must be valid.
|
||
*
|
||
* Returns: month of the year as a #GDateMonth
|
||
*/
|
||
GDateMonth
|
||
g_date_get_month (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH);
|
||
|
||
return d->month;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_year:
|
||
* @date: a #GDate
|
||
*
|
||
* Returns the year of a #GDate. The date must be valid.
|
||
*
|
||
* Returns: year in which the date falls
|
||
*/
|
||
GDateYear
|
||
g_date_get_year (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR);
|
||
|
||
return d->year;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_day:
|
||
* @date: a #GDate to extract the day of the month from
|
||
*
|
||
* Returns the day of the month. The date must be valid.
|
||
*
|
||
* Returns: day of the month
|
||
*/
|
||
GDateDay
|
||
g_date_get_day (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY);
|
||
|
||
return d->day;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_julian:
|
||
* @date: a #GDate to extract the Julian day from
|
||
*
|
||
* Returns the Julian day or "serial number" of the #GDate. The
|
||
* Julian day is simply the number of days since January 1, Year 1; i.e.,
|
||
* January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2,
|
||
* etc. The date must be valid.
|
||
*
|
||
* Returns: Julian day
|
||
*/
|
||
guint32
|
||
g_date_get_julian (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN);
|
||
|
||
if (!d->julian)
|
||
g_date_update_julian (d);
|
||
|
||
g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN);
|
||
|
||
return d->julian_days;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_day_of_year:
|
||
* @date: a #GDate to extract day of year from
|
||
*
|
||
* Returns the day of the year, where Jan 1 is the first day of the
|
||
* year. The date must be valid.
|
||
*
|
||
* Returns: day of the year
|
||
*/
|
||
guint
|
||
g_date_get_day_of_year (const GDate *d)
|
||
{
|
||
gint idx;
|
||
|
||
g_return_val_if_fail (g_date_valid (d), 0);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, 0);
|
||
|
||
idx = g_date_is_leap_year (d->year) ? 1 : 0;
|
||
|
||
return (days_in_year[idx][d->month] + d->day);
|
||
}
|
||
|
||
/**
|
||
* g_date_get_monday_week_of_year:
|
||
* @date: a #GDate
|
||
*
|
||
* Returns the week of the year, where weeks are understood to start on
|
||
* Monday. If the date is before the first Monday of the year, return 0.
|
||
* The date must be valid.
|
||
*
|
||
* Returns: week of the year
|
||
*/
|
||
guint
|
||
g_date_get_monday_week_of_year (const GDate *d)
|
||
{
|
||
GDateWeekday wd;
|
||
guint day;
|
||
GDate first;
|
||
|
||
g_return_val_if_fail (g_date_valid (d), 0);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, 0);
|
||
|
||
g_date_clear (&first, 1);
|
||
|
||
g_date_set_dmy (&first, 1, 1, d->year);
|
||
|
||
wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */
|
||
day = g_date_get_day_of_year (d) - 1;
|
||
|
||
return ((day + wd)/7U + (wd == 0 ? 1 : 0));
|
||
}
|
||
|
||
/**
|
||
* g_date_get_sunday_week_of_year:
|
||
* @date: a #GDate
|
||
*
|
||
* Returns the week of the year during which this date falls, if
|
||
* weeks are understood to begin on Sunday. The date must be valid.
|
||
* Can return 0 if the day is before the first Sunday of the year.
|
||
*
|
||
* Returns: week number
|
||
*/
|
||
guint
|
||
g_date_get_sunday_week_of_year (const GDate *d)
|
||
{
|
||
GDateWeekday wd;
|
||
guint day;
|
||
GDate first;
|
||
|
||
g_return_val_if_fail (g_date_valid (d), 0);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, 0);
|
||
|
||
g_date_clear (&first, 1);
|
||
|
||
g_date_set_dmy (&first, 1, 1, d->year);
|
||
|
||
wd = g_date_get_weekday (&first);
|
||
if (wd == 7) wd = 0; /* make Sunday day 0 */
|
||
day = g_date_get_day_of_year (d) - 1;
|
||
|
||
return ((day + wd)/7U + (wd == 0 ? 1 : 0));
|
||
}
|
||
|
||
/**
|
||
* g_date_get_iso8601_week_of_year:
|
||
* @date: a valid #GDate
|
||
*
|
||
* Returns the week of the year, where weeks are interpreted according
|
||
* to ISO 8601.
|
||
*
|
||
* Returns: ISO 8601 week number of the year.
|
||
*
|
||
* Since: 2.6
|
||
**/
|
||
guint
|
||
g_date_get_iso8601_week_of_year (const GDate *d)
|
||
{
|
||
guint j, d4, L, d1, w;
|
||
|
||
g_return_val_if_fail (g_date_valid (d), 0);
|
||
|
||
if (!d->julian)
|
||
g_date_update_julian (d);
|
||
|
||
g_return_val_if_fail (d->julian, 0);
|
||
|
||
/* Formula taken from the Calendar FAQ; the formula was for the
|
||
* Julian Period which starts on 1 January 4713 BC, so we add
|
||
* 1,721,425 to the number of days before doing the formula.
|
||
*/
|
||
j = d->julian_days + 1721425;
|
||
d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461;
|
||
L = d4 / 1460;
|
||
d1 = ((d4 - L) % 365) + L;
|
||
w = d1 / 7 + 1;
|
||
|
||
return w;
|
||
}
|
||
|
||
/**
|
||
* g_date_days_between:
|
||
* @date1: the first date
|
||
* @date2: the second date
|
||
*
|
||
* Computes the number of days between two dates.
|
||
* If @date2 is prior to @date1, the returned value is negative.
|
||
* Both dates must be valid.
|
||
*
|
||
* Returns: the number of days between @date1 and @date2
|
||
*/
|
||
gint
|
||
g_date_days_between (const GDate *d1,
|
||
const GDate *d2)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d1), 0);
|
||
g_return_val_if_fail (g_date_valid (d2), 0);
|
||
|
||
return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1);
|
||
}
|
||
|
||
/**
|
||
* g_date_clear:
|
||
* @date: pointer to one or more dates to clear
|
||
* @n_dates: number of dates to clear
|
||
*
|
||
* Initializes one or more #GDate structs to a safe but invalid
|
||
* state. The cleared dates will not represent an existing date, but will
|
||
* not contain garbage. Useful to init a date declared on the stack.
|
||
* Validity can be tested with g_date_valid().
|
||
*/
|
||
void
|
||
g_date_clear (GDate *d, guint ndates)
|
||
{
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (ndates != 0);
|
||
|
||
memset (d, 0x0, ndates*sizeof (GDate));
|
||
}
|
||
|
||
G_LOCK_DEFINE_STATIC (g_date_global);
|
||
|
||
/* These are for the parser, output to the user should use *
|
||
* g_date_strftime () - this creates more never-freed memory to annoy
|
||
* all those memory debugger users. :-)
|
||
*/
|
||
|
||
static gchar *long_month_names[13] =
|
||
{
|
||
NULL,
|
||
};
|
||
|
||
static gchar *long_month_names_alternative[13] =
|
||
{
|
||
NULL,
|
||
};
|
||
|
||
static gchar *short_month_names[13] =
|
||
{
|
||
NULL,
|
||
};
|
||
|
||
static gchar *short_month_names_alternative[13] =
|
||
{
|
||
NULL,
|
||
};
|
||
|
||
/* This tells us if we need to update the parse info */
|
||
static gchar *current_locale = NULL;
|
||
|
||
/* order of these in the current locale */
|
||
static GDateDMY dmy_order[3] =
|
||
{
|
||
G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR
|
||
};
|
||
|
||
/* Where to chop two-digit years: i.e., for the 1930 default, numbers
|
||
* 29 and below are counted as in the year 2000, numbers 30 and above
|
||
* are counted as in the year 1900.
|
||
*/
|
||
|
||
static const GDateYear twodigit_start_year = 1930;
|
||
|
||
/* It is impossible to enter a year between 1 AD and 99 AD with this
|
||
* in effect.
|
||
*/
|
||
static gboolean using_twodigit_years = FALSE;
|
||
|
||
/* Adjustment of locale era to AD, non-zero means using locale era
|
||
*/
|
||
static gint locale_era_adjust = 0;
|
||
|
||
struct _GDateParseTokens {
|
||
gint num_ints;
|
||
gint n[3];
|
||
guint month;
|
||
};
|
||
|
||
typedef struct _GDateParseTokens GDateParseTokens;
|
||
|
||
static inline gboolean
|
||
update_month_match (gsize *longest,
|
||
const gchar *haystack,
|
||
const gchar *needle)
|
||
{
|
||
gsize length;
|
||
|
||
if (needle == NULL)
|
||
return FALSE;
|
||
|
||
length = strlen (needle);
|
||
if (*longest >= length)
|
||
return FALSE;
|
||
|
||
if (strstr (haystack, needle) == NULL)
|
||
return FALSE;
|
||
|
||
*longest = length;
|
||
return TRUE;
|
||
}
|
||
|
||
#define NUM_LEN 10
|
||
|
||
/* HOLDS: g_date_global_lock */
|
||
static void
|
||
g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt)
|
||
{
|
||
gchar num[4][NUM_LEN+1];
|
||
gint i;
|
||
const guchar *s;
|
||
|
||
/* We count 4, but store 3; so we can give an error
|
||
* if there are 4.
|
||
*/
|
||
num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0';
|
||
|
||
s = (const guchar *) str;
|
||
pt->num_ints = 0;
|
||
while (*s && pt->num_ints < 4)
|
||
{
|
||
|
||
i = 0;
|
||
while (*s && g_ascii_isdigit (*s) && i < NUM_LEN)
|
||
{
|
||
num[pt->num_ints][i] = *s;
|
||
++s;
|
||
++i;
|
||
}
|
||
|
||
if (i > 0)
|
||
{
|
||
num[pt->num_ints][i] = '\0';
|
||
++(pt->num_ints);
|
||
}
|
||
|
||
if (*s == '\0') break;
|
||
|
||
++s;
|
||
}
|
||
|
||
pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0;
|
||
pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0;
|
||
pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0;
|
||
|
||
pt->month = G_DATE_BAD_MONTH;
|
||
|
||
if (pt->num_ints < 3)
|
||
{
|
||
gsize longest = 0;
|
||
gchar *casefold;
|
||
gchar *normalized;
|
||
|
||
casefold = g_utf8_casefold (str, -1);
|
||
normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
|
||
g_free (casefold);
|
||
|
||
for (i = 1; i < 13; ++i)
|
||
{
|
||
/* Here month names may be in a genitive case if the language
|
||
* grammatical rules require it.
|
||
* Examples of how January may look in some languages:
|
||
* Catalan: "de gener", Croatian: "siječnja", Polish: "stycznia",
|
||
* Upper Sorbian: "januara".
|
||
* Note that most of the languages can't or don't use the the
|
||
* genitive case here so they use nominative everywhere.
|
||
* For example, English always uses "January".
|
||
*/
|
||
if (update_month_match (&longest, normalized, long_month_names[i]))
|
||
pt->month = i;
|
||
|
||
/* Here month names will be in a nominative case.
|
||
* Examples of how January may look in some languages:
|
||
* Catalan: "gener", Croatian: "Siječanj", Polish: "styczeń",
|
||
* Upper Sorbian: "Januar".
|
||
*/
|
||
if (update_month_match (&longest, normalized, long_month_names_alternative[i]))
|
||
pt->month = i;
|
||
|
||
/* Differences between abbreviated nominative and abbreviated
|
||
* genitive month names are visible in very few languages but
|
||
* let's handle them.
|
||
*/
|
||
if (update_month_match (&longest, normalized, short_month_names[i]))
|
||
pt->month = i;
|
||
|
||
if (update_month_match (&longest, normalized, short_month_names_alternative[i]))
|
||
pt->month = i;
|
||
}
|
||
|
||
g_free (normalized);
|
||
}
|
||
}
|
||
|
||
/* HOLDS: g_date_global_lock */
|
||
static void
|
||
g_date_prepare_to_parse (const gchar *str,
|
||
GDateParseTokens *pt)
|
||
{
|
||
const gchar *locale = setlocale (LC_TIME, NULL);
|
||
gboolean recompute_localeinfo = FALSE;
|
||
GDate d;
|
||
|
||
g_return_if_fail (locale != NULL); /* should not happen */
|
||
|
||
g_date_clear (&d, 1); /* clear for scratch use */
|
||
|
||
if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) )
|
||
recompute_localeinfo = TRUE; /* Uh, there used to be a reason for the temporary */
|
||
|
||
if (recompute_localeinfo)
|
||
{
|
||
int i = 1;
|
||
GDateParseTokens testpt;
|
||
gchar buf[128];
|
||
|
||
g_free (current_locale); /* still works if current_locale == NULL */
|
||
|
||
current_locale = g_strdup (locale);
|
||
|
||
short_month_names[0] = "Error";
|
||
long_month_names[0] = "Error";
|
||
|
||
while (i < 13)
|
||
{
|
||
gchar *casefold;
|
||
|
||
g_date_set_dmy (&d, 1, i, 1976);
|
||
|
||
g_return_if_fail (g_date_valid (&d));
|
||
|
||
g_date_strftime (buf, 127, "%b", &d);
|
||
|
||
casefold = g_utf8_casefold (buf, -1);
|
||
g_free (short_month_names[i]);
|
||
short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
|
||
g_free (casefold);
|
||
|
||
g_date_strftime (buf, 127, "%B", &d);
|
||
casefold = g_utf8_casefold (buf, -1);
|
||
g_free (long_month_names[i]);
|
||
long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
|
||
g_free (casefold);
|
||
|
||
g_date_strftime (buf, 127, "%Ob", &d);
|
||
casefold = g_utf8_casefold (buf, -1);
|
||
g_free (short_month_names_alternative[i]);
|
||
short_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
|
||
g_free (casefold);
|
||
|
||
g_date_strftime (buf, 127, "%OB", &d);
|
||
casefold = g_utf8_casefold (buf, -1);
|
||
g_free (long_month_names_alternative[i]);
|
||
long_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
|
||
g_free (casefold);
|
||
|
||
++i;
|
||
}
|
||
|
||
/* Determine DMY order */
|
||
|
||
/* had to pick a random day - don't change this, some strftimes
|
||
* are broken on some days, and this one is good so far. */
|
||
g_date_set_dmy (&d, 4, 7, 1976);
|
||
|
||
g_date_strftime (buf, 127, "%x", &d);
|
||
|
||
g_date_fill_parse_tokens (buf, &testpt);
|
||
|
||
using_twodigit_years = FALSE;
|
||
locale_era_adjust = 0;
|
||
dmy_order[0] = G_DATE_DAY;
|
||
dmy_order[1] = G_DATE_MONTH;
|
||
dmy_order[2] = G_DATE_YEAR;
|
||
|
||
i = 0;
|
||
while (i < testpt.num_ints)
|
||
{
|
||
switch (testpt.n[i])
|
||
{
|
||
case 7:
|
||
dmy_order[i] = G_DATE_MONTH;
|
||
break;
|
||
case 4:
|
||
dmy_order[i] = G_DATE_DAY;
|
||
break;
|
||
case 76:
|
||
using_twodigit_years = TRUE;
|
||
G_GNUC_FALLTHROUGH;
|
||
case 1976:
|
||
dmy_order[i] = G_DATE_YEAR;
|
||
break;
|
||
default:
|
||
/* assume locale era */
|
||
locale_era_adjust = 1976 - testpt.n[i];
|
||
dmy_order[i] = G_DATE_YEAR;
|
||
break;
|
||
}
|
||
++i;
|
||
}
|
||
|
||
#if defined(G_ENABLE_DEBUG) && 0
|
||
DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules."));
|
||
i = 1;
|
||
while (i < 13)
|
||
{
|
||
DEBUG_MSG ((" %s %s", long_month_names[i], short_month_names[i]));
|
||
++i;
|
||
}
|
||
DEBUG_MSG (("Alternative month names:"));
|
||
i = 1;
|
||
while (i < 13)
|
||
{
|
||
DEBUG_MSG ((" %s %s", long_month_names_alternative[i], short_month_names_alternative[i]));
|
||
++i;
|
||
}
|
||
if (using_twodigit_years)
|
||
{
|
||
DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year));
|
||
}
|
||
{
|
||
gchar *strings[3];
|
||
i = 0;
|
||
while (i < 3)
|
||
{
|
||
switch (dmy_order[i])
|
||
{
|
||
case G_DATE_MONTH:
|
||
strings[i] = "Month";
|
||
break;
|
||
case G_DATE_YEAR:
|
||
strings[i] = "Year";
|
||
break;
|
||
case G_DATE_DAY:
|
||
strings[i] = "Day";
|
||
break;
|
||
default:
|
||
strings[i] = NULL;
|
||
break;
|
||
}
|
||
++i;
|
||
}
|
||
DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2]));
|
||
DEBUG_MSG (("**Sample date in this locale: '%s'", buf));
|
||
}
|
||
#endif
|
||
}
|
||
|
||
g_date_fill_parse_tokens (str, pt);
|
||
}
|
||
|
||
static guint
|
||
convert_twodigit_year (guint y)
|
||
{
|
||
if (using_twodigit_years && y < 100)
|
||
{
|
||
guint two = twodigit_start_year % 100;
|
||
guint century = (twodigit_start_year / 100) * 100;
|
||
|
||
if (y < two)
|
||
century += 100;
|
||
|
||
y += century;
|
||
}
|
||
return y;
|
||
}
|
||
|
||
/**
|
||
* g_date_set_parse:
|
||
* @date: a #GDate to fill in
|
||
* @str: string to parse
|
||
*
|
||
* Parses a user-inputted string @str, and try to figure out what date it
|
||
* represents, taking the [current locale][setlocale] into account. If the
|
||
* string is successfully parsed, the date will be valid after the call.
|
||
* Otherwise, it will be invalid. You should check using g_date_valid()
|
||
* to see whether the parsing succeeded.
|
||
*
|
||
* This function is not appropriate for file formats and the like; it
|
||
* isn't very precise, and its exact behavior varies with the locale.
|
||
* It's intended to be a heuristic routine that guesses what the user
|
||
* means by a given string (and it does work pretty well in that
|
||
* capacity).
|
||
*/
|
||
void
|
||
g_date_set_parse (GDate *d,
|
||
const gchar *str)
|
||
{
|
||
GDateParseTokens pt;
|
||
guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR;
|
||
gsize str_len;
|
||
|
||
g_return_if_fail (d != NULL);
|
||
|
||
/* set invalid */
|
||
g_date_clear (d, 1);
|
||
|
||
/* Anything longer than this is ridiculous and could take a while to normalize.
|
||
* This limit is chosen arbitrarily. */
|
||
str_len = strlen (str);
|
||
if (str_len > 200)
|
||
return;
|
||
|
||
/* The input has to be valid UTF-8. */
|
||
if (!g_utf8_validate_len (str, str_len, NULL))
|
||
return;
|
||
|
||
G_LOCK (g_date_global);
|
||
|
||
g_date_prepare_to_parse (str, &pt);
|
||
|
||
DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d",
|
||
pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month));
|
||
|
||
|
||
if (pt.num_ints == 4)
|
||
{
|
||
G_UNLOCK (g_date_global);
|
||
return; /* presumably a typo; bail out. */
|
||
}
|
||
|
||
if (pt.num_ints > 1)
|
||
{
|
||
int i = 0;
|
||
int j = 0;
|
||
|
||
g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */
|
||
|
||
while (i < pt.num_ints && j < 3)
|
||
{
|
||
switch (dmy_order[j])
|
||
{
|
||
case G_DATE_MONTH:
|
||
{
|
||
if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH)
|
||
{
|
||
m = pt.month;
|
||
++j; /* skip months, but don't skip this number */
|
||
continue;
|
||
}
|
||
else
|
||
m = pt.n[i];
|
||
}
|
||
break;
|
||
case G_DATE_DAY:
|
||
{
|
||
if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH)
|
||
{
|
||
day = 1;
|
||
++j; /* skip days, since we may have month/year */
|
||
continue;
|
||
}
|
||
day = pt.n[i];
|
||
}
|
||
break;
|
||
case G_DATE_YEAR:
|
||
{
|
||
y = pt.n[i];
|
||
|
||
if (locale_era_adjust != 0)
|
||
{
|
||
y += locale_era_adjust;
|
||
}
|
||
|
||
y = convert_twodigit_year (y);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
++i;
|
||
++j;
|
||
}
|
||
|
||
|
||
if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y))
|
||
{
|
||
/* Try YYYY MM DD */
|
||
y = pt.n[0];
|
||
m = pt.n[1];
|
||
day = pt.n[2];
|
||
|
||
if (using_twodigit_years && y < 100)
|
||
y = G_DATE_BAD_YEAR; /* avoids ambiguity */
|
||
}
|
||
else if (pt.num_ints == 2)
|
||
{
|
||
if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH)
|
||
m = pt.month;
|
||
}
|
||
}
|
||
else if (pt.num_ints == 1)
|
||
{
|
||
if (pt.month != G_DATE_BAD_MONTH)
|
||
{
|
||
/* Month name and year? */
|
||
m = pt.month;
|
||
day = 1;
|
||
y = pt.n[0];
|
||
}
|
||
else
|
||
{
|
||
/* Try yyyymmdd and yymmdd */
|
||
|
||
m = (pt.n[0]/100) % 100;
|
||
day = pt.n[0] % 100;
|
||
y = pt.n[0]/10000;
|
||
|
||
y = convert_twodigit_year (y);
|
||
}
|
||
}
|
||
|
||
/* See if we got anything valid out of all this. */
|
||
/* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */
|
||
if (y < 8000 && g_date_valid_dmy (day, m, y))
|
||
{
|
||
d->month = m;
|
||
d->day = day;
|
||
d->year = y;
|
||
d->dmy = TRUE;
|
||
}
|
||
#ifdef G_ENABLE_DEBUG
|
||
else
|
||
{
|
||
DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y));
|
||
}
|
||
#endif
|
||
G_UNLOCK (g_date_global);
|
||
}
|
||
|
||
/**
|
||
* g_date_set_time_t:
|
||
* @date: a #GDate
|
||
* @timet: time_t value to set
|
||
*
|
||
* Sets the value of a date to the date corresponding to a time
|
||
* specified as a time_t. The time to date conversion is done using
|
||
* the user's current timezone.
|
||
*
|
||
* To set the value of a date to the current day, you could write:
|
||
* |[<!-- language="C" -->
|
||
* time_t now = time (NULL);
|
||
* if (now == (time_t) -1)
|
||
* // handle the error
|
||
* g_date_set_time_t (date, now);
|
||
* ]|
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
void
|
||
g_date_set_time_t (GDate *date,
|
||
time_t timet)
|
||
{
|
||
struct tm tm;
|
||
|
||
g_return_if_fail (date != NULL);
|
||
|
||
#ifdef HAVE_LOCALTIME_R
|
||
localtime_r (&timet, &tm);
|
||
#else
|
||
{
|
||
struct tm *ptm = localtime (&timet);
|
||
|
||
if (ptm == NULL)
|
||
{
|
||
/* Happens at least in Microsoft's C library if you pass a
|
||
* negative time_t. Use 2000-01-01 as default date.
|
||
*/
|
||
#ifndef G_DISABLE_CHECKS
|
||
g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "ptm != NULL");
|
||
#endif
|
||
|
||
tm.tm_mon = 0;
|
||
tm.tm_mday = 1;
|
||
tm.tm_year = 100;
|
||
}
|
||
else
|
||
memcpy ((void *) &tm, (void *) ptm, sizeof(struct tm));
|
||
}
|
||
#endif
|
||
|
||
date->julian = FALSE;
|
||
|
||
date->month = tm.tm_mon + 1;
|
||
date->day = tm.tm_mday;
|
||
date->year = tm.tm_year + 1900;
|
||
|
||
g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year));
|
||
|
||
date->dmy = TRUE;
|
||
}
|
||
|
||
|
||
/**
|
||
* g_date_set_time:
|
||
* @date: a #GDate.
|
||
* @time_: #GTime value to set.
|
||
*
|
||
* Sets the value of a date from a #GTime value.
|
||
* The time to date conversion is done using the user's current timezone.
|
||
*
|
||
* Deprecated: 2.10: Use g_date_set_time_t() instead.
|
||
*/
|
||
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
|
||
void
|
||
g_date_set_time (GDate *date,
|
||
GTime time_)
|
||
{
|
||
g_date_set_time_t (date, (time_t) time_);
|
||
}
|
||
G_GNUC_END_IGNORE_DEPRECATIONS
|
||
|
||
/**
|
||
* g_date_set_time_val:
|
||
* @date: a #GDate
|
||
* @timeval: #GTimeVal value to set
|
||
*
|
||
* Sets the value of a date from a #GTimeVal value. Note that the
|
||
* @tv_usec member is ignored, because #GDate can't make use of the
|
||
* additional precision.
|
||
*
|
||
* The time to date conversion is done using the user's current timezone.
|
||
*
|
||
* Since: 2.10
|
||
* Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use g_date_set_time_t()
|
||
* instead.
|
||
*/
|
||
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
|
||
void
|
||
g_date_set_time_val (GDate *date,
|
||
GTimeVal *timeval)
|
||
{
|
||
g_date_set_time_t (date, (time_t) timeval->tv_sec);
|
||
}
|
||
G_GNUC_END_IGNORE_DEPRECATIONS
|
||
|
||
/**
|
||
* g_date_set_month:
|
||
* @date: a #GDate
|
||
* @month: month to set
|
||
*
|
||
* Sets the month of the year for a #GDate. If the resulting
|
||
* day-month-year triplet is invalid, the date will be invalid.
|
||
*/
|
||
void
|
||
g_date_set_month (GDate *d,
|
||
GDateMonth m)
|
||
{
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (g_date_valid_month (m));
|
||
|
||
if (d->julian && !d->dmy) g_date_update_dmy(d);
|
||
d->julian = FALSE;
|
||
|
||
d->month = m;
|
||
|
||
if (g_date_valid_dmy (d->day, d->month, d->year))
|
||
d->dmy = TRUE;
|
||
else
|
||
d->dmy = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_set_day:
|
||
* @date: a #GDate
|
||
* @day: day to set
|
||
*
|
||
* Sets the day of the month for a #GDate. If the resulting
|
||
* day-month-year triplet is invalid, the date will be invalid.
|
||
*/
|
||
void
|
||
g_date_set_day (GDate *d,
|
||
GDateDay day)
|
||
{
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (g_date_valid_day (day));
|
||
|
||
if (d->julian && !d->dmy) g_date_update_dmy(d);
|
||
d->julian = FALSE;
|
||
|
||
d->day = day;
|
||
|
||
if (g_date_valid_dmy (d->day, d->month, d->year))
|
||
d->dmy = TRUE;
|
||
else
|
||
d->dmy = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_set_year:
|
||
* @date: a #GDate
|
||
* @year: year to set
|
||
*
|
||
* Sets the year for a #GDate. If the resulting day-month-year
|
||
* triplet is invalid, the date will be invalid.
|
||
*/
|
||
void
|
||
g_date_set_year (GDate *d,
|
||
GDateYear y)
|
||
{
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (g_date_valid_year (y));
|
||
|
||
if (d->julian && !d->dmy) g_date_update_dmy(d);
|
||
d->julian = FALSE;
|
||
|
||
d->year = y;
|
||
|
||
if (g_date_valid_dmy (d->day, d->month, d->year))
|
||
d->dmy = TRUE;
|
||
else
|
||
d->dmy = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_set_dmy:
|
||
* @date: a #GDate
|
||
* @day: day
|
||
* @month: month
|
||
* @y: year
|
||
*
|
||
* Sets the value of a #GDate from a day, month, and year.
|
||
* The day-month-year triplet must be valid; if you aren't
|
||
* sure it is, call g_date_valid_dmy() to check before you
|
||
* set it.
|
||
*/
|
||
void
|
||
g_date_set_dmy (GDate *d,
|
||
GDateDay day,
|
||
GDateMonth m,
|
||
GDateYear y)
|
||
{
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (g_date_valid_dmy (day, m, y));
|
||
|
||
d->julian = FALSE;
|
||
|
||
d->month = m;
|
||
d->day = day;
|
||
d->year = y;
|
||
|
||
d->dmy = TRUE;
|
||
}
|
||
|
||
/**
|
||
* g_date_set_julian:
|
||
* @date: a #GDate
|
||
* @julian_date: Julian day number (days since January 1, Year 1)
|
||
*
|
||
* Sets the value of a #GDate from a Julian day number.
|
||
*/
|
||
void
|
||
g_date_set_julian (GDate *d,
|
||
guint32 j)
|
||
{
|
||
g_return_if_fail (d != NULL);
|
||
g_return_if_fail (g_date_valid_julian (j));
|
||
|
||
d->julian_days = j;
|
||
d->julian = TRUE;
|
||
d->dmy = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_is_first_of_month:
|
||
* @date: a #GDate to check
|
||
*
|
||
* Returns %TRUE if the date is on the first of a month.
|
||
* The date must be valid.
|
||
*
|
||
* Returns: %TRUE if the date is the first of the month
|
||
*/
|
||
gboolean
|
||
g_date_is_first_of_month (const GDate *d)
|
||
{
|
||
g_return_val_if_fail (g_date_valid (d), FALSE);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, FALSE);
|
||
|
||
if (d->day == 1) return TRUE;
|
||
else return FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_is_last_of_month:
|
||
* @date: a #GDate to check
|
||
*
|
||
* Returns %TRUE if the date is the last day of the month.
|
||
* The date must be valid.
|
||
*
|
||
* Returns: %TRUE if the date is the last day of the month
|
||
*/
|
||
gboolean
|
||
g_date_is_last_of_month (const GDate *d)
|
||
{
|
||
gint idx;
|
||
|
||
g_return_val_if_fail (g_date_valid (d), FALSE);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_val_if_fail (d->dmy, FALSE);
|
||
|
||
idx = g_date_is_leap_year (d->year) ? 1 : 0;
|
||
|
||
if (d->day == days_in_months[idx][d->month]) return TRUE;
|
||
else return FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_add_days:
|
||
* @date: a #GDate to increment
|
||
* @n_days: number of days to move the date forward
|
||
*
|
||
* Increments a date some number of days.
|
||
* To move forward by weeks, add weeks*7 days.
|
||
* The date must be valid.
|
||
*/
|
||
void
|
||
g_date_add_days (GDate *d,
|
||
guint ndays)
|
||
{
|
||
g_return_if_fail (g_date_valid (d));
|
||
|
||
if (!d->julian)
|
||
g_date_update_julian (d);
|
||
|
||
g_return_if_fail (d->julian);
|
||
g_return_if_fail (ndays <= G_MAXUINT32 - d->julian_days);
|
||
|
||
d->julian_days += ndays;
|
||
d->dmy = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_subtract_days:
|
||
* @date: a #GDate to decrement
|
||
* @n_days: number of days to move
|
||
*
|
||
* Moves a date some number of days into the past.
|
||
* To move by weeks, just move by weeks*7 days.
|
||
* The date must be valid.
|
||
*/
|
||
void
|
||
g_date_subtract_days (GDate *d,
|
||
guint ndays)
|
||
{
|
||
g_return_if_fail (g_date_valid (d));
|
||
|
||
if (!d->julian)
|
||
g_date_update_julian (d);
|
||
|
||
g_return_if_fail (d->julian);
|
||
g_return_if_fail (d->julian_days > ndays);
|
||
|
||
d->julian_days -= ndays;
|
||
d->dmy = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_add_months:
|
||
* @date: a #GDate to increment
|
||
* @n_months: number of months to move forward
|
||
*
|
||
* Increments a date by some number of months.
|
||
* If the day of the month is greater than 28,
|
||
* this routine may change the day of the month
|
||
* (because the destination month may not have
|
||
* the current day in it). The date must be valid.
|
||
*/
|
||
void
|
||
g_date_add_months (GDate *d,
|
||
guint nmonths)
|
||
{
|
||
guint years, months;
|
||
gint idx;
|
||
|
||
g_return_if_fail (g_date_valid (d));
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_if_fail (d->dmy != 0);
|
||
g_return_if_fail (nmonths <= G_MAXUINT - (d->month - 1));
|
||
|
||
nmonths += d->month - 1;
|
||
|
||
years = nmonths/12;
|
||
months = nmonths%12;
|
||
|
||
g_return_if_fail (years <= (guint) (G_MAXUINT16 - d->year));
|
||
|
||
d->month = months + 1;
|
||
d->year += years;
|
||
|
||
idx = g_date_is_leap_year (d->year) ? 1 : 0;
|
||
|
||
if (d->day > days_in_months[idx][d->month])
|
||
d->day = days_in_months[idx][d->month];
|
||
|
||
d->julian = FALSE;
|
||
|
||
g_return_if_fail (g_date_valid (d));
|
||
}
|
||
|
||
/**
|
||
* g_date_subtract_months:
|
||
* @date: a #GDate to decrement
|
||
* @n_months: number of months to move
|
||
*
|
||
* Moves a date some number of months into the past.
|
||
* If the current day of the month doesn't exist in
|
||
* the destination month, the day of the month
|
||
* may change. The date must be valid.
|
||
*/
|
||
void
|
||
g_date_subtract_months (GDate *d,
|
||
guint nmonths)
|
||
{
|
||
guint years, months;
|
||
gint idx;
|
||
|
||
g_return_if_fail (g_date_valid (d));
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_if_fail (d->dmy != 0);
|
||
|
||
years = nmonths/12;
|
||
months = nmonths%12;
|
||
|
||
g_return_if_fail (d->year > years);
|
||
|
||
d->year -= years;
|
||
|
||
if (d->month > months) d->month -= months;
|
||
else
|
||
{
|
||
months -= d->month;
|
||
d->month = 12 - months;
|
||
d->year -= 1;
|
||
}
|
||
|
||
idx = g_date_is_leap_year (d->year) ? 1 : 0;
|
||
|
||
if (d->day > days_in_months[idx][d->month])
|
||
d->day = days_in_months[idx][d->month];
|
||
|
||
d->julian = FALSE;
|
||
|
||
g_return_if_fail (g_date_valid (d));
|
||
}
|
||
|
||
/**
|
||
* g_date_add_years:
|
||
* @date: a #GDate to increment
|
||
* @n_years: number of years to move forward
|
||
*
|
||
* Increments a date by some number of years.
|
||
* If the date is February 29, and the destination
|
||
* year is not a leap year, the date will be changed
|
||
* to February 28. The date must be valid.
|
||
*/
|
||
void
|
||
g_date_add_years (GDate *d,
|
||
guint nyears)
|
||
{
|
||
g_return_if_fail (g_date_valid (d));
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_if_fail (d->dmy != 0);
|
||
g_return_if_fail (nyears <= (guint) (G_MAXUINT16 - d->year));
|
||
|
||
d->year += nyears;
|
||
|
||
if (d->month == 2 && d->day == 29)
|
||
{
|
||
if (!g_date_is_leap_year (d->year))
|
||
d->day = 28;
|
||
}
|
||
|
||
d->julian = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_subtract_years:
|
||
* @date: a #GDate to decrement
|
||
* @n_years: number of years to move
|
||
*
|
||
* Moves a date some number of years into the past.
|
||
* If the current day doesn't exist in the destination
|
||
* year (i.e. it's February 29 and you move to a non-leap-year)
|
||
* then the day is changed to February 29. The date
|
||
* must be valid.
|
||
*/
|
||
void
|
||
g_date_subtract_years (GDate *d,
|
||
guint nyears)
|
||
{
|
||
g_return_if_fail (g_date_valid (d));
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_if_fail (d->dmy != 0);
|
||
g_return_if_fail (d->year > nyears);
|
||
|
||
d->year -= nyears;
|
||
|
||
if (d->month == 2 && d->day == 29)
|
||
{
|
||
if (!g_date_is_leap_year (d->year))
|
||
d->day = 28;
|
||
}
|
||
|
||
d->julian = FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_date_is_leap_year:
|
||
* @year: year to check
|
||
*
|
||
* Returns %TRUE if the year is a leap year.
|
||
*
|
||
* For the purposes of this function, leap year is every year
|
||
* divisible by 4 unless that year is divisible by 100. If it
|
||
* is divisible by 100 it would be a leap year only if that year
|
||
* is also divisible by 400.
|
||
*
|
||
* Returns: %TRUE if the year is a leap year
|
||
*/
|
||
gboolean
|
||
g_date_is_leap_year (GDateYear year)
|
||
{
|
||
g_return_val_if_fail (g_date_valid_year (year), FALSE);
|
||
|
||
return ( (((year % 4) == 0) && ((year % 100) != 0)) ||
|
||
(year % 400) == 0 );
|
||
}
|
||
|
||
/**
|
||
* g_date_get_days_in_month:
|
||
* @month: month
|
||
* @year: year
|
||
*
|
||
* Returns the number of days in a month, taking leap
|
||
* years into account.
|
||
*
|
||
* Returns: number of days in @month during the @year
|
||
*/
|
||
guint8
|
||
g_date_get_days_in_month (GDateMonth month,
|
||
GDateYear year)
|
||
{
|
||
gint idx;
|
||
|
||
g_return_val_if_fail (g_date_valid_year (year), 0);
|
||
g_return_val_if_fail (g_date_valid_month (month), 0);
|
||
|
||
idx = g_date_is_leap_year (year) ? 1 : 0;
|
||
|
||
return days_in_months[idx][month];
|
||
}
|
||
|
||
/**
|
||
* g_date_get_monday_weeks_in_year:
|
||
* @year: a year
|
||
*
|
||
* Returns the number of weeks in the year, where weeks
|
||
* are taken to start on Monday. Will be 52 or 53. The
|
||
* date must be valid. (Years always have 52 7-day periods,
|
||
* plus 1 or 2 extra days depending on whether it's a leap
|
||
* year. This function is basically telling you how many
|
||
* Mondays are in the year, i.e. there are 53 Mondays if
|
||
* one of the extra days happens to be a Monday.)
|
||
*
|
||
* Returns: number of Mondays in the year
|
||
*/
|
||
guint8
|
||
g_date_get_monday_weeks_in_year (GDateYear year)
|
||
{
|
||
GDate d;
|
||
|
||
g_return_val_if_fail (g_date_valid_year (year), 0);
|
||
|
||
g_date_clear (&d, 1);
|
||
g_date_set_dmy (&d, 1, 1, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
|
||
g_date_set_dmy (&d, 31, 12, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
|
||
if (g_date_is_leap_year (year))
|
||
{
|
||
g_date_set_dmy (&d, 2, 1, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
|
||
g_date_set_dmy (&d, 30, 12, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
|
||
}
|
||
return 52;
|
||
}
|
||
|
||
/**
|
||
* g_date_get_sunday_weeks_in_year:
|
||
* @year: year to count weeks in
|
||
*
|
||
* Returns the number of weeks in the year, where weeks
|
||
* are taken to start on Sunday. Will be 52 or 53. The
|
||
* date must be valid. (Years always have 52 7-day periods,
|
||
* plus 1 or 2 extra days depending on whether it's a leap
|
||
* year. This function is basically telling you how many
|
||
* Sundays are in the year, i.e. there are 53 Sundays if
|
||
* one of the extra days happens to be a Sunday.)
|
||
*
|
||
* Returns: the number of weeks in @year
|
||
*/
|
||
guint8
|
||
g_date_get_sunday_weeks_in_year (GDateYear year)
|
||
{
|
||
GDate d;
|
||
|
||
g_return_val_if_fail (g_date_valid_year (year), 0);
|
||
|
||
g_date_clear (&d, 1);
|
||
g_date_set_dmy (&d, 1, 1, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
|
||
g_date_set_dmy (&d, 31, 12, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
|
||
if (g_date_is_leap_year (year))
|
||
{
|
||
g_date_set_dmy (&d, 2, 1, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
|
||
g_date_set_dmy (&d, 30, 12, year);
|
||
if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
|
||
}
|
||
return 52;
|
||
}
|
||
|
||
/**
|
||
* g_date_compare:
|
||
* @lhs: first date to compare
|
||
* @rhs: second date to compare
|
||
*
|
||
* qsort()-style comparison function for dates.
|
||
* Both dates must be valid.
|
||
*
|
||
* Returns: 0 for equal, less than zero if @lhs is less than @rhs,
|
||
* greater than zero if @lhs is greater than @rhs
|
||
*/
|
||
gint
|
||
g_date_compare (const GDate *lhs,
|
||
const GDate *rhs)
|
||
{
|
||
g_return_val_if_fail (lhs != NULL, 0);
|
||
g_return_val_if_fail (rhs != NULL, 0);
|
||
g_return_val_if_fail (g_date_valid (lhs), 0);
|
||
g_return_val_if_fail (g_date_valid (rhs), 0);
|
||
|
||
/* Remember the self-comparison case! I think it works right now. */
|
||
|
||
while (TRUE)
|
||
{
|
||
if (lhs->julian && rhs->julian)
|
||
{
|
||
if (lhs->julian_days < rhs->julian_days) return -1;
|
||
else if (lhs->julian_days > rhs->julian_days) return 1;
|
||
else return 0;
|
||
}
|
||
else if (lhs->dmy && rhs->dmy)
|
||
{
|
||
if (lhs->year < rhs->year) return -1;
|
||
else if (lhs->year > rhs->year) return 1;
|
||
else
|
||
{
|
||
if (lhs->month < rhs->month) return -1;
|
||
else if (lhs->month > rhs->month) return 1;
|
||
else
|
||
{
|
||
if (lhs->day < rhs->day) return -1;
|
||
else if (lhs->day > rhs->day) return 1;
|
||
else return 0;
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
if (!lhs->julian) g_date_update_julian (lhs);
|
||
if (!rhs->julian) g_date_update_julian (rhs);
|
||
g_return_val_if_fail (lhs->julian, 0);
|
||
g_return_val_if_fail (rhs->julian, 0);
|
||
}
|
||
|
||
}
|
||
return 0; /* warnings */
|
||
}
|
||
|
||
/**
|
||
* g_date_to_struct_tm:
|
||
* @date: a #GDate to set the struct tm from
|
||
* @tm: (not nullable): struct tm to fill
|
||
*
|
||
* Fills in the date-related bits of a struct tm using the @date value.
|
||
* Initializes the non-date parts with something safe but meaningless.
|
||
*/
|
||
void
|
||
g_date_to_struct_tm (const GDate *d,
|
||
struct tm *tm)
|
||
{
|
||
GDateWeekday day;
|
||
|
||
g_return_if_fail (g_date_valid (d));
|
||
g_return_if_fail (tm != NULL);
|
||
|
||
if (!d->dmy)
|
||
g_date_update_dmy (d);
|
||
|
||
g_return_if_fail (d->dmy != 0);
|
||
|
||
/* zero all the irrelevant fields to be sure they're valid */
|
||
|
||
/* On Linux and maybe other systems, there are weird non-POSIX
|
||
* fields on the end of struct tm that choke strftime if they
|
||
* contain garbage. So we need to 0 the entire struct, not just the
|
||
* fields we know to exist.
|
||
*/
|
||
|
||
memset (tm, 0x0, sizeof (struct tm));
|
||
|
||
tm->tm_mday = d->day;
|
||
tm->tm_mon = d->month - 1; /* 0-11 goes in tm */
|
||
tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */
|
||
|
||
day = g_date_get_weekday (d);
|
||
if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */
|
||
|
||
tm->tm_wday = (int)day;
|
||
|
||
tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */
|
||
tm->tm_isdst = -1; /* -1 means "information not available" */
|
||
}
|
||
|
||
/**
|
||
* g_date_clamp:
|
||
* @date: a #GDate to clamp
|
||
* @min_date: minimum accepted value for @date
|
||
* @max_date: maximum accepted value for @date
|
||
*
|
||
* If @date is prior to @min_date, sets @date equal to @min_date.
|
||
* If @date falls after @max_date, sets @date equal to @max_date.
|
||
* Otherwise, @date is unchanged.
|
||
* Either of @min_date and @max_date may be %NULL.
|
||
* All non-%NULL dates must be valid.
|
||
*/
|
||
void
|
||
g_date_clamp (GDate *date,
|
||
const GDate *min_date,
|
||
const GDate *max_date)
|
||
{
|
||
g_return_if_fail (g_date_valid (date));
|
||
|
||
if (min_date != NULL)
|
||
g_return_if_fail (g_date_valid (min_date));
|
||
|
||
if (max_date != NULL)
|
||
g_return_if_fail (g_date_valid (max_date));
|
||
|
||
if (min_date != NULL && max_date != NULL)
|
||
g_return_if_fail (g_date_compare (min_date, max_date) <= 0);
|
||
|
||
if (min_date && g_date_compare (date, min_date) < 0)
|
||
*date = *min_date;
|
||
|
||
if (max_date && g_date_compare (max_date, date) < 0)
|
||
*date = *max_date;
|
||
}
|
||
|
||
/**
|
||
* g_date_order:
|
||
* @date1: the first date
|
||
* @date2: the second date
|
||
*
|
||
* Checks if @date1 is less than or equal to @date2,
|
||
* and swap the values if this is not the case.
|
||
*/
|
||
void
|
||
g_date_order (GDate *date1,
|
||
GDate *date2)
|
||
{
|
||
g_return_if_fail (g_date_valid (date1));
|
||
g_return_if_fail (g_date_valid (date2));
|
||
|
||
if (g_date_compare (date1, date2) > 0)
|
||
{
|
||
GDate tmp = *date1;
|
||
*date1 = *date2;
|
||
*date2 = tmp;
|
||
}
|
||
}
|
||
|
||
#ifdef G_OS_WIN32
|
||
static gboolean
|
||
append_month_name (GArray *result,
|
||
LCID lcid,
|
||
SYSTEMTIME *systemtime,
|
||
gboolean abbreviated,
|
||
gboolean alternative)
|
||
{
|
||
int n;
|
||
WORD base;
|
||
LPCWSTR lpFormat;
|
||
|
||
if (alternative)
|
||
{
|
||
base = abbreviated ? LOCALE_SABBREVMONTHNAME1 : LOCALE_SMONTHNAME1;
|
||
n = GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, NULL, 0);
|
||
if (n == 0)
|
||
return FALSE;
|
||
|
||
g_array_set_size (result, result->len + n);
|
||
if (GetLocaleInfoW (lcid, base + systemtime->wMonth - 1,
|
||
((wchar_t *) result->data) + result->len - n, n) != n)
|
||
return FALSE;
|
||
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
else
|
||
{
|
||
/* According to MSDN, this is the correct method to obtain
|
||
* the form of the month name used when formatting a full
|
||
* date; it must be a genitive case in some languages.
|
||
*
|
||
* (n == 0) indicates an error, whereas (n < 2) is something we’d never
|
||
* expect from the given format string, and would break the subsequent code.
|
||
*/
|
||
lpFormat = abbreviated ? L"ddMMM" : L"ddMMMM";
|
||
n = GetDateFormatW (lcid, 0, systemtime, lpFormat, NULL, 0);
|
||
if (n < 2)
|
||
return FALSE;
|
||
|
||
g_array_set_size (result, result->len + n);
|
||
if (GetDateFormatW (lcid, 0, systemtime, lpFormat,
|
||
((wchar_t *) result->data) + result->len - n, n) != n)
|
||
return FALSE;
|
||
|
||
/* We have obtained a day number as two digits and the month name.
|
||
* Now let's get rid of those two digits: overwrite them with the
|
||
* month name.
|
||
*/
|
||
memmove (((wchar_t *) result->data) + result->len - n,
|
||
((wchar_t *) result->data) + result->len - n + 2,
|
||
(n - 2) * sizeof (wchar_t));
|
||
g_array_set_size (result, result->len - 3);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static gsize
|
||
win32_strftime_helper (const GDate *d,
|
||
const gchar *format,
|
||
const struct tm *tm,
|
||
gchar *s,
|
||
gsize slen)
|
||
{
|
||
SYSTEMTIME systemtime;
|
||
TIME_ZONE_INFORMATION tzinfo;
|
||
LCID lcid;
|
||
int n, k;
|
||
GArray *result;
|
||
const gchar *p;
|
||
gunichar c, modifier;
|
||
const wchar_t digits[] = L"0123456789";
|
||
gchar *convbuf;
|
||
glong convlen = 0;
|
||
gsize retval;
|
||
|
||
systemtime.wYear = tm->tm_year + 1900;
|
||
systemtime.wMonth = tm->tm_mon + 1;
|
||
systemtime.wDayOfWeek = tm->tm_wday;
|
||
systemtime.wDay = tm->tm_mday;
|
||
systemtime.wHour = tm->tm_hour;
|
||
systemtime.wMinute = tm->tm_min;
|
||
systemtime.wSecond = tm->tm_sec;
|
||
systemtime.wMilliseconds = 0;
|
||
|
||
lcid = GetThreadLocale ();
|
||
result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2));
|
||
|
||
p = format;
|
||
while (*p)
|
||
{
|
||
c = g_utf8_get_char (p);
|
||
if (c == '%')
|
||
{
|
||
p = g_utf8_next_char (p);
|
||
if (!*p)
|
||
{
|
||
s[0] = '\0';
|
||
g_array_free (result, TRUE);
|
||
|
||
return 0;
|
||
}
|
||
|
||
modifier = '\0';
|
||
c = g_utf8_get_char (p);
|
||
if (c == 'E' || c == 'O')
|
||
{
|
||
/* "%OB", "%Ob", and "%Oh" are supported, ignore other modified
|
||
* conversion specifiers for now.
|
||
*/
|
||
modifier = c;
|
||
p = g_utf8_next_char (p);
|
||
if (!*p)
|
||
{
|
||
s[0] = '\0';
|
||
g_array_free (result, TRUE);
|
||
|
||
return 0;
|
||
}
|
||
|
||
c = g_utf8_get_char (p);
|
||
}
|
||
|
||
switch (c)
|
||
{
|
||
case 'a':
|
||
if (systemtime.wDayOfWeek == 0)
|
||
k = 6;
|
||
else
|
||
k = systemtime.wDayOfWeek - 1;
|
||
n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0);
|
||
g_array_set_size (result, result->len + n);
|
||
GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
break;
|
||
case 'A':
|
||
if (systemtime.wDayOfWeek == 0)
|
||
k = 6;
|
||
else
|
||
k = systemtime.wDayOfWeek - 1;
|
||
n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0);
|
||
g_array_set_size (result, result->len + n);
|
||
GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
break;
|
||
case 'b':
|
||
case 'h':
|
||
if (!append_month_name (result, lcid, &systemtime, TRUE, modifier == 'O'))
|
||
{
|
||
/* Ignore the error; this placeholder will be replaced with nothing */
|
||
}
|
||
break;
|
||
case 'B':
|
||
if (!append_month_name (result, lcid, &systemtime, FALSE, modifier == 'O'))
|
||
{
|
||
/* Ignore the error; this placeholder will be replaced with nothing */
|
||
}
|
||
break;
|
||
case 'c':
|
||
n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
|
||
if (n > 0)
|
||
{
|
||
g_array_set_size (result, result->len + n);
|
||
GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
g_array_append_vals (result, L" ", 1);
|
||
n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
|
||
if (n > 0)
|
||
{
|
||
g_array_set_size (result, result->len + n);
|
||
GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
break;
|
||
case 'C':
|
||
g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
|
||
g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1);
|
||
break;
|
||
case 'd':
|
||
g_array_append_vals (result, digits + systemtime.wDay/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wDay%10, 1);
|
||
break;
|
||
case 'D':
|
||
g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
|
||
g_array_append_vals (result, L"/", 1);
|
||
g_array_append_vals (result, digits + systemtime.wDay/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wDay%10, 1);
|
||
g_array_append_vals (result, L"/", 1);
|
||
g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wYear%10, 1);
|
||
break;
|
||
case 'e':
|
||
if (systemtime.wDay >= 10)
|
||
g_array_append_vals (result, digits + systemtime.wDay/10, 1);
|
||
else
|
||
g_array_append_vals (result, L" ", 1);
|
||
g_array_append_vals (result, digits + systemtime.wDay%10, 1);
|
||
break;
|
||
|
||
/* A GDate has no time fields, so for now we can
|
||
* hardcode all time conversions into zeros (or 12 for
|
||
* %I). The alternative code snippets in the #else
|
||
* branches are here ready to be taken into use when
|
||
* needed by a g_strftime() or g_date_and_time_format()
|
||
* or whatever.
|
||
*/
|
||
case 'H':
|
||
#if 1
|
||
g_array_append_vals (result, L"00", 2);
|
||
#else
|
||
g_array_append_vals (result, digits + systemtime.wHour/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wHour%10, 1);
|
||
#endif
|
||
break;
|
||
case 'I':
|
||
#if 1
|
||
g_array_append_vals (result, L"12", 2);
|
||
#else
|
||
if (systemtime.wHour == 0)
|
||
g_array_append_vals (result, L"12", 2);
|
||
else
|
||
{
|
||
g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
|
||
g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
|
||
}
|
||
#endif
|
||
break;
|
||
case 'j':
|
||
g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1);
|
||
g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1);
|
||
g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1);
|
||
break;
|
||
case 'm':
|
||
g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
|
||
break;
|
||
case 'M':
|
||
#if 1
|
||
g_array_append_vals (result, L"00", 2);
|
||
#else
|
||
g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
|
||
#endif
|
||
break;
|
||
case 'n':
|
||
g_array_append_vals (result, L"\n", 1);
|
||
break;
|
||
case 'p':
|
||
n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
|
||
if (n > 0)
|
||
{
|
||
g_array_set_size (result, result->len + n);
|
||
GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
break;
|
||
case 'r':
|
||
/* This is a rather odd format. Hard to say what to do.
|
||
* Let's always use the POSIX %I:%M:%S %p
|
||
*/
|
||
#if 1
|
||
g_array_append_vals (result, L"12:00:00", 8);
|
||
#else
|
||
if (systemtime.wHour == 0)
|
||
g_array_append_vals (result, L"12", 2);
|
||
else
|
||
{
|
||
g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
|
||
g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
|
||
}
|
||
g_array_append_vals (result, L":", 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
|
||
g_array_append_vals (result, L":", 1);
|
||
g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
|
||
g_array_append_vals (result, L" ", 1);
|
||
#endif
|
||
n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
|
||
if (n > 0)
|
||
{
|
||
g_array_set_size (result, result->len + n);
|
||
GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
break;
|
||
case 'R':
|
||
#if 1
|
||
g_array_append_vals (result, L"00:00", 5);
|
||
#else
|
||
g_array_append_vals (result, digits + systemtime.wHour/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wHour%10, 1);
|
||
g_array_append_vals (result, L":", 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
|
||
#endif
|
||
break;
|
||
case 'S':
|
||
#if 1
|
||
g_array_append_vals (result, L"00", 2);
|
||
#else
|
||
g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
|
||
#endif
|
||
break;
|
||
case 't':
|
||
g_array_append_vals (result, L"\t", 1);
|
||
break;
|
||
case 'T':
|
||
#if 1
|
||
g_array_append_vals (result, L"00:00:00", 8);
|
||
#else
|
||
g_array_append_vals (result, digits + systemtime.wHour/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wHour%10, 1);
|
||
g_array_append_vals (result, L":", 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
|
||
g_array_append_vals (result, L":", 1);
|
||
g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
|
||
#endif
|
||
break;
|
||
case 'u':
|
||
if (systemtime.wDayOfWeek == 0)
|
||
g_array_append_vals (result, L"7", 1);
|
||
else
|
||
g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
|
||
break;
|
||
case 'U':
|
||
n = g_date_get_sunday_week_of_year (d);
|
||
g_array_append_vals (result, digits + n/10, 1);
|
||
g_array_append_vals (result, digits + n%10, 1);
|
||
break;
|
||
case 'V':
|
||
n = g_date_get_iso8601_week_of_year (d);
|
||
g_array_append_vals (result, digits + n/10, 1);
|
||
g_array_append_vals (result, digits + n%10, 1);
|
||
break;
|
||
case 'w':
|
||
g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
|
||
break;
|
||
case 'W':
|
||
n = g_date_get_monday_week_of_year (d);
|
||
g_array_append_vals (result, digits + n/10, 1);
|
||
g_array_append_vals (result, digits + n%10, 1);
|
||
break;
|
||
case 'x':
|
||
n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
|
||
if (n > 0)
|
||
{
|
||
g_array_set_size (result, result->len + n);
|
||
GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
break;
|
||
case 'X':
|
||
n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
|
||
if (n > 0)
|
||
{
|
||
g_array_set_size (result, result->len + n);
|
||
GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
|
||
g_array_set_size (result, result->len - 1);
|
||
}
|
||
break;
|
||
case 'y':
|
||
g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wYear%10, 1);
|
||
break;
|
||
case 'Y':
|
||
g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
|
||
g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1);
|
||
g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
|
||
g_array_append_vals (result, digits + systemtime.wYear%10, 1);
|
||
break;
|
||
case 'Z':
|
||
n = GetTimeZoneInformation (&tzinfo);
|
||
if (n == TIME_ZONE_ID_UNKNOWN || n == TIME_ZONE_ID_STANDARD)
|
||
g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName));
|
||
else if (n == TIME_ZONE_ID_DAYLIGHT)
|
||
g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName));
|
||
break;
|
||
case '%':
|
||
g_array_append_vals (result, L"%", 1);
|
||
break;
|
||
}
|
||
}
|
||
else if (c <= 0xFFFF)
|
||
{
|
||
wchar_t wc = c;
|
||
g_array_append_vals (result, &wc, 1);
|
||
}
|
||
else
|
||
{
|
||
glong nwc;
|
||
wchar_t *ws;
|
||
|
||
ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL);
|
||
g_array_append_vals (result, ws, nwc);
|
||
g_free (ws);
|
||
}
|
||
p = g_utf8_next_char (p);
|
||
}
|
||
|
||
convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL);
|
||
g_array_free (result, TRUE);
|
||
|
||
if (!convbuf)
|
||
{
|
||
s[0] = '\0';
|
||
return 0;
|
||
}
|
||
|
||
g_assert (convlen >= 0);
|
||
if ((gsize) convlen >= slen)
|
||
{
|
||
/* Ensure only whole characters are copied into the buffer. */
|
||
gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
|
||
g_assert (end != NULL);
|
||
convlen = end - convbuf;
|
||
|
||
/* Return 0 because the buffer isn't large enough. */
|
||
retval = 0;
|
||
}
|
||
else
|
||
retval = convlen;
|
||
|
||
memcpy (s, convbuf, convlen);
|
||
s[convlen] = '\0';
|
||
g_free (convbuf);
|
||
|
||
return retval;
|
||
}
|
||
|
||
#endif
|
||
|
||
/**
|
||
* g_date_strftime:
|
||
* @s: destination buffer
|
||
* @slen: buffer size
|
||
* @format: format string
|
||
* @date: valid #GDate
|
||
*
|
||
* Generates a printed representation of the date, in a
|
||
* [locale][setlocale]-specific way.
|
||
* Works just like the platform's C library strftime() function,
|
||
* but only accepts date-related formats; time-related formats
|
||
* give undefined results. Date must be valid. Unlike strftime()
|
||
* (which uses the locale encoding), works on a UTF-8 format
|
||
* string and stores a UTF-8 result.
|
||
*
|
||
* This function does not provide any conversion specifiers in
|
||
* addition to those implemented by the platform's C library.
|
||
* For example, don't expect that using g_date_strftime() would
|
||
* make the \%F provided by the C99 strftime() work on Windows
|
||
* where the C library only complies to C89.
|
||
*
|
||
* Returns: number of characters written to the buffer, or 0 the buffer was too small
|
||
*/
|
||
#pragma GCC diagnostic push
|
||
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
|
||
|
||
gsize
|
||
g_date_strftime (gchar *s,
|
||
gsize slen,
|
||
const gchar *format,
|
||
const GDate *d)
|
||
{
|
||
struct tm tm;
|
||
#ifndef G_OS_WIN32
|
||
gsize locale_format_len = 0;
|
||
gchar *locale_format;
|
||
gsize tmplen;
|
||
gchar *tmpbuf;
|
||
gsize tmpbufsize;
|
||
gsize convlen = 0;
|
||
gchar *convbuf;
|
||
GError *error = NULL;
|
||
gsize retval;
|
||
#endif
|
||
|
||
g_return_val_if_fail (g_date_valid (d), 0);
|
||
g_return_val_if_fail (slen > 0, 0);
|
||
g_return_val_if_fail (format != NULL, 0);
|
||
g_return_val_if_fail (s != NULL, 0);
|
||
|
||
g_date_to_struct_tm (d, &tm);
|
||
|
||
#ifdef G_OS_WIN32
|
||
if (!g_utf8_validate (format, -1, NULL))
|
||
{
|
||
s[0] = '\0';
|
||
return 0;
|
||
}
|
||
return win32_strftime_helper (d, format, &tm, s, slen);
|
||
#else
|
||
|
||
locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error);
|
||
|
||
if (error)
|
||
{
|
||
g_warning (G_STRLOC "Error converting format to locale encoding: %s", error->message);
|
||
g_error_free (error);
|
||
|
||
s[0] = '\0';
|
||
return 0;
|
||
}
|
||
|
||
tmpbufsize = MAX (128, locale_format_len * 2);
|
||
while (TRUE)
|
||
{
|
||
tmpbuf = g_malloc (tmpbufsize);
|
||
|
||
/* Set the first byte to something other than '\0', to be able to
|
||
* recognize whether strftime actually failed or just returned "".
|
||
*/
|
||
tmpbuf[0] = '\1';
|
||
tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm);
|
||
|
||
if (tmplen == 0 && tmpbuf[0] != '\0')
|
||
{
|
||
g_free (tmpbuf);
|
||
tmpbufsize *= 2;
|
||
|
||
if (tmpbufsize > 65536)
|
||
{
|
||
g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up");
|
||
g_free (locale_format);
|
||
|
||
s[0] = '\0';
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
g_free (locale_format);
|
||
|
||
convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error);
|
||
g_free (tmpbuf);
|
||
|
||
if (error)
|
||
{
|
||
g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s", error->message);
|
||
g_error_free (error);
|
||
|
||
g_assert (convbuf == NULL);
|
||
|
||
s[0] = '\0';
|
||
return 0;
|
||
}
|
||
|
||
if (slen <= convlen)
|
||
{
|
||
/* Ensure only whole characters are copied into the buffer.
|
||
*/
|
||
gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
|
||
g_assert (end != NULL);
|
||
convlen = end - convbuf;
|
||
|
||
/* Return 0 because the buffer isn't large enough.
|
||
*/
|
||
retval = 0;
|
||
}
|
||
else
|
||
retval = convlen;
|
||
|
||
memcpy (s, convbuf, convlen);
|
||
s[convlen] = '\0';
|
||
g_free (convbuf);
|
||
|
||
return retval;
|
||
#endif
|
||
}
|
||
|
||
#pragma GCC diagnostic pop
|