/* misc.c - miscellaneous functions * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, * 2008, 2009, 2010 Free Software Foundation, Inc. * Copyright (C) 2014 Werner Koch * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #if defined(__linux__) && defined(__alpha__) && __GLIBC__ < 2 #include #include #endif #ifdef HAVE_SETRLIMIT #include #include #include #endif #ifdef ENABLE_SELINUX_HACKS #include #endif #ifdef HAVE_W32_SYSTEM #include #include #ifdef HAVE_WINSOCK2_H # define WIN32_LEAN_AND_MEAN 1 # include #endif #include #include #ifndef CSIDL_APPDATA #define CSIDL_APPDATA 0x001a #endif #ifndef CSIDL_LOCAL_APPDATA #define CSIDL_LOCAL_APPDATA 0x001c #endif #ifndef CSIDL_FLAG_CREATE #define CSIDL_FLAG_CREATE 0x8000 #endif #endif /*HAVE_W32_SYSTEM*/ #include "gpg.h" #ifdef HAVE_W32_SYSTEM # include "../common/status.h" #endif /*HAVE_W32_SYSTEM*/ #include "../common/util.h" #include "main.h" #include "photoid.h" #include "options.h" #include "call-agent.h" #include "../common/i18n.h" #include "../common/zb32.h" #ifdef ENABLE_SELINUX_HACKS /* A object and a global variable to keep track of files marked as secured. */ struct secured_file_item { struct secured_file_item *next; ino_t ino; dev_t dev; }; static struct secured_file_item *secured_files; #endif /*ENABLE_SELINUX_HACKS*/ /* For the sake of SELinux we want to restrict access through gpg to certain files we keep under our own control. This function registers such a file and is_secured_file may then be used to check whether a file has ben registered as secured. */ void register_secured_file (const char *fname) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf; /* Note that we stop immediately if something goes wrong here. */ if (stat (fname, &buf)) log_fatal (_("fstat of '%s' failed in %s: %s\n"), fname, "register_secured_file", strerror (errno)); /* log_debug ("registering '%s' i=%lu.%lu\n", fname, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sf=secured_files; sf; sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) return; /* Already registered. */ } sf = xmalloc (sizeof *sf); sf->ino = buf.st_ino; sf->dev = buf.st_dev; sf->next = secured_files; secured_files = sf; #else /*!ENABLE_SELINUX_HACKS*/ (void)fname; #endif /*!ENABLE_SELINUX_HACKS*/ } /* Remove a file registered as secure. */ void unregister_secured_file (const char *fname) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf, *sfprev; if (stat (fname, &buf)) { log_error (_("fstat of '%s' failed in %s: %s\n"), fname, "unregister_secured_file", strerror (errno)); return; } /* log_debug ("unregistering '%s' i=%lu.%lu\n", fname, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sfprev=NULL,sf=secured_files; sf; sfprev=sf, sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) { if (sfprev) sfprev->next = sf->next; else secured_files = sf->next; xfree (sf); return; } } #else /*!ENABLE_SELINUX_HACKS*/ (void)fname; #endif /*!ENABLE_SELINUX_HACKS*/ } /* Return true if FD is corresponds to a secured file. Using -1 for FS is allowed and will return false. */ int is_secured_file (int fd) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf; if (fd == -1) return 0; /* No file descriptor so it can't be secured either. */ /* Note that we print out a error here and claim that a file is secure if something went wrong. */ if (fstat (fd, &buf)) { log_error (_("fstat(%d) failed in %s: %s\n"), fd, "is_secured_file", strerror (errno)); return 1; } /* log_debug ("is_secured_file (%d) i=%lu.%lu\n", fd, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sf=secured_files; sf; sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) return 1; /* Yes. */ } #else /*!ENABLE_SELINUX_HACKS*/ (void)fd; #endif /*!ENABLE_SELINUX_HACKS*/ return 0; /* No. */ } /* Return true if FNAME is corresponds to a secured file. Using NULL, "" or "-" for FS is allowed and will return false. This function is used before creating a file, thus it won't fail if the file does not exist. */ int is_secured_filename (const char *fname) { #ifdef ENABLE_SELINUX_HACKS struct stat buf; struct secured_file_item *sf; if (iobuf_is_pipe_filename (fname) || !*fname) return 0; /* Note that we print out a error here and claim that a file is secure if something went wrong. */ if (stat (fname, &buf)) { if (errno == ENOENT || errno == EPERM || errno == EACCES) return 0; log_error (_("fstat of '%s' failed in %s: %s\n"), fname, "is_secured_filename", strerror (errno)); return 1; } /* log_debug ("is_secured_filename (%s) i=%lu.%lu\n", fname, */ /* (unsigned long)buf.st_dev, (unsigned long)buf.st_ino); */ for (sf=secured_files; sf; sf = sf->next) { if (sf->ino == buf.st_ino && sf->dev == buf.st_dev) return 1; /* Yes. */ } #else /*!ENABLE_SELINUX_HACKS*/ (void)fname; #endif /*!ENABLE_SELINUX_HACKS*/ return 0; /* No. */ } u16 checksum_u16( unsigned n ) { u16 a; a = (n >> 8) & 0xff; a += n & 0xff; return a; } u16 checksum( byte *p, unsigned n ) { u16 a; for(a=0; n; n-- ) a += *p++; return a; } u16 checksum_mpi (gcry_mpi_t a) { u16 csum; byte *buffer; size_t nbytes; if ( gcry_mpi_print (GCRYMPI_FMT_PGP, NULL, 0, &nbytes, a) ) BUG (); /* Fixme: For numbers not in secure memory we should use a stack * based buffer and only allocate a larger one if mpi_print returns * an error. */ buffer = (gcry_is_secure(a)? gcry_xmalloc_secure (nbytes) : gcry_xmalloc (nbytes)); if ( gcry_mpi_print (GCRYMPI_FMT_PGP, buffer, nbytes, NULL, a) ) BUG (); csum = checksum (buffer, nbytes); xfree (buffer); return csum; } void print_pubkey_algo_note (pubkey_algo_t algo) { if(algo >= 100 && algo <= 110) { static int warn=0; if(!warn) { warn=1; es_fflush (es_stdout); log_info (_("WARNING: using experimental public key algorithm %s\n"), openpgp_pk_algo_name (algo)); } } else if (algo == PUBKEY_ALGO_ELGAMAL) { es_fflush (es_stdout); log_info (_("WARNING: Elgamal sign+encrypt keys are deprecated\n")); } } void print_cipher_algo_note (cipher_algo_t algo) { if(algo >= 100 && algo <= 110) { static int warn=0; if(!warn) { warn=1; es_fflush (es_stdout); log_info (_("WARNING: using experimental cipher algorithm %s\n"), openpgp_cipher_algo_name (algo)); } } } void print_digest_algo_note (digest_algo_t algo) { const enum gcry_md_algos galgo = map_md_openpgp_to_gcry (algo); const struct weakhash *weak; if(algo >= 100 && algo <= 110) { static int warn=0; if(!warn) { warn=1; es_fflush (es_stdout); log_info (_("WARNING: using experimental digest algorithm %s\n"), gcry_md_algo_name (galgo)); } } else for (weak = opt.weak_digests; weak != NULL; weak = weak->next) if (weak->algo == galgo) { es_fflush (es_stdout); log_info (_("WARNING: digest algorithm %s is deprecated\n"), gcry_md_algo_name (galgo)); } } void print_digest_rejected_note (enum gcry_md_algos algo) { struct weakhash* weak; int show = 1; for (weak = opt.weak_digests; weak; weak = weak->next) if (weak->algo == algo) { if (weak->rejection_shown) show = 0; else weak->rejection_shown = 1; break; } if (show) { es_fflush (es_stdout); log_info (_("Note: signatures using the %s algorithm are rejected\n"), gcry_md_algo_name(algo)); } } void print_sha1_keysig_rejected_note (void) { static int shown; if (shown) return; shown = 1; es_fflush (es_stdout); log_info (_("Note: third-party key signatures using" " the %s algorithm are rejected\n"), gcry_md_algo_name (GCRY_MD_SHA1)); print_further_info ("use option \"%s\" to override", "--allow-weak-key-signatures"); } /* Print a message * "(reported error: %s)\n * in verbose mode to further explain an error. If the error code has * the value IGNORE_EC no message is printed. A message is also not * printed if ERR is 0. */ void print_reported_error (gpg_error_t err, gpg_err_code_t ignore_ec) { if (!opt.verbose) return; if (!gpg_err_code (err)) ; else if (gpg_err_code (err) == ignore_ec) ; else if (gpg_err_source (err) == GPG_ERR_SOURCE_DEFAULT) log_info (_("(reported error: %s)\n"), gpg_strerror (err)); else log_info (_("(reported error: %s <%s>)\n"), gpg_strerror (err), gpg_strsource (err)); } /* Print a message * "(further info: %s)\n * in verbose mode to further explain an error. That message is * intended to help debug a problem and should not be translated. */ void print_further_info (const char *format, ...) { va_list arg_ptr; if (!opt.verbose) return; log_info (_("(further info: ")); va_start (arg_ptr, format); log_logv (GPGRT_LOG_CONT, format, arg_ptr); va_end (arg_ptr); log_printf (")\n"); } /* Map OpenPGP algo numbers to those used by Libgcrypt. We need to do this for algorithms we implemented in Libgcrypt after they become part of OpenPGP. */ enum gcry_cipher_algos map_cipher_openpgp_to_gcry (cipher_algo_t algo) { switch (algo) { case CIPHER_ALGO_NONE: return GCRY_CIPHER_NONE; #ifdef GPG_USE_IDEA case CIPHER_ALGO_IDEA: return GCRY_CIPHER_IDEA; #else case CIPHER_ALGO_IDEA: return 0; #endif case CIPHER_ALGO_3DES: return GCRY_CIPHER_3DES; #ifdef GPG_USE_CAST5 case CIPHER_ALGO_CAST5: return GCRY_CIPHER_CAST5; #else case CIPHER_ALGO_CAST5: return 0; #endif #ifdef GPG_USE_BLOWFISH case CIPHER_ALGO_BLOWFISH: return GCRY_CIPHER_BLOWFISH; #else case CIPHER_ALGO_BLOWFISH: return 0; #endif #ifdef GPG_USE_AES128 case CIPHER_ALGO_AES: return GCRY_CIPHER_AES; #else case CIPHER_ALGO_AES: return 0; #endif #ifdef GPG_USE_AES192 case CIPHER_ALGO_AES192: return GCRY_CIPHER_AES192; #else case CIPHER_ALGO_AES192: return 0; #endif #ifdef GPG_USE_AES256 case CIPHER_ALGO_AES256: return GCRY_CIPHER_AES256; #else case CIPHER_ALGO_AES256: return 0; #endif #ifdef GPG_USE_TWOFISH case CIPHER_ALGO_TWOFISH: return GCRY_CIPHER_TWOFISH; #else case CIPHER_ALGO_TWOFISH: return 0; #endif #ifdef GPG_USE_CAMELLIA128 case CIPHER_ALGO_CAMELLIA128: return GCRY_CIPHER_CAMELLIA128; #else case CIPHER_ALGO_CAMELLIA128: return 0; #endif #ifdef GPG_USE_CAMELLIA192 case CIPHER_ALGO_CAMELLIA192: return GCRY_CIPHER_CAMELLIA192; #else case CIPHER_ALGO_CAMELLIA192: return 0; #endif #ifdef GPG_USE_CAMELLIA256 case CIPHER_ALGO_CAMELLIA256: return GCRY_CIPHER_CAMELLIA256; #else case CIPHER_ALGO_CAMELLIA256: return 0; #endif default: return 0; } } /* The inverse function of above. */ static cipher_algo_t map_cipher_gcry_to_openpgp (enum gcry_cipher_algos algo) { switch (algo) { case GCRY_CIPHER_NONE: return CIPHER_ALGO_NONE; case GCRY_CIPHER_IDEA: return CIPHER_ALGO_IDEA; case GCRY_CIPHER_3DES: return CIPHER_ALGO_3DES; case GCRY_CIPHER_CAST5: return CIPHER_ALGO_CAST5; case GCRY_CIPHER_BLOWFISH: return CIPHER_ALGO_BLOWFISH; case GCRY_CIPHER_AES: return CIPHER_ALGO_AES; case GCRY_CIPHER_AES192: return CIPHER_ALGO_AES192; case GCRY_CIPHER_AES256: return CIPHER_ALGO_AES256; case GCRY_CIPHER_TWOFISH: return CIPHER_ALGO_TWOFISH; case GCRY_CIPHER_CAMELLIA128: return CIPHER_ALGO_CAMELLIA128; case GCRY_CIPHER_CAMELLIA192: return CIPHER_ALGO_CAMELLIA192; case GCRY_CIPHER_CAMELLIA256: return CIPHER_ALGO_CAMELLIA256; default: return 0; } } /* Map Gcrypt public key algorithm numbers to those used by OpenPGP. FIXME: This mapping is used at only two places - we should get rid of it. */ pubkey_algo_t map_pk_gcry_to_openpgp (enum gcry_pk_algos algo) { switch (algo) { case GCRY_PK_EDDSA: return PUBKEY_ALGO_EDDSA; case GCRY_PK_ECDSA: return PUBKEY_ALGO_ECDSA; case GCRY_PK_ECDH: return PUBKEY_ALGO_ECDH; default: return algo < 110 ? (pubkey_algo_t)algo : 0; } } /* Return the block length of an OpenPGP cipher algorithm. */ int openpgp_cipher_blocklen (cipher_algo_t algo) { /* We use the numbers from OpenPGP to be sure that we get the right block length. This is so that the packet parsing code works even for unknown algorithms (for which we assume 8 due to tradition). NOTE: If you change the returned blocklen above 16, check the callers because they may use a fixed size buffer of that size. */ switch (algo) { case CIPHER_ALGO_AES: case CIPHER_ALGO_AES192: case CIPHER_ALGO_AES256: case CIPHER_ALGO_TWOFISH: case CIPHER_ALGO_CAMELLIA128: case CIPHER_ALGO_CAMELLIA192: case CIPHER_ALGO_CAMELLIA256: return 16; default: return 8; } } /**************** * Wrapper around the libgcrypt function with additional checks on * the OpenPGP contraints for the algo ID. */ int openpgp_cipher_test_algo (cipher_algo_t algo) { enum gcry_cipher_algos ga; ga = map_cipher_openpgp_to_gcry (algo); if (!ga) return gpg_error (GPG_ERR_CIPHER_ALGO); return gcry_cipher_test_algo (ga); } /* Map the OpenPGP cipher algorithm whose ID is contained in ALGORITHM to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char * openpgp_cipher_algo_name (cipher_algo_t algo) { switch (algo) { case CIPHER_ALGO_IDEA: return "IDEA"; case CIPHER_ALGO_3DES: return "3DES"; case CIPHER_ALGO_CAST5: return "CAST5"; case CIPHER_ALGO_BLOWFISH: return "BLOWFISH"; case CIPHER_ALGO_AES: return "AES"; case CIPHER_ALGO_AES192: return "AES192"; case CIPHER_ALGO_AES256: return "AES256"; case CIPHER_ALGO_TWOFISH: return "TWOFISH"; case CIPHER_ALGO_CAMELLIA128: return "CAMELLIA128"; case CIPHER_ALGO_CAMELLIA192: return "CAMELLIA192"; case CIPHER_ALGO_CAMELLIA256: return "CAMELLIA256"; case CIPHER_ALGO_NONE: default: return "?"; } } /* Return 0 if ALGO is a supported OpenPGP public key algorithm. */ int openpgp_pk_test_algo (pubkey_algo_t algo) { return openpgp_pk_test_algo2 (algo, 0); } /* Return 0 if ALGO is a supported OpenPGP public key algorithm and allows the usage USE. */ int openpgp_pk_test_algo2 (pubkey_algo_t algo, unsigned int use) { enum gcry_pk_algos ga = 0; size_t use_buf = use; switch (algo) { #ifdef GPG_USE_RSA case PUBKEY_ALGO_RSA: ga = GCRY_PK_RSA; break; case PUBKEY_ALGO_RSA_E: ga = GCRY_PK_RSA_E; break; case PUBKEY_ALGO_RSA_S: ga = GCRY_PK_RSA_S; break; #else case PUBKEY_ALGO_RSA: break; case PUBKEY_ALGO_RSA_E: break; case PUBKEY_ALGO_RSA_S: break; #endif case PUBKEY_ALGO_ELGAMAL_E: ga = GCRY_PK_ELG; break; case PUBKEY_ALGO_DSA: ga = GCRY_PK_DSA; break; #ifdef GPG_USE_ECDH case PUBKEY_ALGO_ECDH: ga = GCRY_PK_ECC; break; #else case PUBKEY_ALGO_ECDH: break; #endif #ifdef GPG_USE_ECDSA case PUBKEY_ALGO_ECDSA: ga = GCRY_PK_ECC; break; #else case PUBKEY_ALGO_ECDSA: break; #endif #ifdef GPG_USE_EDDSA case PUBKEY_ALGO_EDDSA: ga = GCRY_PK_ECC; break; #else case PUBKEY_ALGO_EDDSA: break; #endif case PUBKEY_ALGO_ELGAMAL: /* Dont't allow type 20 keys unless in rfc2440 mode. */ if (RFC2440) ga = GCRY_PK_ELG; break; default: break; } if (!ga) return gpg_error (GPG_ERR_PUBKEY_ALGO); /* Elgamal in OpenPGP used to support signing and Libgcrypt still * does. However, we removed the signing capability from gpg ages * ago. This function should reflect this so that errors are thrown * early and not only when we try to sign using Elgamal. */ if (ga == GCRY_PK_ELG && (use & (PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG))) return gpg_error (GPG_ERR_WRONG_PUBKEY_ALGO); /* Now check whether Libgcrypt has support for the algorithm. */ return gcry_pk_algo_info (ga, GCRYCTL_TEST_ALGO, NULL, &use_buf); } int openpgp_pk_algo_usage ( int algo ) { int use = 0; /* They are hardwired in gpg 1.0. */ switch ( algo ) { case PUBKEY_ALGO_RSA: use = (PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG | PUBKEY_USAGE_ENC | PUBKEY_USAGE_AUTH); break; case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_ECDH: use = PUBKEY_USAGE_ENC; break; case PUBKEY_ALGO_RSA_S: use = PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG; break; case PUBKEY_ALGO_ELGAMAL: if (RFC2440) use = PUBKEY_USAGE_ENC; break; case PUBKEY_ALGO_ELGAMAL_E: use = PUBKEY_USAGE_ENC; break; case PUBKEY_ALGO_DSA: use = PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG | PUBKEY_USAGE_AUTH; break; case PUBKEY_ALGO_ECDSA: case PUBKEY_ALGO_EDDSA: use = PUBKEY_USAGE_CERT | PUBKEY_USAGE_SIG | PUBKEY_USAGE_AUTH; default: break; } return use; } /* Map the OpenPGP pubkey algorithm whose ID is contained in ALGO to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char * openpgp_pk_algo_name (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return "RSA"; case PUBKEY_ALGO_ELGAMAL: case PUBKEY_ALGO_ELGAMAL_E: return "ELG"; case PUBKEY_ALGO_DSA: return "DSA"; case PUBKEY_ALGO_ECDH: return "ECDH"; case PUBKEY_ALGO_ECDSA: return "ECDSA"; case PUBKEY_ALGO_EDDSA: return "EDDSA"; default: return "?"; } } /* Explicit mapping of OpenPGP digest algos to Libgcrypt. */ /* FIXME: We do not yes use it everywhere. */ enum gcry_md_algos map_md_openpgp_to_gcry (digest_algo_t algo) { switch (algo) { #ifdef GPG_USE_MD5 case DIGEST_ALGO_MD5: return GCRY_MD_MD5; #else case DIGEST_ALGO_MD5: return 0; #endif case DIGEST_ALGO_SHA1: return GCRY_MD_SHA1; #ifdef GPG_USE_RMD160 case DIGEST_ALGO_RMD160: return GCRY_MD_RMD160; #else case DIGEST_ALGO_RMD160: return 0; #endif #ifdef GPG_USE_SHA224 case DIGEST_ALGO_SHA224: return GCRY_MD_SHA224; #else case DIGEST_ALGO_SHA224: return 0; #endif case DIGEST_ALGO_SHA256: return GCRY_MD_SHA256; #ifdef GPG_USE_SHA384 case DIGEST_ALGO_SHA384: return GCRY_MD_SHA384; #else case DIGEST_ALGO_SHA384: return 0; #endif case DIGEST_ALGO_SHA512: return GCRY_MD_SHA512; default: return 0; } } /* Return 0 if ALGO is suitable and implemented OpenPGP hash algorithm. */ int openpgp_md_test_algo (digest_algo_t algo) { enum gcry_md_algos ga; ga = map_md_openpgp_to_gcry (algo); if (!ga) return gpg_error (GPG_ERR_DIGEST_ALGO); return gcry_md_test_algo (ga); } /* Map the OpenPGP digest algorithm whose ID is contained in ALGO to a string representation of the algorithm name. For unknown algorithm IDs this function returns "?". */ const char * openpgp_md_algo_name (int algo) { switch (algo) { case DIGEST_ALGO_MD5: return "MD5"; case DIGEST_ALGO_SHA1: return "SHA1"; case DIGEST_ALGO_RMD160: return "RIPEMD160"; case DIGEST_ALGO_SHA256: return "SHA256"; case DIGEST_ALGO_SHA384: return "SHA384"; case DIGEST_ALGO_SHA512: return "SHA512"; case DIGEST_ALGO_SHA224: return "SHA224"; } return "?"; } static unsigned long get_signature_count (PKT_public_key *pk) { #ifdef ENABLE_CARD_SUPPORT struct agent_card_info_s info; (void)pk; if (!agent_scd_getattr ("SIG-COUNTER",&info)) return info.sig_counter; else return 0; #else (void)pk; return 0; #endif } /* Expand %-strings. Returns a string which must be xfreed. Returns NULL if the string cannot be expanded (too large). */ char * pct_expando(const char *string,struct expando_args *args) { const char *ch=string; int idx=0,maxlen=0,done=0; u32 pk_keyid[2]={0,0},sk_keyid[2]={0,0}; char *ret=NULL; if(args->pk) keyid_from_pk(args->pk,pk_keyid); if(args->pksk) keyid_from_pk (args->pksk, sk_keyid); /* This is used so that %k works in photoid command strings in --list-secret-keys (which of course has a sk, but no pk). */ if(!args->pk && args->pksk) keyid_from_pk (args->pksk, pk_keyid); while(*ch!='\0') { if(!done) { /* 8192 is way bigger than we'll need here */ if(maxlen>=8192) goto fail; maxlen+=1024; ret=xrealloc(ret,maxlen); } done=0; if(*ch=='%') { switch(*(ch+1)) { case 's': /* short key id */ if(idx+8namehash) { char *tmp = zb32_encode (args->namehash, 8*20); if (tmp) { if (idx + strlen (tmp) < maxlen) { strcpy (ret+idx, tmp); idx += strlen (tmp); } xfree (tmp); done = 1; } } break; case 'c': /* signature count from card, if any. */ if(idx+10pksk)); idx+=strlen(&ret[idx]); done=1; } break; case 'f': /* Fingerprint of key being signed */ case 'p': /* Fingerprint of the primary key making the signature. */ case 'g': /* Fingerprint of the key making the signature. */ { byte array[MAX_FINGERPRINT_LEN]; size_t len; int i; if ((*(ch+1))=='f' && args->pk) fingerprint_from_pk (args->pk, array, &len); else if ((*(ch+1))=='p' && args->pksk) { if(args->pksk->flags.primary) fingerprint_from_pk (args->pksk, array, &len); else if (args->pksk->main_keyid[0] || args->pksk->main_keyid[1]) { /* Not the primary key: Find the fingerprint of the primary key. */ PKT_public_key *pk= xmalloc_clear(sizeof(PKT_public_key)); if (!get_pubkey_fast (pk,args->pksk->main_keyid)) fingerprint_from_pk (pk, array, &len); else memset (array, 0, (len=MAX_FINGERPRINT_LEN)); free_public_key (pk); } else /* Oops: info about the primary key missing. */ memset(array,0,(len=MAX_FINGERPRINT_LEN)); } else if((*(ch+1))=='g' && args->pksk) fingerprint_from_pk (args->pksk, array, &len); else memset(array,0,(len=MAX_FINGERPRINT_LEN)); if(idx+(len*2)validity_info && idx+1validity_info; ret[idx]='\0'; done=1; } break; /* The text string types */ case 't': case 'T': case 'V': { const char *str=NULL; switch(*(ch+1)) { case 't': /* e.g. "jpg" */ str=image_type_to_string(args->imagetype,0); break; case 'T': /* e.g. "image/jpeg" */ str=image_type_to_string(args->imagetype,2); break; case 'V': /* e.g. "full", "expired", etc. */ str=args->validity_string; break; } if(str && idx+strlen(str)='A' && file[0]<='Z') || (file[0]>='a' && file[0]<='z')) && file[1]==':') #else || file[0]=='/' #endif ) return access(file,mode); else { /* At least as large as, but most often larger than we need. */ char *buffer=xmalloc(strlen(envpath)+1+strlen(file)+1); char *split,*item,*path=xstrdup(envpath); split=path; while((item=strsep(&split,PATHSEP_S))) { strcpy(buffer,item); strcat(buffer,"/"); strcat(buffer,file); ret=access(buffer,mode); if(ret==0) break; } xfree(path); xfree(buffer); } return ret; } /* Return the number of public key parameters as used by OpenPGP. */ int pubkey_get_npkey (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 2; case PUBKEY_ALGO_ELGAMAL_E: return 3; case PUBKEY_ALGO_DSA: return 4; case PUBKEY_ALGO_ECDH: return 3; case PUBKEY_ALGO_ECDSA: return 2; case PUBKEY_ALGO_ELGAMAL: return 3; case PUBKEY_ALGO_EDDSA: return 2; default: return 0; } } /* Return the number of secret key parameters as used by OpenPGP. */ int pubkey_get_nskey (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 6; case PUBKEY_ALGO_ELGAMAL_E: return 4; case PUBKEY_ALGO_DSA: return 5; case PUBKEY_ALGO_ECDH: return 4; case PUBKEY_ALGO_ECDSA: return 3; case PUBKEY_ALGO_ELGAMAL: return 4; case PUBKEY_ALGO_EDDSA: return 3; default: return 0; } } /* Temporary helper. */ int pubkey_get_nsig (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 1; case PUBKEY_ALGO_ELGAMAL_E: return 0; case PUBKEY_ALGO_DSA: return 2; case PUBKEY_ALGO_ECDH: return 0; case PUBKEY_ALGO_ECDSA: return 2; case PUBKEY_ALGO_ELGAMAL: return 2; case PUBKEY_ALGO_EDDSA: return 2; default: return 0; } } /* Temporary helper. */ int pubkey_get_nenc (pubkey_algo_t algo) { switch (algo) { case PUBKEY_ALGO_RSA: case PUBKEY_ALGO_RSA_E: case PUBKEY_ALGO_RSA_S: return 1; case PUBKEY_ALGO_ELGAMAL_E: return 2; case PUBKEY_ALGO_DSA: return 0; case PUBKEY_ALGO_ECDH: return 2; case PUBKEY_ALGO_ECDSA: return 0; case PUBKEY_ALGO_ELGAMAL: return 2; case PUBKEY_ALGO_EDDSA: return 0; default: return 0; } } /* Temporary helper. */ unsigned int pubkey_nbits( int algo, gcry_mpi_t *key ) { int rc, nbits; gcry_sexp_t sexp; if (algo == PUBKEY_ALGO_DSA && key[0] && key[1] && key[2] && key[3]) { rc = gcry_sexp_build (&sexp, NULL, "(public-key(dsa(p%m)(q%m)(g%m)(y%m)))", key[0], key[1], key[2], key[3] ); } else if ((algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E) && key[0] && key[1] && key[2]) { rc = gcry_sexp_build (&sexp, NULL, "(public-key(elg(p%m)(g%m)(y%m)))", key[0], key[1], key[2] ); } else if (is_RSA (algo) && key[0] && key[1]) { rc = gcry_sexp_build (&sexp, NULL, "(public-key(rsa(n%m)(e%m)))", key[0], key[1] ); } else if ((algo == PUBKEY_ALGO_ECDSA || algo == PUBKEY_ALGO_ECDH || algo == PUBKEY_ALGO_EDDSA) && key[0] && key[1]) { char *curve = openpgp_oid_to_str (key[0]); if (!curve) rc = gpg_error_from_syserror (); else { rc = gcry_sexp_build (&sexp, NULL, "(public-key(ecc(curve%s)(q%m)))", curve, key[1]); xfree (curve); } } else return 0; if (rc) BUG (); nbits = gcry_pk_get_nbits (sexp); gcry_sexp_release (sexp); return nbits; } int mpi_print (estream_t fp, gcry_mpi_t a, int mode) { int n = 0; size_t nwritten; if (!a) return es_fprintf (fp, "[MPI_NULL]"); if (!mode) { unsigned int n1; n1 = gcry_mpi_get_nbits(a); n += es_fprintf (fp, "[%u bits]", n1); } else if (gcry_mpi_get_flag (a, GCRYMPI_FLAG_OPAQUE)) { unsigned int nbits; unsigned char *p = gcry_mpi_get_opaque (a, &nbits); if (!p) n += es_fprintf (fp, "[invalid opaque value]"); else { if (!es_write_hexstring (fp, p, (nbits + 7)/8, 0, &nwritten)) n += nwritten; } } else { unsigned char *buffer; size_t buflen; if (gcry_mpi_aprint (GCRYMPI_FMT_USG, &buffer, &buflen, a)) BUG (); if (!es_write_hexstring (fp, buffer, buflen, 0, &nwritten)) n += nwritten; gcry_free (buffer); } return n; } /* pkey[1] or skey[1] is Q for ECDSA, which is an uncompressed point, i.e. 04 */ unsigned int ecdsa_qbits_from_Q (unsigned int qbits) { if ((qbits%8) > 3) { log_error (_("ECDSA public key is expected to be in SEC encoding " "multiple of 8 bits\n")); return 0; } qbits -= qbits%8; qbits /= 2; return qbits; } /* Ignore signatures and certifications made over certain digest * algorithms by default, MD5 is considered weak. This allows users * to deprecate support for other algorithms as well. */ void additional_weak_digest (const char* digestname) { struct weakhash *weak = NULL; const enum gcry_md_algos algo = string_to_digest_algo(digestname); if (algo == GCRY_MD_NONE) { log_error (_("unknown weak digest '%s'\n"), digestname); return; } /* Check to ensure it's not already present. */ for (weak = opt.weak_digests; weak; weak = weak->next) if (algo == weak->algo) return; /* Add it to the head of the list. */ weak = xmalloc(sizeof(*weak)); weak->algo = algo; weak->rejection_shown = 0; weak->next = opt.weak_digests; opt.weak_digests = weak; }