/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M M AAA TTTTT RRRR IIIII X X % % MM MM A A T R R I X X % % M M M AAAAA T RRRR I X % % M M A A T R R I X X % % M M A A T R R IIIII X X % % % % % % MagickCore Matrix Methods % % % % Software Design % % Cristy % % August 2007 % % % % % % Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "magick/studio.h" #include "magick/blob.h" #include "magick/blob-private.h" #include "magick/exception.h" #include "magick/exception-private.h" #include "magick/image-private.h" #include "magick/matrix.h" #include "magick/memory_.h" #include "magick/pixel-private.h" #include "magick/resource_.h" #include "magick/semaphore.h" #include "magick/thread-private.h" #include "magick/utility.h" /* Typedef declaration. */ struct _MatrixInfo { CacheType type; size_t columns, rows, stride; MagickSizeType length; MagickBooleanType mapped, synchronize; char path[MaxTextExtent]; int file; void *elements; SemaphoreInfo *semaphore; size_t signature; }; /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e M a t r i x I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireMatrixInfo() allocates the ImageInfo structure. % % The format of the AcquireMatrixInfo method is: % % MatrixInfo *AcquireMatrixInfo(const size_t columns,const size_t rows, % const size_t stride,ExceptionInfo *exception) % % A description of each parameter follows: % % o columns: the matrix columns. % % o rows: the matrix rows. % % o stride: the matrix stride. % % o exception: return any errors or warnings in this structure. % */ #if defined(SIGBUS) static void MatrixSignalHandler(int status) { ThrowFatalException(CacheFatalError,"UnableToExtendMatrixCache"); } #endif static inline MagickOffsetType WriteMatrixElements( const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset, const MagickSizeType length,const unsigned char *magick_restrict buffer) { MagickOffsetType i; ssize_t count; #if !defined(MAGICKCORE_HAVE_PWRITE) LockSemaphoreInfo(matrix_info->semaphore); if (lseek(matrix_info->file,offset,SEEK_SET) < 0) { UnlockSemaphoreInfo(matrix_info->semaphore); return((MagickOffsetType) -1); } #endif count=0; for (i=0; i < (MagickOffsetType) length; i+=count) { #if !defined(MAGICKCORE_HAVE_PWRITE) count=write(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, (MagickSizeType) MAGICK_SSIZE_MAX)); #else count=pwrite(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, (MagickSizeType) MAGICK_SSIZE_MAX),(off_t) (offset+i)); #endif if (count <= 0) { count=0; if (errno != EINTR) break; } } #if !defined(MAGICKCORE_HAVE_PWRITE) UnlockSemaphoreInfo(matrix_info->semaphore); #endif return(i); } static MagickBooleanType SetMatrixExtent( MatrixInfo *magick_restrict matrix_info,MagickSizeType length) { MagickOffsetType count, extent, offset; if (length != (MagickSizeType) ((MagickOffsetType) length)) return(MagickFalse); offset=(MagickOffsetType) lseek(matrix_info->file,0,SEEK_END); if (offset < 0) return(MagickFalse); if ((MagickSizeType) offset >= length) return(MagickTrue); extent=(MagickOffsetType) length-1; count=WriteMatrixElements(matrix_info,extent,1,(const unsigned char *) ""); #if defined(MAGICKCORE_HAVE_POSIX_FALLOCATE) if (matrix_info->synchronize != MagickFalse) (void) posix_fallocate(matrix_info->file,offset+1,extent-offset); #endif #if defined(SIGBUS) (void) signal(SIGBUS,MatrixSignalHandler); #endif return(count != (MagickOffsetType) 1 ? MagickFalse : MagickTrue); } MagickExport MatrixInfo *AcquireMatrixInfo(const size_t columns, const size_t rows,const size_t stride,ExceptionInfo *exception) { char *synchronize; MagickBooleanType status; MatrixInfo *matrix_info; matrix_info=(MatrixInfo *) AcquireMagickMemory(sizeof(*matrix_info)); if (matrix_info == (MatrixInfo *) NULL) return((MatrixInfo *) NULL); (void) memset(matrix_info,0,sizeof(*matrix_info)); matrix_info->signature=MagickCoreSignature; matrix_info->columns=columns; matrix_info->rows=rows; matrix_info->stride=stride; matrix_info->semaphore=AllocateSemaphoreInfo(); synchronize=GetEnvironmentValue("MAGICK_SYNCHRONIZE"); if (synchronize != (const char *) NULL) { matrix_info->synchronize=IsStringTrue(synchronize); synchronize=DestroyString(synchronize); } matrix_info->length=(MagickSizeType) columns*rows*stride; if (matrix_info->columns != (size_t) (matrix_info->length/rows/stride)) { (void) ThrowMagickException(exception,GetMagickModule(),CacheError, "CacheResourcesExhausted","`%s'","matrix cache"); return(DestroyMatrixInfo(matrix_info)); } matrix_info->type=MemoryCache; status=AcquireMagickResource(AreaResource,matrix_info->length); if ((status != MagickFalse) && (matrix_info->length == (MagickSizeType) ((size_t) matrix_info->length))) { status=AcquireMagickResource(MemoryResource,matrix_info->length); if (status != MagickFalse) { matrix_info->mapped=MagickFalse; matrix_info->elements=AcquireMagickMemory((size_t) matrix_info->length); if (matrix_info->elements == NULL) { matrix_info->mapped=MagickTrue; matrix_info->elements=MapBlob(-1,IOMode,0,(size_t) matrix_info->length); } if (matrix_info->elements == (unsigned short *) NULL) RelinquishMagickResource(MemoryResource,matrix_info->length); } } matrix_info->file=(-1); if (matrix_info->elements == (unsigned short *) NULL) { status=AcquireMagickResource(DiskResource,matrix_info->length); if (status == MagickFalse) { (void) ThrowMagickException(exception,GetMagickModule(),CacheError, "CacheResourcesExhausted","`%s'","matrix cache"); return(DestroyMatrixInfo(matrix_info)); } matrix_info->type=DiskCache; matrix_info->file=AcquireUniqueFileResource(matrix_info->path); if (matrix_info->file == -1) return(DestroyMatrixInfo(matrix_info)); status=AcquireMagickResource(MapResource,matrix_info->length); if (status != MagickFalse) { status=SetMatrixExtent(matrix_info,matrix_info->length); if (status != MagickFalse) matrix_info->elements=(void *) MapBlob(matrix_info->file,IOMode,0, (size_t) matrix_info->length); if (matrix_info->elements != NULL) matrix_info->type=MapCache; else RelinquishMagickResource(MapResource,matrix_info->length); } } return(matrix_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A c q u i r e M a g i c k M a t r i x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireMagickMatrix() allocates and returns a matrix in the form of an % array of pointers to an array of doubles, with all values pre-set to zero. % % This used to generate the two dimensional matrix, and vectors required % for the GaussJordanElimination() method below, solving some system of % simultanious equations. % % The format of the AcquireMagickMatrix method is: % % double **AcquireMagickMatrix(const size_t number_rows, % const size_t size) % % A description of each parameter follows: % % o number_rows: the number pointers for the array of pointers % (first dimension). % % o size: the size of the array of doubles each pointer points to % (second dimension). % */ MagickExport double **AcquireMagickMatrix(const size_t number_rows, const size_t size) { double **matrix; ssize_t i, j; matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix)); if (matrix == (double **) NULL) return((double **) NULL); for (i=0; i < (ssize_t) number_rows; i++) { matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i])); if (matrix[i] == (double *) NULL) { for (j=0; j < i; j++) matrix[j]=(double *) RelinquishMagickMemory(matrix[j]); matrix=(double **) RelinquishMagickMemory(matrix); return((double **) NULL); } for (j=0; j < (ssize_t) size; j++) matrix[i][j]=0.0; } return(matrix); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s t r o y M a t r i x I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyMatrixInfo() dereferences a matrix, deallocating memory associated % with the matrix. % % The format of the DestroyImage method is: % % MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info) % % A description of each parameter follows: % % o matrix_info: the matrix. % */ MagickExport MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info) { assert(matrix_info != (MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); LockSemaphoreInfo(matrix_info->semaphore); switch (matrix_info->type) { case MemoryCache: { if (matrix_info->mapped == MagickFalse) matrix_info->elements=RelinquishMagickMemory(matrix_info->elements); else { (void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length); matrix_info->elements=(unsigned short *) NULL; } RelinquishMagickResource(MemoryResource,matrix_info->length); break; } case MapCache: { (void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length); matrix_info->elements=NULL; RelinquishMagickResource(MapResource,matrix_info->length); } case DiskCache: { if (matrix_info->file != -1) (void) close(matrix_info->file); (void) RelinquishUniqueFileResource(matrix_info->path); RelinquishMagickResource(DiskResource,matrix_info->length); break; } default: break; } UnlockSemaphoreInfo(matrix_info->semaphore); DestroySemaphoreInfo(&matrix_info->semaphore); return((MatrixInfo *) RelinquishMagickMemory(matrix_info)); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G a u s s J o r d a n E l i m i n a t i o n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GaussJordanElimination() returns a matrix in reduced row echelon form, % while simultaneously reducing and thus solving the augumented results % matrix. % % See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination % % The format of the GaussJordanElimination method is: % % MagickBooleanType GaussJordanElimination(double **matrix, % double **vectors,const size_t rank,const size_t number_vectors) % % A description of each parameter follows: % % o matrix: the matrix to be reduced, as an 'array of row pointers'. % % o vectors: the additional matrix argumenting the matrix for row reduction. % Producing an 'array of column vectors'. % % o rank: The size of the matrix (both rows and columns). Also represents % the number terms that need to be solved. % % o number_vectors: Number of vectors columns, argumenting the above matrix. % Usually 1, but can be more for more complex equation solving. % % Note that the 'matrix' is given as a 'array of row pointers' of rank size. % That is values can be assigned as matrix[row][column] where 'row' is % typically the equation, and 'column' is the term of the equation. % That is the matrix is in the form of a 'row first array'. % % However 'vectors' is a 'array of column pointers' which can have any number % of columns, with each column array the same 'rank' size as 'matrix'. % % This allows for simpler handling of the results, especially is only one % column 'vector' is all that is required to produce the desired solution. % % For example, the 'vectors' can consist of a pointer to a simple array of % doubles. when only one set of simultanious equations is to be solved from % the given set of coefficient weighted terms. % % double **matrix = AcquireMagickMatrix(8UL,8UL); % double coefficents[8]; % ... % GaussJordanElimination(matrix, &coefficents, 8UL, 1UL); % % However by specifing more 'columns' (as an 'array of vector columns', you % can use this function to solve a set of 'separable' equations. % % For example a distortion function where u = U(x,y) v = V(x,y) % And the functions U() and V() have separate coefficents, but are being % generated from a common x,y->u,v data set. % % Another example is generation of a color gradient from a set of colors at % specific coordients, such as a list x,y -> r,g,b,a. % % You can also use the 'vectors' to generate an inverse of the given 'matrix' % though as a 'column first array' rather than a 'row first array'. For % details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination % */ MagickExport MagickBooleanType GaussJordanElimination(double **matrix, double **vectors,const size_t rank,const size_t number_vectors) { #define GaussJordanSwap(x,y) \ { \ if ((x) != (y)) \ { \ (x)+=(y); \ (y)=(x)-(y); \ (x)=(x)-(y); \ } \ } double max, scale; ssize_t i, j, k; ssize_t column, *columns, *pivots, row, *rows; columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns)); rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows)); pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots)); if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) || (pivots == (ssize_t *) NULL)) { if (pivots != (ssize_t *) NULL) pivots=(ssize_t *) RelinquishMagickMemory(pivots); if (columns != (ssize_t *) NULL) columns=(ssize_t *) RelinquishMagickMemory(columns); if (rows != (ssize_t *) NULL) rows=(ssize_t *) RelinquishMagickMemory(rows); return(MagickFalse); } (void) memset(columns,0,rank*sizeof(*columns)); (void) memset(rows,0,rank*sizeof(*rows)); (void) memset(pivots,0,rank*sizeof(*pivots)); column=0; row=0; for (i=0; i < (ssize_t) rank; i++) { max=0.0; for (j=0; j < (ssize_t) rank; j++) if (pivots[j] != 1) { for (k=0; k < (ssize_t) rank; k++) if (pivots[k] != 0) { if (pivots[k] > 1) return(MagickFalse); } else if (fabs(matrix[j][k]) >= max) { max=fabs(matrix[j][k]); row=j; column=k; } } pivots[column]++; if (row != column) { for (k=0; k < (ssize_t) rank; k++) GaussJordanSwap(matrix[row][k],matrix[column][k]); for (k=0; k < (ssize_t) number_vectors; k++) GaussJordanSwap(vectors[k][row],vectors[k][column]); } rows[i]=row; columns[i]=column; if (matrix[column][column] == 0.0) return(MagickFalse); /* sigularity */ scale=PerceptibleReciprocal(matrix[column][column]); matrix[column][column]=1.0; for (j=0; j < (ssize_t) rank; j++) matrix[column][j]*=scale; for (j=0; j < (ssize_t) number_vectors; j++) vectors[j][column]*=scale; for (j=0; j < (ssize_t) rank; j++) if (j != column) { scale=matrix[j][column]; matrix[j][column]=0.0; for (k=0; k < (ssize_t) rank; k++) matrix[j][k]-=scale*matrix[column][k]; for (k=0; k < (ssize_t) number_vectors; k++) vectors[k][j]-=scale*vectors[k][column]; } } for (j=(ssize_t) rank-1; j >= 0; j--) if (columns[j] != rows[j]) for (i=0; i < (ssize_t) rank; i++) GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]); pivots=(ssize_t *) RelinquishMagickMemory(pivots); rows=(ssize_t *) RelinquishMagickMemory(rows); columns=(ssize_t *) RelinquishMagickMemory(columns); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t M a t r i x C o l u m n s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetMatrixColumns() returns the number of columns in the matrix. % % The format of the GetMatrixColumns method is: % % size_t GetMatrixColumns(const MatrixInfo *matrix_info) % % A description of each parameter follows: % % o matrix_info: the matrix. % */ MagickExport size_t GetMatrixColumns(const MatrixInfo *matrix_info) { assert(matrix_info != (MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); return(matrix_info->columns); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t M a t r i x E l e m e n t % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetMatrixElement() returns the specifed element in the matrix. % % The format of the GetMatrixElement method is: % % MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info, % const ssize_t x,const ssize_t y,void *value) % % A description of each parameter follows: % % o matrix_info: the matrix columns. % % o x: the matrix x-offset. % % o y: the matrix y-offset. % % o value: return the matrix element in this buffer. % */ static inline ssize_t EdgeX(const ssize_t x,const size_t columns) { if (x < 0L) return(0L); if (x >= (ssize_t) columns) return((ssize_t) (columns-1)); return(x); } static inline ssize_t EdgeY(const ssize_t y,const size_t rows) { if (y < 0L) return(0L); if (y >= (ssize_t) rows) return((ssize_t) (rows-1)); return(y); } static inline MagickOffsetType ReadMatrixElements( const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset, const MagickSizeType length,unsigned char *magick_restrict buffer) { MagickOffsetType i; ssize_t count; #if !defined(MAGICKCORE_HAVE_PREAD) LockSemaphoreInfo(matrix_info->semaphore); if (lseek(matrix_info->file,offset,SEEK_SET) < 0) { UnlockSemaphoreInfo(matrix_info->semaphore); return((MagickOffsetType) -1); } #endif count=0; for (i=0; i < (MagickOffsetType) length; i+=count) { #if !defined(MAGICKCORE_HAVE_PREAD) count=read(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, (MagickSizeType) MAGICK_SSIZE_MAX)); #else count=pread(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, (MagickSizeType) MAGICK_SSIZE_MAX),(off_t) (offset+i)); #endif if (count <= 0) { count=0; if (errno != EINTR) break; } } #if !defined(MAGICKCORE_HAVE_PREAD) UnlockSemaphoreInfo(matrix_info->semaphore); #endif return(i); } MagickExport MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info, const ssize_t x,const ssize_t y,void *value) { MagickOffsetType count, i; assert(matrix_info != (const MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); i=(MagickOffsetType) EdgeY(y,matrix_info->rows)*matrix_info->columns+ EdgeX(x,matrix_info->columns); if (matrix_info->type != DiskCache) { (void) memcpy(value,(unsigned char *) matrix_info->elements+i* matrix_info->stride,matrix_info->stride); return(MagickTrue); } count=ReadMatrixElements(matrix_info,i*matrix_info->stride, matrix_info->stride,(unsigned char *) value); if (count != (MagickOffsetType) matrix_info->stride) return(MagickFalse); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t M a t r i x R o w s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetMatrixRows() returns the number of rows in the matrix. % % The format of the GetMatrixRows method is: % % size_t GetMatrixRows(const MatrixInfo *matrix_info) % % A description of each parameter follows: % % o matrix_info: the matrix. % */ MagickExport size_t GetMatrixRows(const MatrixInfo *matrix_info) { assert(matrix_info != (const MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); return(matrix_info->rows); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % L e a s t S q u a r e s A d d T e r m s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % LeastSquaresAddTerms() adds one set of terms and associate results to the % given matrix and vectors for solving using least-squares function fitting. % % The format of the AcquireMagickMatrix method is: % % void LeastSquaresAddTerms(double **matrix,double **vectors, % const double *terms,const double *results,const size_t rank, % const size_t number_vectors); % % A description of each parameter follows: % % o matrix: the square matrix to add given terms/results to. % % o vectors: the result vectors to add terms/results to. % % o terms: the pre-calculated terms (without the unknown coefficent % weights) that forms the equation being added. % % o results: the result(s) that should be generated from the given terms % weighted by the yet-to-be-solved coefficents. % % o rank: the rank or size of the dimensions of the square matrix. % Also the length of vectors, and number of terms being added. % % o number_vectors: Number of result vectors, and number or results being % added. Also represents the number of separable systems of equations % that is being solved. % % Example of use... % % 2 dimensional Affine Equations (which are separable) % c0*x + c2*y + c4*1 => u % c1*x + c3*y + c5*1 => v % % double **matrix = AcquireMagickMatrix(3UL,3UL); % double **vectors = AcquireMagickMatrix(2UL,3UL); % double terms[3], results[2]; % ... % for each given x,y -> u,v % terms[0] = x; % terms[1] = y; % terms[2] = 1; % results[0] = u; % results[1] = v; % LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL); % ... % if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) { % c0 = vectors[0][0]; % c2 = vectors[0][1]; % c4 = vectors[0][2]; % c1 = vectors[1][0]; % c3 = vectors[1][1]; % c5 = vectors[1][2]; % } % else % printf("Matrix unsolvable\n); % RelinquishMagickMatrix(matrix,3UL); % RelinquishMagickMatrix(vectors,2UL); % */ MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors, const double *terms,const double *results,const size_t rank, const size_t number_vectors) { ssize_t i, j; for (j=0; j < (ssize_t) rank; j++) { for (i=0; i < (ssize_t) rank; i++) matrix[i][j]+=terms[i]*terms[j]; for (i=0; i < (ssize_t) number_vectors; i++) vectors[i][j]+=results[i]*terms[j]; } } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M a t r i x T o I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MatrixToImage() returns a matrix as an image. The matrix elements must be % of type double otherwise nonsense is returned. % % The format of the MatrixToImage method is: % % Image *MatrixToImage(const MatrixInfo *matrix_info, % ExceptionInfo *exception) % % A description of each parameter follows: % % o matrix_info: the matrix. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *MatrixToImage(const MatrixInfo *matrix_info, ExceptionInfo *exception) { CacheView *image_view; double max_value, min_value, scale_factor, value; Image *image; MagickBooleanType status; ssize_t y; assert(matrix_info != (const MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); if (matrix_info->stride < sizeof(double)) return((Image *) NULL); /* Determine range of matrix. */ (void) GetMatrixElement(matrix_info,0,0,&value); min_value=value; max_value=value; for (y=0; y < (ssize_t) matrix_info->rows; y++) { ssize_t x; for (x=0; x < (ssize_t) matrix_info->columns; x++) { if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse) continue; if (value < min_value) min_value=value; else if (value > max_value) max_value=value; } } if ((min_value == 0.0) && (max_value == 0.0)) scale_factor=0; else if (min_value == max_value) { scale_factor=(double) QuantumRange/min_value; min_value=0; } else scale_factor=(double) QuantumRange/(max_value-min_value); /* Convert matrix to image. */ image=AcquireImage((ImageInfo *) NULL); image->columns=matrix_info->columns; image->rows=matrix_info->rows; image->colorspace=GRAYColorspace; status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { double value; PixelPacket *q; ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (PixelPacket *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse) continue; value=scale_factor*(value-min_value); q->red=ClampToQuantum(value); q->green=q->red; q->blue=q->red; q++; } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); if (status == MagickFalse) image=DestroyImage(image); return(image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % N u l l M a t r i x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % NullMatrix() sets all elements of the matrix to zero. % % The format of the memset method is: % % MagickBooleanType *NullMatrix(MatrixInfo *matrix_info) % % A description of each parameter follows: % % o matrix_info: the matrix. % */ MagickExport MagickBooleanType NullMatrix(MatrixInfo *matrix_info) { ssize_t x; ssize_t count, y; unsigned char value; assert(matrix_info != (const MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); if (matrix_info->type != DiskCache) { (void) memset(matrix_info->elements,0,(size_t) matrix_info->length); return(MagickTrue); } value=0; (void) lseek(matrix_info->file,0,SEEK_SET); for (y=0; y < (ssize_t) matrix_info->rows; y++) { for (x=0; x < (ssize_t) matrix_info->length; x++) { count=write(matrix_info->file,&value,sizeof(value)); if (count != (ssize_t) sizeof(value)) break; } if (x < (ssize_t) matrix_info->length) break; } return(y < (ssize_t) matrix_info->rows ? MagickFalse : MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % R e l i n q u i s h M a g i c k M a t r i x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RelinquishMagickMatrix() frees the previously acquired matrix (array of % pointers to arrays of doubles). % % The format of the RelinquishMagickMatrix method is: % % double **RelinquishMagickMatrix(double **matrix, % const size_t number_rows) % % A description of each parameter follows: % % o matrix: the matrix to relinquish % % o number_rows: the first dimension of the acquired matrix (number of % pointers) % */ MagickExport double **RelinquishMagickMatrix(double **matrix, const size_t number_rows) { ssize_t i; if (matrix == (double **) NULL ) return(matrix); for (i=0; i < (ssize_t) number_rows; i++) matrix[i]=(double *) RelinquishMagickMemory(matrix[i]); matrix=(double **) RelinquishMagickMemory(matrix); return(matrix); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t M a t r i x E l e m e n t % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetMatrixElement() sets the specifed element in the matrix. % % The format of the SetMatrixElement method is: % % MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info, % const ssize_t x,const ssize_t y,void *value) % % A description of each parameter follows: % % o matrix_info: the matrix columns. % % o x: the matrix x-offset. % % o y: the matrix y-offset. % % o value: set the matrix element to this value. % */ MagickExport MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info, const ssize_t x,const ssize_t y,const void *value) { MagickOffsetType count, i; assert(matrix_info != (const MatrixInfo *) NULL); assert(matrix_info->signature == MagickCoreSignature); i=(MagickOffsetType) y*matrix_info->columns+x; if ((i < 0) || ((MagickSizeType) (i*matrix_info->stride) >= matrix_info->length)) return(MagickFalse); if (matrix_info->type != DiskCache) { (void) memcpy((unsigned char *) matrix_info->elements+i* matrix_info->stride,value,matrix_info->stride); return(MagickTrue); } count=WriteMatrixElements(matrix_info,i*matrix_info->stride, matrix_info->stride,(unsigned char *) value); if (count != (MagickOffsetType) matrix_info->stride) return(MagickFalse); return(MagickTrue); }