imagemagick/magick/enhance.c

4523 lines
144 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% EEEEE N N H H AAA N N CCCC EEEEE %
% E NN N H H A A NN N C E %
% EEE N N N HHHHH AAAAA N N N C EEE %
% E N NN H H A A N NN C E %
% EEEEE N N H H A A N N CCCC EEEEE %
% %
% %
% MagickCore Image Enhancement Methods %
% %
% Software Design %
% Cristy %
% July 1992 %
% %
% %
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/accelerate-private.h"
#include "magick/artifact.h"
#include "magick/attribute.h"
#include "magick/cache.h"
#include "magick/cache-view.h"
#include "magick/channel.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/colorspace.h"
#include "magick/colorspace-private.h"
#include "magick/composite-private.h"
#include "magick/enhance.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/fx.h"
#include "magick/gem.h"
#include "magick/geometry.h"
#include "magick/histogram.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/opencl.h"
#include "magick/opencl-private.h"
#include "magick/option.h"
#include "magick/pixel-accessor.h"
#include "magick/pixel-private.h"
#include "magick/quantum.h"
#include "magick/quantum-private.h"
#include "magick/resample.h"
#include "magick/resample-private.h"
#include "magick/resource_.h"
#include "magick/statistic.h"
#include "magick/string_.h"
#include "magick/string-private.h"
#include "magick/thread-private.h"
#include "magick/threshold.h"
#include "magick/token.h"
#include "magick/xml-tree.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A u t o G a m m a I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AutoGammaImage() extract the 'mean' from the image and adjust the image
% to try make set its gamma appropriatally.
%
% The format of the AutoGammaImage method is:
%
% MagickBooleanType AutoGammaImage(Image *image)
% MagickBooleanType AutoGammaImageChannel(Image *image,
% const ChannelType channel)
%
% A description of each parameter follows:
%
% o image: The image to auto-level
%
% o channel: The channels to auto-level. If the special 'SyncChannels'
% flag is set all given channels is adjusted in the same way using the
% mean average of those channels.
%
*/
MagickExport MagickBooleanType AutoGammaImage(Image *image)
{
return(AutoGammaImageChannel(image,DefaultChannels));
}
MagickExport MagickBooleanType AutoGammaImageChannel(Image *image,
const ChannelType channel)
{
double
gamma,
mean,
logmean,
sans;
MagickStatusType
status;
logmean=log(0.5);
if ((channel & SyncChannels) != 0)
{
/*
Apply gamma correction equally accross all given channels
*/
(void) GetImageChannelMean(image,channel,&mean,&sans,&image->exception);
gamma=log(mean*QuantumScale)/logmean;
return(LevelImageChannel(image,channel,0.0,(double) QuantumRange,gamma));
}
/*
Auto-gamma each channel separateally
*/
status = MagickTrue;
if ((channel & RedChannel) != 0)
{
(void) GetImageChannelMean(image,RedChannel,&mean,&sans,
&image->exception);
gamma=log(mean*QuantumScale)/logmean;
status&=LevelImageChannel(image,RedChannel,0.0,(double) QuantumRange,
gamma);
}
if ((channel & GreenChannel) != 0)
{
(void) GetImageChannelMean(image,GreenChannel,&mean,&sans,
&image->exception);
gamma=log(mean*QuantumScale)/logmean;
status&=LevelImageChannel(image,GreenChannel,0.0,(double) QuantumRange,
gamma);
}
if ((channel & BlueChannel) != 0)
{
(void) GetImageChannelMean(image,BlueChannel,&mean,&sans,
&image->exception);
gamma=log(mean*QuantumScale)/logmean;
status&=LevelImageChannel(image,BlueChannel,0.0,(double) QuantumRange,
gamma);
}
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
{
(void) GetImageChannelMean(image,OpacityChannel,&mean,&sans,
&image->exception);
gamma=log(mean*QuantumScale)/logmean;
status&=LevelImageChannel(image,OpacityChannel,0.0,(double) QuantumRange,
gamma);
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
(void) GetImageChannelMean(image,IndexChannel,&mean,&sans,
&image->exception);
gamma=log(mean*QuantumScale)/logmean;
status&=LevelImageChannel(image,IndexChannel,0.0,(double) QuantumRange,
gamma);
}
return(status != 0 ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A u t o L e v e l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AutoLevelImage() adjusts the levels of a particular image channel by
% scaling the minimum and maximum values to the full quantum range.
%
% The format of the LevelImage method is:
%
% MagickBooleanType AutoLevelImage(Image *image)
% MagickBooleanType AutoLevelImageChannel(Image *image,
% const ChannelType channel)
%
% A description of each parameter follows:
%
% o image: The image to auto-level
%
% o channel: The channels to auto-level. If the special 'SyncChannels'
% flag is set the min/max/mean value of all given channels is used for
% all given channels, to all channels in the same way.
%
*/
MagickExport MagickBooleanType AutoLevelImage(Image *image)
{
return(AutoLevelImageChannel(image,DefaultChannels));
}
MagickExport MagickBooleanType AutoLevelImageChannel(Image *image,
const ChannelType channel)
{
/*
Convenience method for a min/max histogram stretch.
*/
return(MinMaxStretchImage(image,channel,0.0,0.0));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% B r i g h t n e s s C o n t r a s t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BrightnessContrastImage() changes the brightness and/or contrast of an
% image. It converts the brightness and contrast parameters into slope and
% intercept and calls a polynomical function to apply to the image.
%
% The format of the BrightnessContrastImage method is:
%
% MagickBooleanType BrightnessContrastImage(Image *image,
% const double brightness,const double contrast)
% MagickBooleanType BrightnessContrastImageChannel(Image *image,
% const ChannelType channel,const double brightness,
% const double contrast)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o brightness: the brightness percent (-100 .. 100).
%
% o contrast: the contrast percent (-100 .. 100).
%
*/
MagickExport MagickBooleanType BrightnessContrastImage(Image *image,
const double brightness,const double contrast)
{
MagickBooleanType
status;
status=BrightnessContrastImageChannel(image,DefaultChannels,brightness,
contrast);
return(status);
}
MagickExport MagickBooleanType BrightnessContrastImageChannel(Image *image,
const ChannelType channel,const double brightness,const double contrast)
{
#define BrightnessContastImageTag "BrightnessContast/Image"
double
alpha,
intercept,
coefficients[2],
slope;
MagickBooleanType
status;
/*
Compute slope and intercept.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
alpha=contrast;
slope=tan((double) (MagickPI*(alpha/100.0+1.0)/4.0));
if (slope < 0.0)
slope=0.0;
intercept=brightness/100.0+((100-brightness)/200.0)*(1.0-slope);
coefficients[0]=slope;
coefficients[1]=intercept;
status=FunctionImageChannel(image,channel,PolynomialFunction,2,coefficients,
&image->exception);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o l o r D e c i s i o n L i s t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ColorDecisionListImage() accepts a lightweight Color Correction Collection
% (CCC) file which solely contains one or more color corrections and applies
% the correction to the image. Here is a sample CCC file:
%
% <ColorCorrectionCollection xmlns="urn:ASC:CDL:v1.2">
% <ColorCorrection id="cc03345">
% <SOPNode>
% <Slope> 0.9 1.2 0.5 </Slope>
% <Offset> 0.4 -0.5 0.6 </Offset>
% <Power> 1.0 0.8 1.5 </Power>
% </SOPNode>
% <SATNode>
% <Saturation> 0.85 </Saturation>
% </SATNode>
% </ColorCorrection>
% </ColorCorrectionCollection>
%
% which includes the slop, offset, and power for each of the RGB channels
% as well as the saturation.
%
% The format of the ColorDecisionListImage method is:
%
% MagickBooleanType ColorDecisionListImage(Image *image,
% const char *color_correction_collection)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o color_correction_collection: the color correction collection in XML.
%
*/
MagickExport MagickBooleanType ColorDecisionListImage(Image *image,
const char *color_correction_collection)
{
#define ColorDecisionListCorrectImageTag "ColorDecisionList/Image"
typedef struct _Correction
{
double
slope,
offset,
power;
} Correction;
typedef struct _ColorCorrection
{
Correction
red,
green,
blue;
double
saturation;
} ColorCorrection;
CacheView
*image_view;
char
token[MaxTextExtent];
ColorCorrection
color_correction;
const char
*content,
*p;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
PixelPacket
*cdl_map;
ssize_t
i;
ssize_t
y;
XMLTreeInfo
*cc,
*ccc,
*sat,
*sop;
/*
Allocate and initialize cdl maps.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (color_correction_collection == (const char *) NULL)
return(MagickFalse);
exception=(&image->exception);
ccc=NewXMLTree((const char *) color_correction_collection,&image->exception);
if (ccc == (XMLTreeInfo *) NULL)
return(MagickFalse);
cc=GetXMLTreeChild(ccc,"ColorCorrection");
if (cc == (XMLTreeInfo *) NULL)
{
ccc=DestroyXMLTree(ccc);
return(MagickFalse);
}
color_correction.red.slope=1.0;
color_correction.red.offset=0.0;
color_correction.red.power=1.0;
color_correction.green.slope=1.0;
color_correction.green.offset=0.0;
color_correction.green.power=1.0;
color_correction.blue.slope=1.0;
color_correction.blue.offset=0.0;
color_correction.blue.power=1.0;
color_correction.saturation=0.0;
sop=GetXMLTreeChild(cc,"SOPNode");
if (sop != (XMLTreeInfo *) NULL)
{
XMLTreeInfo
*offset,
*power,
*slope;
slope=GetXMLTreeChild(sop,"Slope");
if (slope != (XMLTreeInfo *) NULL)
{
content=GetXMLTreeContent(slope);
p=(const char *) content;
for (i=0; (*p != '\0') && (i < 3); i++)
{
(void) GetNextToken(p,&p,MaxTextExtent,token);
if (*token == ',')
(void) GetNextToken(p,&p,MaxTextExtent,token);
switch (i)
{
case 0:
{
color_correction.red.slope=StringToDouble(token,(char **) NULL);
break;
}
case 1:
{
color_correction.green.slope=StringToDouble(token,
(char **) NULL);
break;
}
case 2:
{
color_correction.blue.slope=StringToDouble(token,
(char **) NULL);
break;
}
}
}
}
offset=GetXMLTreeChild(sop,"Offset");
if (offset != (XMLTreeInfo *) NULL)
{
content=GetXMLTreeContent(offset);
p=(const char *) content;
for (i=0; (*p != '\0') && (i < 3); i++)
{
(void) GetNextToken(p,&p,MaxTextExtent,token);
if (*token == ',')
(void) GetNextToken(p,&p,MaxTextExtent,token);
switch (i)
{
case 0:
{
color_correction.red.offset=StringToDouble(token,
(char **) NULL);
break;
}
case 1:
{
color_correction.green.offset=StringToDouble(token,
(char **) NULL);
break;
}
case 2:
{
color_correction.blue.offset=StringToDouble(token,
(char **) NULL);
break;
}
}
}
}
power=GetXMLTreeChild(sop,"Power");
if (power != (XMLTreeInfo *) NULL)
{
content=GetXMLTreeContent(power);
p=(const char *) content;
for (i=0; (*p != '\0') && (i < 3); i++)
{
(void) GetNextToken(p,&p,MaxTextExtent,token);
if (*token == ',')
(void) GetNextToken(p,&p,MaxTextExtent,token);
switch (i)
{
case 0:
{
color_correction.red.power=StringToDouble(token,(char **) NULL);
break;
}
case 1:
{
color_correction.green.power=StringToDouble(token,
(char **) NULL);
break;
}
case 2:
{
color_correction.blue.power=StringToDouble(token,
(char **) NULL);
break;
}
}
}
}
}
sat=GetXMLTreeChild(cc,"SATNode");
if (sat != (XMLTreeInfo *) NULL)
{
XMLTreeInfo
*saturation;
saturation=GetXMLTreeChild(sat,"Saturation");
if (saturation != (XMLTreeInfo *) NULL)
{
content=GetXMLTreeContent(saturation);
p=(const char *) content;
(void) GetNextToken(p,&p,MaxTextExtent,token);
color_correction.saturation=StringToDouble(token,(char **) NULL);
}
}
ccc=DestroyXMLTree(ccc);
if (image->debug != MagickFalse)
{
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" Color Correction Collection:");
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.red.slope: %g",color_correction.red.slope);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.red.offset: %g",color_correction.red.offset);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.red.power: %g",color_correction.red.power);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.green.slope: %g",color_correction.green.slope);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.green.offset: %g",color_correction.green.offset);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.green.power: %g",color_correction.green.power);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.blue.slope: %g",color_correction.blue.slope);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.blue.offset: %g",color_correction.blue.offset);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.blue.power: %g",color_correction.blue.power);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" color_correction.saturation: %g",color_correction.saturation);
}
cdl_map=(PixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*cdl_map));
if (cdl_map == (PixelPacket *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
for (i=0; i <= (ssize_t) MaxMap; i++)
{
cdl_map[i].red=ClampToQuantum((MagickRealType) ScaleMapToQuantum((
MagickRealType) (MaxMap*(pow(color_correction.red.slope*i/MaxMap+
color_correction.red.offset,color_correction.red.power)))));
cdl_map[i].green=ClampToQuantum((MagickRealType) ScaleMapToQuantum((
MagickRealType) (MaxMap*(pow(color_correction.green.slope*i/MaxMap+
color_correction.green.offset,color_correction.green.power)))));
cdl_map[i].blue=ClampToQuantum((MagickRealType) ScaleMapToQuantum((
MagickRealType) (MaxMap*(pow(color_correction.blue.slope*i/MaxMap+
color_correction.blue.offset,color_correction.blue.power)))));
}
if (image->storage_class == PseudoClass)
{
/*
Apply transfer function to colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
double
luma;
luma=0.212656*image->colormap[i].red+0.715158*image->colormap[i].green+
0.072186*image->colormap[i].blue;
image->colormap[i].red=ClampToQuantum(luma+color_correction.saturation*
cdl_map[ScaleQuantumToMap(image->colormap[i].red)].red-luma);
image->colormap[i].green=ClampToQuantum(luma+
color_correction.saturation*cdl_map[ScaleQuantumToMap(
image->colormap[i].green)].green-luma);
image->colormap[i].blue=ClampToQuantum(luma+color_correction.saturation*
cdl_map[ScaleQuantumToMap(image->colormap[i].blue)].blue-luma);
}
}
/*
Apply transfer function to image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
luma;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
luma=0.212656*GetPixelRed(q)+0.715158*GetPixelGreen(q)+
0.072186*GetPixelBlue(q);
SetPixelRed(q,ClampToQuantum(luma+color_correction.saturation*
(cdl_map[ScaleQuantumToMap(GetPixelRed(q))].red-luma)));
SetPixelGreen(q,ClampToQuantum(luma+color_correction.saturation*
(cdl_map[ScaleQuantumToMap(GetPixelGreen(q))].green-luma)));
SetPixelBlue(q,ClampToQuantum(luma+color_correction.saturation*
(cdl_map[ScaleQuantumToMap(GetPixelBlue(q))].blue-luma)));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ColorDecisionListCorrectImageTag,
progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
cdl_map=(PixelPacket *) RelinquishMagickMemory(cdl_map);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C l u t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ClutImage() replaces each color value in the given image, by using it as an
% index to lookup a replacement color value in a Color Look UP Table in the
% form of an image. The values are extracted along a diagonal of the CLUT
% image so either a horizontal or vertial gradient image can be used.
%
% Typically this is used to either re-color a gray-scale image according to a
% color gradient in the CLUT image, or to perform a freeform histogram
% (level) adjustment according to the (typically gray-scale) gradient in the
% CLUT image.
%
% When the 'channel' mask includes the matte/alpha transparency channel but
% one image has no such channel it is assumed that that image is a simple
% gray-scale image that will effect the alpha channel values, either for
% gray-scale coloring (with transparent or semi-transparent colors), or
% a histogram adjustment of existing alpha channel values. If both images
% have matte channels, direct and normal indexing is applied, which is rarely
% used.
%
% The format of the ClutImage method is:
%
% MagickBooleanType ClutImage(Image *image,Image *clut_image)
% MagickBooleanType ClutImageChannel(Image *image,
% const ChannelType channel,Image *clut_image)
%
% A description of each parameter follows:
%
% o image: the image, which is replaced by indexed CLUT values
%
% o clut_image: the color lookup table image for replacement color values.
%
% o channel: the channel.
%
*/
MagickExport MagickBooleanType ClutImage(Image *image,const Image *clut_image)
{
return(ClutImageChannel(image,DefaultChannels,clut_image));
}
MagickExport MagickBooleanType ClutImageChannel(Image *image,
const ChannelType channel,const Image *clut_image)
{
#define ClutImageTag "Clut/Image"
CacheView
*clut_view,
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
*clut_map;
ssize_t
i;
ssize_t
adjust,
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(clut_image != (Image *) NULL);
assert(clut_image->signature == MagickCoreSignature);
exception=(&image->exception);
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
return(MagickFalse);
if ((IsGrayColorspace(image->colorspace) != MagickFalse) &&
(IsGrayColorspace(clut_image->colorspace) == MagickFalse))
(void) SetImageColorspace(image,sRGBColorspace);
clut_map=(MagickPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*clut_map));
if (clut_map == (MagickPixelPacket *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
/*
Clut image.
*/
status=MagickTrue;
progress=0;
adjust=(ssize_t) (clut_image->interpolate == IntegerInterpolatePixel ? 0 : 1);
clut_view=AcquireAuthenticCacheView(clut_image,exception);
for (i=0; i <= (ssize_t) MaxMap; i++)
{
GetMagickPixelPacket(clut_image,clut_map+i);
status=InterpolateMagickPixelPacket(clut_image,clut_view,
UndefinedInterpolatePixel,(double) i*(clut_image->columns-adjust)/MaxMap,
(double) i*(clut_image->rows-adjust)/MaxMap,clut_map+i,exception);
if (status == MagickFalse)
break;
}
clut_view=DestroyCacheView(clut_view);
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickPixelPacket
pixel;
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
GetMagickPixelPacket(image,&pixel);
for (x=0; x < (ssize_t) image->columns; x++)
{
SetMagickPixelPacket(image,q,indexes+x,&pixel);
if ((channel & RedChannel) != 0)
SetPixelRed(q,ClampPixelRed(clut_map+
ScaleQuantumToMap(GetPixelRed(q))));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,ClampPixelGreen(clut_map+
ScaleQuantumToMap(GetPixelGreen(q))));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,ClampPixelBlue(clut_map+
ScaleQuantumToMap(GetPixelBlue(q))));
if ((channel & OpacityChannel) != 0)
{
if (clut_image->matte == MagickFalse)
SetPixelAlpha(q,MagickPixelIntensityToQuantum(clut_map+
ScaleQuantumToMap((Quantum) GetPixelAlpha(q))));
else
if (image->matte == MagickFalse)
SetPixelOpacity(q,ClampPixelOpacity(clut_map+
ScaleQuantumToMap((Quantum) MagickPixelIntensity(&pixel))));
else
SetPixelOpacity(q,ClampPixelOpacity(
clut_map+ScaleQuantumToMap(GetPixelOpacity(q))));
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(indexes+x,ClampToQuantum((clut_map+(ssize_t)
GetPixelIndex(indexes+x))->index));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ClutImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
clut_map=(MagickPixelPacket *) RelinquishMagickMemory(clut_map);
if ((clut_image->matte != MagickFalse) && ((channel & OpacityChannel) != 0))
(void) SetImageAlphaChannel(image,ActivateAlphaChannel);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o n t r a s t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ContrastImage() enhances the intensity differences between the lighter and
% darker elements of the image. Set sharpen to a MagickTrue to increase the
% image contrast otherwise the contrast is reduced.
%
% The format of the ContrastImage method is:
%
% MagickBooleanType ContrastImage(Image *image,
% const MagickBooleanType sharpen)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o sharpen: Increase or decrease image contrast.
%
*/
static void Contrast(const int sign,Quantum *red,Quantum *green,Quantum *blue)
{
double
brightness,
hue,
saturation;
/*
Enhance contrast: dark color become darker, light color become lighter.
*/
assert(red != (Quantum *) NULL);
assert(green != (Quantum *) NULL);
assert(blue != (Quantum *) NULL);
hue=0.0;
saturation=0.0;
brightness=0.0;
ConvertRGBToHSB(*red,*green,*blue,&hue,&saturation,&brightness);
brightness+=0.5*sign*(0.5*(sin((double) (MagickPI*(brightness-0.5)))+1.0)-
brightness);
if (brightness > 1.0)
brightness=1.0;
else
if (brightness < 0.0)
brightness=0.0;
ConvertHSBToRGB(hue,saturation,brightness,red,green,blue);
}
MagickExport MagickBooleanType ContrastImage(Image *image,
const MagickBooleanType sharpen)
{
#define ContrastImageTag "Contrast/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
int
sign;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
i;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
sign=sharpen != MagickFalse ? 1 : -1;
if (image->storage_class == PseudoClass)
{
/*
Contrast enhance colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
Contrast(sign,&image->colormap[i].red,&image->colormap[i].green,
&image->colormap[i].blue);
}
/*
Contrast enhance image.
*/
#if defined(MAGICKCORE_OPENCL_SUPPORT)
status=AccelerateContrastImage(image,sharpen,&image->exception);
if (status != MagickFalse)
return status;
#endif
status=MagickTrue;
progress=0;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
Quantum
blue,
green,
red;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
red=GetPixelRed(q);
green=GetPixelGreen(q);
blue=GetPixelBlue(q);
Contrast(sign,&red,&green,&blue);
SetPixelRed(q,red);
SetPixelGreen(q,green);
SetPixelBlue(q,blue);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ContrastImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o n t r a s t S t r e t c h I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ContrastStretchImage() is a simple image enhancement technique that attempts
% to improve the contrast in an image by `stretching' the range of intensity
% values it contains to span a desired range of values. It differs from the
% more sophisticated histogram equalization in that it can only apply a
% linear scaling function to the image pixel values. As a result the
% `enhancement' is less harsh.
%
% The format of the ContrastStretchImage method is:
%
% MagickBooleanType ContrastStretchImage(Image *image,
% const char *levels)
% MagickBooleanType ContrastStretchImageChannel(Image *image,
% const size_t channel,const double black_point,
% const double white_point)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o black_point: the black point.
%
% o white_point: the white point.
%
% o levels: Specify the levels where the black and white points have the
% range of 0 to number-of-pixels (e.g. 1%, 10x90%, etc.).
%
*/
MagickExport MagickBooleanType ContrastStretchImage(Image *image,
const char *levels)
{
double
black_point,
white_point;
GeometryInfo
geometry_info;
MagickBooleanType
status;
MagickStatusType
flags;
/*
Parse levels.
*/
if (levels == (char *) NULL)
return(MagickFalse);
flags=ParseGeometry(levels,&geometry_info);
black_point=geometry_info.rho;
white_point=(double) image->columns*image->rows;
if ((flags & SigmaValue) != 0)
white_point=geometry_info.sigma;
if ((flags & PercentValue) != 0)
{
black_point*=(double) QuantumRange/100.0;
white_point*=(double) QuantumRange/100.0;
}
if ((flags & SigmaValue) == 0)
white_point=(double) image->columns*image->rows-black_point;
status=ContrastStretchImageChannel(image,DefaultChannels,black_point,
white_point);
return(status);
}
MagickExport MagickBooleanType ContrastStretchImageChannel(Image *image,
const ChannelType channel,const double black_point,const double white_point)
{
#define MaxRange(color) ((MagickRealType) ScaleQuantumToMap((Quantum) (color)))
#define ContrastStretchImageTag "ContrastStretch/Image"
CacheView
*image_view;
double
intensity;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
black,
*histogram,
white;
QuantumPixelPacket
*stretch_map;
ssize_t
i;
ssize_t
y;
/*
Allocate histogram and stretch map.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
exception=(&image->exception);
#if defined(MAGICKCORE_OPENCL_SUPPORT) && 0
/* Call OpenCL version */
status=AccelerateContrastStretchImageChannel(image,channel,black_point,
white_point,&image->exception);
if (status != MagickFalse)
return status;
#endif
histogram=(MagickPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*histogram));
stretch_map=(QuantumPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*stretch_map));
if ((histogram == (MagickPixelPacket *) NULL) ||
(stretch_map == (QuantumPixelPacket *) NULL))
{
if (stretch_map != (QuantumPixelPacket *) NULL)
stretch_map=(QuantumPixelPacket *) RelinquishMagickMemory(stretch_map);
if (histogram != (MagickPixelPacket *) NULL)
histogram=(MagickPixelPacket *) RelinquishMagickMemory(histogram);
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
}
/*
Form histogram.
*/
if (SetImageGray(image,exception) != MagickFalse)
(void) SetImageColorspace(image,GRAYColorspace);
status=MagickTrue;
(void) memset(histogram,0,(MaxMap+1)*sizeof(*histogram));
image_view=AcquireAuthenticCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
const PixelPacket
*magick_restrict p;
IndexPacket
*magick_restrict indexes;
ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
if ((channel & SyncChannels) != 0)
for (x=0; x < (ssize_t) image->columns; x++)
{
Quantum
intensity;
intensity=ClampToQuantum(GetPixelIntensity(image,p));
histogram[ScaleQuantumToMap(intensity)].red++;
histogram[ScaleQuantumToMap(intensity)].green++;
histogram[ScaleQuantumToMap(intensity)].blue++;
histogram[ScaleQuantumToMap(intensity)].index++;
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelRed(p))].red++;
if ((channel & GreenChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelGreen(p))].green++;
if ((channel & BlueChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelBlue(p))].blue++;
if ((channel & OpacityChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelOpacity(p))].opacity++;
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
histogram[ScaleQuantumToMap(GetPixelIndex(indexes+x))].index++;
p++;
}
}
/*
Find the histogram boundaries by locating the black/white levels.
*/
black.red=0.0;
white.red=MaxRange(QuantumRange);
if ((channel & RedChannel) != 0)
{
intensity=0.0;
for (i=0; i <= (ssize_t) MaxMap; i++)
{
intensity+=histogram[i].red;
if (intensity > black_point)
break;
}
black.red=(MagickRealType) i;
intensity=0.0;
for (i=(ssize_t) MaxMap; i != 0; i--)
{
intensity+=histogram[i].red;
if (intensity > ((double) image->columns*image->rows-white_point))
break;
}
white.red=(MagickRealType) i;
}
black.green=0.0;
white.green=MaxRange(QuantumRange);
if ((channel & GreenChannel) != 0)
{
intensity=0.0;
for (i=0; i <= (ssize_t) MaxMap; i++)
{
intensity+=histogram[i].green;
if (intensity > black_point)
break;
}
black.green=(MagickRealType) i;
intensity=0.0;
for (i=(ssize_t) MaxMap; i != 0; i--)
{
intensity+=histogram[i].green;
if (intensity > ((double) image->columns*image->rows-white_point))
break;
}
white.green=(MagickRealType) i;
}
black.blue=0.0;
white.blue=MaxRange(QuantumRange);
if ((channel & BlueChannel) != 0)
{
intensity=0.0;
for (i=0; i <= (ssize_t) MaxMap; i++)
{
intensity+=histogram[i].blue;
if (intensity > black_point)
break;
}
black.blue=(MagickRealType) i;
intensity=0.0;
for (i=(ssize_t) MaxMap; i != 0; i--)
{
intensity+=histogram[i].blue;
if (intensity > ((double) image->columns*image->rows-white_point))
break;
}
white.blue=(MagickRealType) i;
}
black.opacity=0.0;
white.opacity=MaxRange(QuantumRange);
if ((channel & OpacityChannel) != 0)
{
intensity=0.0;
for (i=0; i <= (ssize_t) MaxMap; i++)
{
intensity+=histogram[i].opacity;
if (intensity > black_point)
break;
}
black.opacity=(MagickRealType) i;
intensity=0.0;
for (i=(ssize_t) MaxMap; i != 0; i--)
{
intensity+=histogram[i].opacity;
if (intensity > ((double) image->columns*image->rows-white_point))
break;
}
white.opacity=(MagickRealType) i;
}
black.index=0.0;
white.index=MaxRange(QuantumRange);
if (((channel & IndexChannel) != 0) && (image->colorspace == CMYKColorspace))
{
intensity=0.0;
for (i=0; i <= (ssize_t) MaxMap; i++)
{
intensity+=histogram[i].index;
if (intensity > black_point)
break;
}
black.index=(MagickRealType) i;
intensity=0.0;
for (i=(ssize_t) MaxMap; i != 0; i--)
{
intensity+=histogram[i].index;
if (intensity > ((double) image->columns*image->rows-white_point))
break;
}
white.index=(MagickRealType) i;
}
histogram=(MagickPixelPacket *) RelinquishMagickMemory(histogram);
/*
Stretch the histogram to create the stretched image mapping.
*/
(void) memset(stretch_map,0,(MaxMap+1)*sizeof(*stretch_map));
for (i=0; i <= (ssize_t) MaxMap; i++)
{
if ((channel & RedChannel) != 0)
{
if (i < (ssize_t) black.red)
stretch_map[i].red=(Quantum) 0;
else
if (i > (ssize_t) white.red)
stretch_map[i].red=QuantumRange;
else
if (black.red != white.red)
stretch_map[i].red=ScaleMapToQuantum((MagickRealType) (MaxMap*
(i-black.red)/(white.red-black.red)));
}
if ((channel & GreenChannel) != 0)
{
if (i < (ssize_t) black.green)
stretch_map[i].green=0;
else
if (i > (ssize_t) white.green)
stretch_map[i].green=QuantumRange;
else
if (black.green != white.green)
stretch_map[i].green=ScaleMapToQuantum((MagickRealType) (MaxMap*
(i-black.green)/(white.green-black.green)));
}
if ((channel & BlueChannel) != 0)
{
if (i < (ssize_t) black.blue)
stretch_map[i].blue=0;
else
if (i > (ssize_t) white.blue)
stretch_map[i].blue= QuantumRange;
else
if (black.blue != white.blue)
stretch_map[i].blue=ScaleMapToQuantum((MagickRealType) (MaxMap*
(i-black.blue)/(white.blue-black.blue)));
}
if ((channel & OpacityChannel) != 0)
{
if (i < (ssize_t) black.opacity)
stretch_map[i].opacity=0;
else
if (i > (ssize_t) white.opacity)
stretch_map[i].opacity=QuantumRange;
else
if (black.opacity != white.opacity)
stretch_map[i].opacity=ScaleMapToQuantum((MagickRealType) (MaxMap*
(i-black.opacity)/(white.opacity-black.opacity)));
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
if (i < (ssize_t) black.index)
stretch_map[i].index=0;
else
if (i > (ssize_t) white.index)
stretch_map[i].index=QuantumRange;
else
if (black.index != white.index)
stretch_map[i].index=ScaleMapToQuantum((MagickRealType) (MaxMap*
(i-black.index)/(white.index-black.index)));
}
}
/*
Stretch the image.
*/
if (((channel & OpacityChannel) != 0) || (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace)))
image->storage_class=DirectClass;
if (image->storage_class == PseudoClass)
{
/*
Stretch colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((channel & RedChannel) != 0)
{
if (black.red != white.red)
image->colormap[i].red=stretch_map[
ScaleQuantumToMap(image->colormap[i].red)].red;
}
if ((channel & GreenChannel) != 0)
{
if (black.green != white.green)
image->colormap[i].green=stretch_map[
ScaleQuantumToMap(image->colormap[i].green)].green;
}
if ((channel & BlueChannel) != 0)
{
if (black.blue != white.blue)
image->colormap[i].blue=stretch_map[
ScaleQuantumToMap(image->colormap[i].blue)].blue;
}
if ((channel & OpacityChannel) != 0)
{
if (black.opacity != white.opacity)
image->colormap[i].opacity=stretch_map[
ScaleQuantumToMap(image->colormap[i].opacity)].opacity;
}
}
}
/*
Stretch image.
*/
status=MagickTrue;
progress=0;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
{
if (black.red != white.red)
SetPixelRed(q,stretch_map[
ScaleQuantumToMap(GetPixelRed(q))].red);
}
if ((channel & GreenChannel) != 0)
{
if (black.green != white.green)
SetPixelGreen(q,stretch_map[
ScaleQuantumToMap(GetPixelGreen(q))].green);
}
if ((channel & BlueChannel) != 0)
{
if (black.blue != white.blue)
SetPixelBlue(q,stretch_map[
ScaleQuantumToMap(GetPixelBlue(q))].blue);
}
if ((channel & OpacityChannel) != 0)
{
if (black.opacity != white.opacity)
SetPixelOpacity(q,stretch_map[
ScaleQuantumToMap(GetPixelOpacity(q))].opacity);
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
if (black.index != white.index)
SetPixelIndex(indexes+x,stretch_map[
ScaleQuantumToMap(GetPixelIndex(indexes+x))].index);
}
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ContrastStretchImageTag,progress,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
stretch_map=(QuantumPixelPacket *) RelinquishMagickMemory(stretch_map);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E n h a n c e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EnhanceImage() applies a digital filter that improves the quality of a
% noisy image.
%
% The format of the EnhanceImage method is:
%
% Image *EnhanceImage(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *EnhanceImage(const Image *image,ExceptionInfo *exception)
{
#define EnhancePixel(weight) \
mean=QuantumScale*((double) GetPixelRed(r)+pixel.red)/2.0; \
distance=QuantumScale*((double) GetPixelRed(r)-pixel.red); \
distance_squared=(4.0+mean)*distance*distance; \
mean=QuantumScale*((double) GetPixelGreen(r)+pixel.green)/2.0; \
distance=QuantumScale*((double) GetPixelGreen(r)-pixel.green); \
distance_squared+=(7.0-mean)*distance*distance; \
mean=QuantumScale*((double) GetPixelBlue(r)+pixel.blue)/2.0; \
distance=QuantumScale*((double) GetPixelBlue(r)-pixel.blue); \
distance_squared+=(5.0-mean)*distance*distance; \
mean=QuantumScale*((double) GetPixelOpacity(r)+pixel.opacity)/2.0; \
distance=QuantumScale*((double) GetPixelOpacity(r)-pixel.opacity); \
distance_squared+=(5.0-mean)*distance*distance; \
if (distance_squared < 0.069) \
{ \
aggregate.red+=(weight)*GetPixelRed(r); \
aggregate.green+=(weight)*GetPixelGreen(r); \
aggregate.blue+=(weight)*GetPixelBlue(r); \
aggregate.opacity+=(weight)*GetPixelOpacity(r); \
total_weight+=(weight); \
} \
r++;
#define EnhanceImageTag "Enhance/Image"
CacheView
*enhance_view,
*image_view;
Image
*enhance_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
zero;
ssize_t
y;
/*
Initialize enhanced image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
if ((image->columns < 5) || (image->rows < 5))
return((Image *) NULL);
enhance_image=CloneImage(image,0,0,MagickTrue,exception);
if (enhance_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(enhance_image,DirectClass) == MagickFalse)
{
InheritException(exception,&enhance_image->exception);
enhance_image=DestroyImage(enhance_image);
return((Image *) NULL);
}
/*
Enhance image.
*/
status=MagickTrue;
progress=0;
(void) memset(&zero,0,sizeof(zero));
image_view=AcquireAuthenticCacheView(image,exception);
enhance_view=AcquireAuthenticCacheView(enhance_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,enhance_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const PixelPacket
*magick_restrict p;
PixelPacket
*magick_restrict q;
ssize_t
x;
/*
Read another scan line.
*/
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-2,y-2,image->columns+4,5,exception);
q=QueueCacheViewAuthenticPixels(enhance_view,0,y,enhance_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
distance,
distance_squared,
mean,
total_weight;
MagickPixelPacket
aggregate;
PixelPacket
pixel;
const PixelPacket
*magick_restrict r;
/*
Compute weighted average of target pixel color components.
*/
aggregate=zero;
total_weight=0.0;
r=p+2*(image->columns+4)+2;
pixel=(*r);
r=p;
EnhancePixel(5.0); EnhancePixel(8.0); EnhancePixel(10.0);
EnhancePixel(8.0); EnhancePixel(5.0);
r=p+(image->columns+4);
EnhancePixel(8.0); EnhancePixel(20.0); EnhancePixel(40.0);
EnhancePixel(20.0); EnhancePixel(8.0);
r=p+2*(image->columns+4);
EnhancePixel(10.0); EnhancePixel(40.0); EnhancePixel(80.0);
EnhancePixel(40.0); EnhancePixel(10.0);
r=p+3*(image->columns+4);
EnhancePixel(8.0); EnhancePixel(20.0); EnhancePixel(40.0);
EnhancePixel(20.0); EnhancePixel(8.0);
r=p+4*(image->columns+4);
EnhancePixel(5.0); EnhancePixel(8.0); EnhancePixel(10.0);
EnhancePixel(8.0); EnhancePixel(5.0);
if (total_weight > MagickEpsilon)
{
SetPixelRed(q,(aggregate.red+(total_weight/2)-1)/total_weight);
SetPixelGreen(q,(aggregate.green+(total_weight/2)-1)/total_weight);
SetPixelBlue(q,(aggregate.blue+(total_weight/2)-1)/total_weight);
SetPixelOpacity(q,(aggregate.opacity+(total_weight/2)-1)/
total_weight);
}
p++;
q++;
}
if (SyncCacheViewAuthenticPixels(enhance_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,EnhanceImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
enhance_view=DestroyCacheView(enhance_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
enhance_image=DestroyImage(enhance_image);
return(enhance_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E q u a l i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EqualizeImage() applies a histogram equalization to the image.
%
% The format of the EqualizeImage method is:
%
% MagickBooleanType EqualizeImage(Image *image)
% MagickBooleanType EqualizeImageChannel(Image *image,
% const ChannelType channel)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
*/
MagickExport MagickBooleanType EqualizeImage(Image *image)
{
return(EqualizeImageChannel(image,DefaultChannels));
}
MagickExport MagickBooleanType EqualizeImageChannel(Image *image,
const ChannelType channel)
{
#define EqualizeImageTag "Equalize/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
black,
*histogram,
intensity,
*map,
white;
QuantumPixelPacket
*equalize_map;
ssize_t
i;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
exception=(&image->exception);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
/* Call OpenCL version */
status=AccelerateEqualizeImage(image,channel,&image->exception);
if (status != MagickFalse)
return status;
#endif
/*
Allocate and initialize histogram arrays.
*/
equalize_map=(QuantumPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*equalize_map));
histogram=(MagickPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*histogram));
map=(MagickPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*map));
if ((equalize_map == (QuantumPixelPacket *) NULL) ||
(histogram == (MagickPixelPacket *) NULL) ||
(map == (MagickPixelPacket *) NULL))
{
if (map != (MagickPixelPacket *) NULL)
map=(MagickPixelPacket *) RelinquishMagickMemory(map);
if (histogram != (MagickPixelPacket *) NULL)
histogram=(MagickPixelPacket *) RelinquishMagickMemory(histogram);
if (equalize_map != (QuantumPixelPacket *) NULL)
equalize_map=(QuantumPixelPacket *) RelinquishMagickMemory(
equalize_map);
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
}
/*
Form histogram.
*/
(void) memset(histogram,0,(MaxMap+1)*sizeof(*histogram));
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
const IndexPacket
*magick_restrict indexes;
const PixelPacket
*magick_restrict p;
ssize_t
x;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewVirtualIndexQueue(image_view);
if ((channel & SyncChannels) != 0)
for (x=0; x < (ssize_t) image->columns; x++)
{
MagickRealType intensity=GetPixelIntensity(image,p);
histogram[ScaleQuantumToMap(ClampToQuantum(intensity))].red++;
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelRed(p))].red++;
if ((channel & GreenChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelGreen(p))].green++;
if ((channel & BlueChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelBlue(p))].blue++;
if ((channel & OpacityChannel) != 0)
histogram[ScaleQuantumToMap(GetPixelOpacity(p))].opacity++;
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
histogram[ScaleQuantumToMap(GetPixelIndex(indexes+x))].index++;
p++;
}
}
image_view=DestroyCacheView(image_view);
/*
Integrate the histogram to get the equalization map.
*/
(void) memset(&intensity,0,sizeof(intensity));
for (i=0; i <= (ssize_t) MaxMap; i++)
{
if ((channel & SyncChannels) != 0)
{
intensity.red+=histogram[i].red;
map[i]=intensity;
continue;
}
if ((channel & RedChannel) != 0)
intensity.red+=histogram[i].red;
if ((channel & GreenChannel) != 0)
intensity.green+=histogram[i].green;
if ((channel & BlueChannel) != 0)
intensity.blue+=histogram[i].blue;
if ((channel & OpacityChannel) != 0)
intensity.opacity+=histogram[i].opacity;
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
intensity.index+=histogram[i].index;
map[i]=intensity;
}
black=map[0];
white=map[(int) MaxMap];
(void) memset(equalize_map,0,(MaxMap+1)*sizeof(*equalize_map));
for (i=0; i <= (ssize_t) MaxMap; i++)
{
if ((channel & SyncChannels) != 0)
{
if (white.red != black.red)
equalize_map[i].red=ScaleMapToQuantum((MagickRealType) ((MaxMap*
(map[i].red-black.red))/(white.red-black.red)));
continue;
}
if (((channel & RedChannel) != 0) && (white.red != black.red))
equalize_map[i].red=ScaleMapToQuantum((MagickRealType) ((MaxMap*
(map[i].red-black.red))/(white.red-black.red)));
if (((channel & GreenChannel) != 0) && (white.green != black.green))
equalize_map[i].green=ScaleMapToQuantum((MagickRealType) ((MaxMap*
(map[i].green-black.green))/(white.green-black.green)));
if (((channel & BlueChannel) != 0) && (white.blue != black.blue))
equalize_map[i].blue=ScaleMapToQuantum((MagickRealType) ((MaxMap*
(map[i].blue-black.blue))/(white.blue-black.blue)));
if (((channel & OpacityChannel) != 0) && (white.opacity != black.opacity))
equalize_map[i].opacity=ScaleMapToQuantum((MagickRealType) ((MaxMap*
(map[i].opacity-black.opacity))/(white.opacity-black.opacity)));
if ((((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace)) &&
(white.index != black.index))
equalize_map[i].index=ScaleMapToQuantum((MagickRealType) ((MaxMap*
(map[i].index-black.index))/(white.index-black.index)));
}
histogram=(MagickPixelPacket *) RelinquishMagickMemory(histogram);
map=(MagickPixelPacket *) RelinquishMagickMemory(map);
if (image->storage_class == PseudoClass)
{
/*
Equalize colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((channel & SyncChannels) != 0)
{
if (white.red != black.red)
{
image->colormap[i].red=equalize_map[
ScaleQuantumToMap(image->colormap[i].red)].red;
image->colormap[i].green=equalize_map[
ScaleQuantumToMap(image->colormap[i].green)].red;
image->colormap[i].blue=equalize_map[
ScaleQuantumToMap(image->colormap[i].blue)].red;
image->colormap[i].opacity=equalize_map[
ScaleQuantumToMap(image->colormap[i].opacity)].red;
}
continue;
}
if (((channel & RedChannel) != 0) && (white.red != black.red))
image->colormap[i].red=equalize_map[
ScaleQuantumToMap(image->colormap[i].red)].red;
if (((channel & GreenChannel) != 0) && (white.green != black.green))
image->colormap[i].green=equalize_map[
ScaleQuantumToMap(image->colormap[i].green)].green;
if (((channel & BlueChannel) != 0) && (white.blue != black.blue))
image->colormap[i].blue=equalize_map[
ScaleQuantumToMap(image->colormap[i].blue)].blue;
if (((channel & OpacityChannel) != 0) &&
(white.opacity != black.opacity))
image->colormap[i].opacity=equalize_map[
ScaleQuantumToMap(image->colormap[i].opacity)].opacity;
}
}
/*
Equalize image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & SyncChannels) != 0)
{
if (white.red != black.red)
{
SetPixelRed(q,equalize_map[
ScaleQuantumToMap(GetPixelRed(q))].red);
SetPixelGreen(q,equalize_map[
ScaleQuantumToMap(GetPixelGreen(q))].red);
SetPixelBlue(q,equalize_map[
ScaleQuantumToMap(GetPixelBlue(q))].red);
SetPixelOpacity(q,equalize_map[
ScaleQuantumToMap(GetPixelOpacity(q))].red);
if (image->colorspace == CMYKColorspace)
SetPixelIndex(indexes+x,equalize_map[
ScaleQuantumToMap(GetPixelIndex(indexes+x))].red);
}
q++;
continue;
}
if (((channel & RedChannel) != 0) && (white.red != black.red))
SetPixelRed(q,equalize_map[
ScaleQuantumToMap(GetPixelRed(q))].red);
if (((channel & GreenChannel) != 0) && (white.green != black.green))
SetPixelGreen(q,equalize_map[
ScaleQuantumToMap(GetPixelGreen(q))].green);
if (((channel & BlueChannel) != 0) && (white.blue != black.blue))
SetPixelBlue(q,equalize_map[
ScaleQuantumToMap(GetPixelBlue(q))].blue);
if (((channel & OpacityChannel) != 0) && (white.opacity != black.opacity))
SetPixelOpacity(q,equalize_map[
ScaleQuantumToMap(GetPixelOpacity(q))].opacity);
if ((((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace)) &&
(white.index != black.index))
SetPixelIndex(indexes+x,equalize_map[
ScaleQuantumToMap(GetPixelIndex(indexes+x))].index);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,EqualizeImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
equalize_map=(QuantumPixelPacket *) RelinquishMagickMemory(equalize_map);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G a m m a I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GammaImage() gamma-corrects a particular image channel. The same
% image viewed on different devices will have perceptual differences in the
% way the image's intensities are represented on the screen. Specify
% individual gamma levels for the red, green, and blue channels, or adjust
% all three with the gamma parameter. Values typically range from 0.8 to 2.3.
%
% You can also reduce the influence of a particular channel with a gamma
% value of 0.
%
% The format of the GammaImage method is:
%
% MagickBooleanType GammaImage(Image *image,const char *level)
% MagickBooleanType GammaImageChannel(Image *image,
% const ChannelType channel,const double gamma)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o level: the image gamma as a string (e.g. 1.6,1.2,1.0).
%
% o gamma: the image gamma.
%
*/
static inline double gamma_pow(const double value,const double gamma)
{
return(value < 0.0 ? value : pow(value,gamma));
}
MagickExport MagickBooleanType GammaImage(Image *image,const char *level)
{
GeometryInfo
geometry_info;
MagickPixelPacket
gamma;
MagickStatusType
flags,
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (level == (char *) NULL)
return(MagickFalse);
flags=ParseGeometry(level,&geometry_info);
gamma.red=geometry_info.rho;
gamma.green=geometry_info.sigma;
if ((flags & SigmaValue) == 0)
gamma.green=gamma.red;
gamma.blue=geometry_info.xi;
if ((flags & XiValue) == 0)
gamma.blue=gamma.red;
if ((gamma.red == 1.0) && (gamma.green == 1.0) && (gamma.blue == 1.0))
return(MagickTrue);
if ((gamma.red == gamma.green) && (gamma.green == gamma.blue))
status=GammaImageChannel(image,(ChannelType) (RedChannel | GreenChannel |
BlueChannel),(double) gamma.red);
else
{
status=GammaImageChannel(image,RedChannel,(double) gamma.red);
status&=GammaImageChannel(image,GreenChannel,(double) gamma.green);
status&=GammaImageChannel(image,BlueChannel,(double) gamma.blue);
}
return(status != 0 ? MagickTrue : MagickFalse);
}
MagickExport MagickBooleanType GammaImageChannel(Image *image,
const ChannelType channel,const double gamma)
{
#define GammaImageTag "Gamma/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
Quantum
*gamma_map;
ssize_t
i;
ssize_t
y;
/*
Allocate and initialize gamma maps.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
exception=(&image->exception);
if (gamma == 1.0)
return(MagickTrue);
gamma_map=(Quantum *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*gamma_map));
if (gamma_map == (Quantum *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
(void) memset(gamma_map,0,(MaxMap+1)*sizeof(*gamma_map));
if (gamma != 0.0)
for (i=0; i <= (ssize_t) MaxMap; i++)
gamma_map[i]=ClampToQuantum((MagickRealType) ScaleMapToQuantum((
MagickRealType) (MaxMap*pow((double) i/MaxMap,
PerceptibleReciprocal(gamma)))));
if (image->storage_class == PseudoClass)
{
/*
Gamma-correct colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
#if !defined(MAGICKCORE_HDRI_SUPPORT)
if ((channel & RedChannel) != 0)
image->colormap[i].red=gamma_map[ScaleQuantumToMap(
image->colormap[i].red)];
if ((channel & GreenChannel) != 0)
image->colormap[i].green=gamma_map[ScaleQuantumToMap(
image->colormap[i].green)];
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=gamma_map[ScaleQuantumToMap(
image->colormap[i].blue)];
if ((channel & OpacityChannel) != 0)
{
if (image->matte == MagickFalse)
image->colormap[i].opacity=gamma_map[ScaleQuantumToMap(
image->colormap[i].opacity)];
else
image->colormap[i].opacity=QuantumRange-gamma_map[
ScaleQuantumToMap((Quantum) (QuantumRange-
image->colormap[i].opacity))];
}
#else
if ((channel & RedChannel) != 0)
image->colormap[i].red=QuantumRange*gamma_pow(QuantumScale*
image->colormap[i].red,PerceptibleReciprocal(gamma));
if ((channel & GreenChannel) != 0)
image->colormap[i].green=QuantumRange*gamma_pow(QuantumScale*
image->colormap[i].green,PerceptibleReciprocal(gamma));
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=QuantumRange*gamma_pow(QuantumScale*
image->colormap[i].blue,PerceptibleReciprocal(gamma));
if ((channel & OpacityChannel) != 0)
{
if (image->matte == MagickFalse)
image->colormap[i].opacity=QuantumRange*gamma_pow(QuantumScale*
image->colormap[i].opacity,PerceptibleReciprocal(gamma));
else
image->colormap[i].opacity=QuantumRange-QuantumRange*gamma_pow(
QuantumScale*(QuantumRange-image->colormap[i].opacity),1.0/
gamma);
}
#endif
}
}
/*
Gamma-correct image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
#if !defined(MAGICKCORE_HDRI_SUPPORT)
if ((channel & SyncChannels) != 0)
{
SetPixelRed(q,gamma_map[ScaleQuantumToMap(GetPixelRed(q))]);
SetPixelGreen(q,gamma_map[ScaleQuantumToMap(GetPixelGreen(q))]);
SetPixelBlue(q,gamma_map[ScaleQuantumToMap(GetPixelBlue(q))]);
}
else
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,gamma_map[ScaleQuantumToMap(GetPixelRed(q))]);
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,gamma_map[ScaleQuantumToMap(GetPixelGreen(q))]);
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,gamma_map[ScaleQuantumToMap(GetPixelBlue(q))]);
if ((channel & OpacityChannel) != 0)
{
if (image->matte == MagickFalse)
SetPixelOpacity(q,gamma_map[ScaleQuantumToMap(
GetPixelOpacity(q))]);
else
SetPixelAlpha(q,gamma_map[ScaleQuantumToMap((Quantum)
GetPixelAlpha(q))]);
}
}
#else
if ((channel & SyncChannels) != 0)
{
SetPixelRed(q,QuantumRange*gamma_pow(QuantumScale*GetPixelRed(q),
PerceptibleReciprocal(gamma)));
SetPixelGreen(q,QuantumRange*gamma_pow(QuantumScale*GetPixelGreen(q),
PerceptibleReciprocal(gamma)));
SetPixelBlue(q,QuantumRange*gamma_pow(QuantumScale*GetPixelBlue(q),
PerceptibleReciprocal(gamma)));
}
else
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,QuantumRange*gamma_pow(QuantumScale*GetPixelRed(q),
PerceptibleReciprocal(gamma)));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,QuantumRange*gamma_pow(QuantumScale*
GetPixelGreen(q),PerceptibleReciprocal(gamma)));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,QuantumRange*gamma_pow(QuantumScale*GetPixelBlue(q),
PerceptibleReciprocal(gamma)));
if ((channel & OpacityChannel) != 0)
{
if (image->matte == MagickFalse)
SetPixelOpacity(q,QuantumRange*gamma_pow(QuantumScale*
GetPixelOpacity(q),PerceptibleReciprocal(gamma)));
else
SetPixelAlpha(q,QuantumRange*gamma_pow(QuantumScale*
GetPixelAlpha(q),PerceptibleReciprocal(gamma)));
}
}
#endif
q++;
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
for (x=0; x < (ssize_t) image->columns; x++)
SetPixelIndex(indexes+x,gamma_map[ScaleQuantumToMap(
GetPixelIndex(indexes+x))]);
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,GammaImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
gamma_map=(Quantum *) RelinquishMagickMemory(gamma_map);
if (image->gamma != 0.0)
image->gamma*=gamma;
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G r a y s c a l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GrayscaleImage() converts the colors in the reference image to gray.
%
% The format of the GrayscaleImageChannel method is:
%
% MagickBooleanType GrayscaleImage(Image *image,
% const PixelIntensityMethod method)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
*/
MagickExport MagickBooleanType GrayscaleImage(Image *image,
const PixelIntensityMethod method)
{
#define GrayscaleImageTag "Grayscale/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->storage_class == PseudoClass)
{
if (SyncImage(image) == MagickFalse)
return(MagickFalse);
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
return(MagickFalse);
}
/*
Grayscale image.
*/
/* call opencl version */
#if defined(MAGICKCORE_OPENCL_SUPPORT)
if (AccelerateGrayscaleImage(image,method,&image->exception) != MagickFalse)
{
image->intensity=method;
image->type=GrayscaleType;
if ((method == Rec601LuminancePixelIntensityMethod) ||
(method == Rec709LuminancePixelIntensityMethod))
return(SetImageColorspace(image,LinearGRAYColorspace));
return(SetImageColorspace(image,GRAYColorspace));
}
#endif
status=MagickTrue;
progress=0;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
MagickRealType
blue,
green,
intensity,
red;
red=(MagickRealType) q->red;
green=(MagickRealType) q->green;
blue=(MagickRealType) q->blue;
intensity=0.0;
switch (method)
{
case AveragePixelIntensityMethod:
{
intensity=(red+green+blue)/3.0;
break;
}
case BrightnessPixelIntensityMethod:
{
intensity=MagickMax(MagickMax(red,green),blue);
break;
}
case LightnessPixelIntensityMethod:
{
intensity=(MagickMin(MagickMin(red,green),blue)+
MagickMax(MagickMax(red,green),blue))/2.0;
break;
}
case MSPixelIntensityMethod:
{
intensity=(MagickRealType) (((double) red*red+green*green+
blue*blue)/(3.0*QuantumRange));
break;
}
case Rec601LumaPixelIntensityMethod:
{
if (image->colorspace == RGBColorspace)
{
red=EncodePixelGamma(red);
green=EncodePixelGamma(green);
blue=EncodePixelGamma(blue);
}
intensity=0.298839*red+0.586811*green+0.114350*blue;
break;
}
case Rec601LuminancePixelIntensityMethod:
{
if (image->colorspace == sRGBColorspace)
{
red=DecodePixelGamma(red);
green=DecodePixelGamma(green);
blue=DecodePixelGamma(blue);
}
intensity=0.298839*red+0.586811*green+0.114350*blue;
break;
}
case Rec709LumaPixelIntensityMethod:
default:
{
if (image->colorspace == RGBColorspace)
{
red=EncodePixelGamma(red);
green=EncodePixelGamma(green);
blue=EncodePixelGamma(blue);
}
intensity=0.212656*red+0.715158*green+0.072186*blue;
break;
}
case Rec709LuminancePixelIntensityMethod:
{
if (image->colorspace == sRGBColorspace)
{
red=DecodePixelGamma(red);
green=DecodePixelGamma(green);
blue=DecodePixelGamma(blue);
}
intensity=0.212656*red+0.715158*green+0.072186*blue;
break;
}
case RMSPixelIntensityMethod:
{
intensity=(MagickRealType) (sqrt((double) red*red+green*green+
blue*blue)/sqrt(3.0));
break;
}
}
SetPixelGray(q,ClampToQuantum(intensity));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,GrayscaleImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
image->intensity=method;
image->type=GrayscaleType;
if ((method == Rec601LuminancePixelIntensityMethod) ||
(method == Rec709LuminancePixelIntensityMethod))
return(SetImageColorspace(image,LinearGRAYColorspace));
return(SetImageColorspace(image,GRAYColorspace));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% H a l d C l u t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% HaldClutImage() applies a Hald color lookup table to the image. A Hald
% color lookup table is a 3-dimensional color cube mapped to 2 dimensions.
% Create it with the HALD coder. You can apply any color transformation to
% the Hald image and then use this method to apply the transform to the
% image.
%
% The format of the HaldClutImage method is:
%
% MagickBooleanType HaldClutImage(Image *image,Image *hald_image)
% MagickBooleanType HaldClutImageChannel(Image *image,
% const ChannelType channel,Image *hald_image)
%
% A description of each parameter follows:
%
% o image: the image, which is replaced by indexed CLUT values
%
% o hald_image: the color lookup table image for replacement color values.
%
% o channel: the channel.
%
*/
MagickExport MagickBooleanType HaldClutImage(Image *image,
const Image *hald_image)
{
return(HaldClutImageChannel(image,DefaultChannels,hald_image));
}
MagickExport MagickBooleanType HaldClutImageChannel(Image *image,
const ChannelType channel,const Image *hald_image)
{
#define HaldClutImageTag "Clut/Image"
typedef struct _HaldInfo
{
MagickRealType
x,
y,
z;
} HaldInfo;
CacheView
*hald_view,
*image_view;
double
width;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
zero;
size_t
cube_size,
length,
level;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(hald_image != (Image *) NULL);
assert(hald_image->signature == MagickCoreSignature);
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
return(MagickFalse);
if (IsGrayColorspace(image->colorspace) != MagickFalse)
(void) SetImageColorspace(image,sRGBColorspace);
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
/*
Hald clut image.
*/
status=MagickTrue;
progress=0;
length=(size_t) MagickMin((MagickRealType) hald_image->columns,
(MagickRealType) hald_image->rows);
for (level=2; (level*level*level) < length; level++) ;
level*=level;
cube_size=level*level;
width=(double) hald_image->columns;
GetMagickPixelPacket(hald_image,&zero);
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
hald_view=AcquireAuthenticCacheView(hald_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,hald_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
area,
offset;
HaldInfo
point;
MagickPixelPacket
pixel,
pixel1,
pixel2,
pixel3,
pixel4;
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(hald_view);
pixel=zero;
pixel1=zero;
pixel2=zero;
pixel3=zero;
pixel4=zero;
for (x=0; x < (ssize_t) image->columns; x++)
{
point.x=QuantumScale*(level-1.0)*GetPixelRed(q);
point.y=QuantumScale*(level-1.0)*GetPixelGreen(q);
point.z=QuantumScale*(level-1.0)*GetPixelBlue(q);
offset=(double) (point.x+level*floor(point.y)+cube_size*floor(point.z));
point.x-=floor(point.x);
point.y-=floor(point.y);
point.z-=floor(point.z);
status=InterpolateMagickPixelPacket(image,hald_view,
UndefinedInterpolatePixel,fmod(offset,width),floor(offset/width),
&pixel1,exception);
if (status == MagickFalse)
break;
status=InterpolateMagickPixelPacket(image,hald_view,
UndefinedInterpolatePixel,fmod(offset+level,width),floor((offset+level)/
width),&pixel2,exception);
if (status == MagickFalse)
break;
area=point.y;
if (hald_image->interpolate == NearestNeighborInterpolatePixel)
area=(point.y < 0.5) ? 0.0 : 1.0;
MagickPixelCompositeAreaBlend(&pixel1,pixel1.opacity,&pixel2,
pixel2.opacity,area,&pixel3);
offset+=cube_size;
status=InterpolateMagickPixelPacket(image,hald_view,
UndefinedInterpolatePixel,fmod(offset,width),floor(offset/width),
&pixel1,exception);
if (status == MagickFalse)
break;
status=InterpolateMagickPixelPacket(image,hald_view,
UndefinedInterpolatePixel,fmod(offset+level,width),floor((offset+level)/
width),&pixel2,exception);
if (status == MagickFalse)
break;
MagickPixelCompositeAreaBlend(&pixel1,pixel1.opacity,&pixel2,
pixel2.opacity,area,&pixel4);
area=point.z;
if (hald_image->interpolate == NearestNeighborInterpolatePixel)
area=(point.z < 0.5)? 0.0 : 1.0;
MagickPixelCompositeAreaBlend(&pixel3,pixel3.opacity,&pixel4,
pixel4.opacity,area,&pixel);
if ((channel & RedChannel) != 0)
SetPixelRed(q,ClampToQuantum(pixel.red));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,ClampToQuantum(pixel.green));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,ClampToQuantum(pixel.blue));
if (((channel & OpacityChannel) != 0) && (image->matte != MagickFalse))
SetPixelOpacity(q,ClampToQuantum(pixel.opacity));
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(indexes+x,ClampToQuantum(pixel.index));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,HaldClutImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
hald_view=DestroyCacheView(hald_view);
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L e v e l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LevelImage() adjusts the levels of a particular image channel by
% scaling the colors falling between specified white and black points to
% the full available quantum range.
%
% The parameters provided represent the black, and white points. The black
% point specifies the darkest color in the image. Colors darker than the
% black point are set to zero. White point specifies the lightest color in
% the image. Colors brighter than the white point are set to the maximum
% quantum value.
%
% If a '!' flag is given, map black and white colors to the given levels
% rather than mapping those levels to black and white. See
% LevelizeImageChannel() and LevelizeImageChannel(), below.
%
% Gamma specifies a gamma correction to apply to the image.
%
% The format of the LevelImage method is:
%
% MagickBooleanType LevelImage(Image *image,const char *levels)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o levels: Specify the levels where the black and white points have the
% range of 0-QuantumRange, and gamma has the range 0-10 (e.g. 10x90%+2).
% A '!' flag inverts the re-mapping.
%
*/
MagickExport MagickBooleanType LevelImage(Image *image,const char *levels)
{
double
black_point,
gamma,
white_point;
GeometryInfo
geometry_info;
MagickBooleanType
status;
MagickStatusType
flags;
/*
Parse levels.
*/
if (levels == (char *) NULL)
return(MagickFalse);
flags=ParseGeometry(levels,&geometry_info);
black_point=geometry_info.rho;
white_point=(double) QuantumRange;
if ((flags & SigmaValue) != 0)
white_point=geometry_info.sigma;
gamma=1.0;
if ((flags & XiValue) != 0)
gamma=geometry_info.xi;
if ((flags & PercentValue) != 0)
{
black_point*=(double) image->columns*image->rows/100.0;
white_point*=(double) image->columns*image->rows/100.0;
}
if ((flags & SigmaValue) == 0)
white_point=(double) QuantumRange-black_point;
if ((flags & AspectValue ) == 0)
status=LevelImageChannel(image,DefaultChannels,black_point,white_point,
gamma);
else
status=LevelizeImage(image,black_point,white_point,gamma);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L e v e l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LevelImage() applies the normal level operation to the image, spreading
% out the values between the black and white points over the entire range of
% values. Gamma correction is also applied after the values has been mapped.
%
% It is typically used to improve image contrast, or to provide a controlled
% linear threshold for the image. If the black and white points are set to
% the minimum and maximum values found in the image, the image can be
% normalized. or by swapping black and white values, negate the image.
%
% The format of the LevelImage method is:
%
% MagickBooleanType LevelImage(Image *image,const double black_point,
% const double white_point,const double gamma)
% MagickBooleanType LevelImageChannel(Image *image,
% const ChannelType channel,const double black_point,
% const double white_point,const double gamma)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o black_point: The level which is to be mapped to zero (black)
%
% o white_point: The level which is to be mapped to QuantumRange (white)
%
% o gamma: adjust gamma by this factor before mapping values.
% use 1.0 for purely linear stretching of image color values
%
*/
static inline double LevelPixel(const double black_point,
const double white_point,const double gamma,const MagickRealType pixel)
{
double
level_pixel,
scale;
scale=PerceptibleReciprocal(white_point-black_point);
level_pixel=QuantumRange*gamma_pow(scale*((double) pixel-black_point),
PerceptibleReciprocal(gamma));
return(level_pixel);
}
MagickExport MagickBooleanType LevelImageChannel(Image *image,
const ChannelType channel,const double black_point,const double white_point,
const double gamma)
{
#define LevelImageTag "Level/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
i;
ssize_t
y;
/*
Allocate and initialize levels map.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->storage_class == PseudoClass)
for (i=0; i < (ssize_t) image->colors; i++)
{
/*
Level colormap.
*/
if ((channel & RedChannel) != 0)
image->colormap[i].red=(Quantum) ClampToQuantum(LevelPixel(black_point,
white_point,gamma,(MagickRealType) image->colormap[i].red));
if ((channel & GreenChannel) != 0)
image->colormap[i].green=(Quantum) ClampToQuantum(LevelPixel(
black_point,white_point,gamma,(MagickRealType)
image->colormap[i].green));
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=(Quantum) ClampToQuantum(LevelPixel(black_point,
white_point,gamma,(MagickRealType) image->colormap[i].blue));
if ((channel & OpacityChannel) != 0)
image->colormap[i].opacity=(Quantum) (QuantumRange-(Quantum)
ClampToQuantum(LevelPixel(black_point,white_point,gamma,
(MagickRealType) (QuantumRange-image->colormap[i].opacity))));
}
/*
Level image.
*/
status=MagickTrue;
progress=0;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,ClampToQuantum(LevelPixel(black_point,white_point,gamma,
(MagickRealType) GetPixelRed(q))));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,ClampToQuantum(LevelPixel(black_point,white_point,gamma,
(MagickRealType) GetPixelGreen(q))));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,ClampToQuantum(LevelPixel(black_point,white_point,gamma,
(MagickRealType) GetPixelBlue(q))));
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
SetPixelAlpha(q,ClampToQuantum(LevelPixel(black_point,white_point,gamma,
(MagickRealType) GetPixelAlpha(q))));
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(indexes+x,ClampToQuantum(LevelPixel(black_point,
white_point,gamma,(MagickRealType) GetPixelIndex(indexes+x))));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,LevelImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
(void) ClampImage(image);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L e v e l i z e I m a g e C h a n n e l %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LevelizeImageChannel() applies the reversed LevelImage() operation to just
% the specific channels specified. It compresses the full range of color
% values, so that they lie between the given black and white points. Gamma is
% applied before the values are mapped.
%
% LevelizeImageChannel() can be called with by using a +level command line
% API option, or using a '!' on a -level or LevelImage() geometry string.
%
% It can be used for example de-contrast a greyscale image to the exact
% levels specified. Or by using specific levels for each channel of an image
% you can convert a gray-scale image to any linear color gradient, according
% to those levels.
%
% The format of the LevelizeImageChannel method is:
%
% MagickBooleanType LevelizeImageChannel(Image *image,
% const ChannelType channel,const char *levels)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o black_point: The level to map zero (black) to.
%
% o white_point: The level to map QuantumRange (white) to.
%
% o gamma: adjust gamma by this factor before mapping values.
%
*/
MagickExport MagickBooleanType LevelizeImage(Image *image,
const double black_point,const double white_point,const double gamma)
{
MagickBooleanType
status;
status=LevelizeImageChannel(image,DefaultChannels,black_point,white_point,
gamma);
return(status);
}
MagickExport MagickBooleanType LevelizeImageChannel(Image *image,
const ChannelType channel,const double black_point,const double white_point,
const double gamma)
{
#define LevelizeImageTag "Levelize/Image"
#define LevelizeValue(x) ClampToQuantum(((MagickRealType) gamma_pow((double) \
(QuantumScale*(x)),gamma))*(white_point-black_point)+black_point)
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
i;
ssize_t
y;
/*
Allocate and initialize levels map.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->storage_class == PseudoClass)
for (i=0; i < (ssize_t) image->colors; i++)
{
/*
Level colormap.
*/
if ((channel & RedChannel) != 0)
image->colormap[i].red=LevelizeValue(image->colormap[i].red);
if ((channel & GreenChannel) != 0)
image->colormap[i].green=LevelizeValue(image->colormap[i].green);
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=LevelizeValue(image->colormap[i].blue);
if ((channel & OpacityChannel) != 0)
image->colormap[i].opacity=(Quantum) (QuantumRange-LevelizeValue(
QuantumRange-image->colormap[i].opacity));
}
/*
Level image.
*/
status=MagickTrue;
progress=0;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,LevelizeValue(GetPixelRed(q)));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,LevelizeValue(GetPixelGreen(q)));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,LevelizeValue(GetPixelBlue(q)));
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
SetPixelAlpha(q,LevelizeValue(GetPixelAlpha(q)));
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(indexes+x,LevelizeValue(GetPixelIndex(indexes+x)));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,LevelizeImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L e v e l I m a g e C o l o r s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LevelImageColor() maps the given color to "black" and "white" values,
% linearly spreading out the colors, and level values on a channel by channel
% bases, as per LevelImage(). The given colors allows you to specify
% different level ranges for each of the color channels separately.
%
% If the boolean 'invert' is set true the image values will modifyed in the
% reverse direction. That is any existing "black" and "white" colors in the
% image will become the color values given, with all other values compressed
% appropriatally. This effectivally maps a greyscale gradient into the given
% color gradient.
%
% The format of the LevelColorsImageChannel method is:
%
% MagickBooleanType LevelColorsImage(Image *image,
% const MagickPixelPacket *black_color,
% const MagickPixelPacket *white_color,const MagickBooleanType invert)
% MagickBooleanType LevelColorsImageChannel(Image *image,
% const ChannelType channel,const MagickPixelPacket *black_color,
% const MagickPixelPacket *white_color,const MagickBooleanType invert)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o black_color: The color to map black to/from
%
% o white_point: The color to map white to/from
%
% o invert: if true map the colors (levelize), rather than from (level)
%
*/
MagickExport MagickBooleanType LevelColorsImage(Image *image,
const MagickPixelPacket *black_color,const MagickPixelPacket *white_color,
const MagickBooleanType invert)
{
MagickBooleanType
status;
status=LevelColorsImageChannel(image,DefaultChannels,black_color,white_color,
invert);
return(status);
}
MagickExport MagickBooleanType LevelColorsImageChannel(Image *image,
const ChannelType channel,const MagickPixelPacket *black_color,
const MagickPixelPacket *white_color,const MagickBooleanType invert)
{
MagickStatusType
status;
/*
Allocate and initialize levels map.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if ((IsGrayColorspace(image->colorspace) != MagickFalse) &&
((IsGrayColorspace(black_color->colorspace) != MagickFalse) ||
(IsGrayColorspace(white_color->colorspace) != MagickFalse)))
(void) SetImageColorspace(image,sRGBColorspace);
status=MagickTrue;
if (invert == MagickFalse)
{
if ((channel & RedChannel) != 0)
status&=LevelImageChannel(image,RedChannel,black_color->red,
white_color->red,(double) 1.0);
if ((channel & GreenChannel) != 0)
status&=LevelImageChannel(image,GreenChannel,black_color->green,
white_color->green,(double) 1.0);
if ((channel & BlueChannel) != 0)
status&=LevelImageChannel(image,BlueChannel,black_color->blue,
white_color->blue,(double) 1.0);
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
status&=LevelImageChannel(image,OpacityChannel,black_color->opacity,
white_color->opacity,(double) 1.0);
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
status&=LevelImageChannel(image,IndexChannel,black_color->index,
white_color->index,(double) 1.0);
}
else
{
if ((channel & RedChannel) != 0)
status&=LevelizeImageChannel(image,RedChannel,black_color->red,
white_color->red,(double) 1.0);
if ((channel & GreenChannel) != 0)
status&=LevelizeImageChannel(image,GreenChannel,black_color->green,
white_color->green,(double) 1.0);
if ((channel & BlueChannel) != 0)
status&=LevelizeImageChannel(image,BlueChannel,black_color->blue,
white_color->blue,(double) 1.0);
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
status&=LevelizeImageChannel(image,OpacityChannel,black_color->opacity,
white_color->opacity,(double) 1.0);
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
status&=LevelizeImageChannel(image,IndexChannel,black_color->index,
white_color->index,(double) 1.0);
}
return(status == 0 ? MagickFalse : MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L i n e a r S t r e t c h I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LinearStretchImage() discards any pixels below the black point and above
% the white point and levels the remaining pixels.
%
% The format of the LinearStretchImage method is:
%
% MagickBooleanType LinearStretchImage(Image *image,
% const double black_point,const double white_point)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o black_point: the black point.
%
% o white_point: the white point.
%
*/
MagickExport MagickBooleanType LinearStretchImage(Image *image,
const double black_point,const double white_point)
{
#define LinearStretchImageTag "LinearStretch/Image"
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickRealType
*histogram,
intensity;
ssize_t
black,
white,
y;
/*
Allocate histogram and linear map.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
exception=(&image->exception);
histogram=(MagickRealType *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*histogram));
if (histogram == (MagickRealType *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
/*
Form histogram.
*/
(void) memset(histogram,0,(MaxMap+1)*sizeof(*histogram));
for (y=0; y < (ssize_t) image->rows; y++)
{
const PixelPacket
*magick_restrict p;
ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=(ssize_t) image->columns-1; x >= 0; x--)
{
histogram[ScaleQuantumToMap(ClampToQuantum(GetPixelIntensity(image,p)))]++;
p++;
}
}
/*
Find the histogram boundaries by locating the black and white point levels.
*/
intensity=0.0;
for (black=0; black < (ssize_t) MaxMap; black++)
{
intensity+=histogram[black];
if (intensity >= black_point)
break;
}
intensity=0.0;
for (white=(ssize_t) MaxMap; white != 0; white--)
{
intensity+=histogram[white];
if (intensity >= white_point)
break;
}
histogram=(MagickRealType *) RelinquishMagickMemory(histogram);
status=LevelImageChannel(image,DefaultChannels,(double)
ScaleMapToQuantum(black),(double) ScaleMapToQuantum(white),1.0);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M o d u l a t e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ModulateImage() lets you control the brightness, saturation, and hue
% of an image. Modulate represents the brightness, saturation, and hue
% as one parameter (e.g. 90,150,100). If the image colorspace is HSL, the
% modulation is lightness, saturation, and hue. For HWB, use blackness,
% whiteness, and hue. And for HCL, use chrome, luma, and hue.
%
% The format of the ModulateImage method is:
%
% MagickBooleanType ModulateImage(Image *image,const char *modulate)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o modulate: Define the percent change in brightness, saturation, and
% hue.
%
*/
static inline void ModulateHCL(const double percent_hue,
const double percent_chroma,const double percent_luma,Quantum *red,
Quantum *green,Quantum *blue)
{
double
hue,
luma,
chroma;
/*
Increase or decrease color luma, chroma, or hue.
*/
ConvertRGBToHCL(*red,*green,*blue,&hue,&chroma,&luma);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
chroma*=0.01*percent_chroma;
luma*=0.01*percent_luma;
ConvertHCLToRGB(hue,chroma,luma,red,green,blue);
}
static inline void ModulateHCLp(const double percent_hue,
const double percent_chroma,const double percent_luma,Quantum *red,
Quantum *green,Quantum *blue)
{
double
hue,
luma,
chroma;
/*
Increase or decrease color luma, chroma, or hue.
*/
ConvertRGBToHCLp(*red,*green,*blue,&hue,&chroma,&luma);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
chroma*=0.01*percent_chroma;
luma*=0.01*percent_luma;
ConvertHCLpToRGB(hue,chroma,luma,red,green,blue);
}
static inline void ModulateHSB(const double percent_hue,
const double percent_saturation,const double percent_brightness,Quantum *red,
Quantum *green,Quantum *blue)
{
double
brightness,
hue,
saturation;
/*
Increase or decrease color brightness, saturation, or hue.
*/
ConvertRGBToHSB(*red,*green,*blue,&hue,&saturation,&brightness);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
saturation*=0.01*percent_saturation;
brightness*=0.01*percent_brightness;
ConvertHSBToRGB(hue,saturation,brightness,red,green,blue);
}
static inline void ModulateHSI(const double percent_hue,
const double percent_saturation,const double percent_intensity,Quantum *red,
Quantum *green,Quantum *blue)
{
double
intensity,
hue,
saturation;
/*
Increase or decrease color intensity, saturation, or hue.
*/
ConvertRGBToHSI(*red,*green,*blue,&hue,&saturation,&intensity);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
saturation*=0.01*percent_saturation;
intensity*=0.01*percent_intensity;
ConvertHSIToRGB(hue,saturation,intensity,red,green,blue);
}
static inline void ModulateHSL(const double percent_hue,
const double percent_saturation,const double percent_lightness,Quantum *red,
Quantum *green,Quantum *blue)
{
double
hue,
lightness,
saturation;
/*
Increase or decrease color lightness, saturation, or hue.
*/
ConvertRGBToHSL(*red,*green,*blue,&hue,&saturation,&lightness);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
saturation*=0.01*percent_saturation;
lightness*=0.01*percent_lightness;
ConvertHSLToRGB(hue,saturation,lightness,red,green,blue);
}
static inline void ModulateHSV(const double percent_hue,
const double percent_saturation,const double percent_value,Quantum *red,
Quantum *green,Quantum *blue)
{
double
hue,
saturation,
value;
/*
Increase or decrease color value, saturation, or hue.
*/
ConvertRGBToHSV(*red,*green,*blue,&hue,&saturation,&value);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
saturation*=0.01*percent_saturation;
value*=0.01*percent_value;
ConvertHSVToRGB(hue,saturation,value,red,green,blue);
}
static inline void ModulateHWB(const double percent_hue,
const double percent_whiteness,const double percent_blackness,Quantum *red,
Quantum *green,Quantum *blue)
{
double
blackness,
hue,
whiteness;
/*
Increase or decrease color blackness, whiteness, or hue.
*/
ConvertRGBToHWB(*red,*green,*blue,&hue,&whiteness,&blackness);
hue+=fmod((percent_hue-100.0),200.0)/200.0;
blackness*=0.01*percent_blackness;
whiteness*=0.01*percent_whiteness;
ConvertHWBToRGB(hue,whiteness,blackness,red,green,blue);
}
static inline void ModulateLCHab(const double percent_luma,
const double percent_chroma,const double percent_hue,Quantum *red,
Quantum *green,Quantum *blue)
{
double
hue,
luma,
chroma;
/*
Increase or decrease color luma, chroma, or hue.
*/
ConvertRGBToLCHab(*red,*green,*blue,&luma,&chroma,&hue);
luma*=0.01*percent_luma;
chroma*=0.01*percent_chroma;
hue+=fmod((percent_hue-100.0),200.0)/200.0;
ConvertLCHabToRGB(luma,chroma,hue,red,green,blue);
}
static inline void ModulateLCHuv(const double percent_luma,
const double percent_chroma,const double percent_hue,Quantum *red,
Quantum *green,Quantum *blue)
{
double
hue,
luma,
chroma;
/*
Increase or decrease color luma, chroma, or hue.
*/
ConvertRGBToLCHuv(*red,*green,*blue,&luma,&chroma,&hue);
luma*=0.01*percent_luma;
chroma*=0.01*percent_chroma;
hue+=fmod((percent_hue-100.0),200.0)/200.0;
ConvertLCHuvToRGB(luma,chroma,hue,red,green,blue);
}
MagickExport MagickBooleanType ModulateImage(Image *image,const char *modulate)
{
#define ModulateImageTag "Modulate/Image"
CacheView
*image_view;
ColorspaceType
colorspace;
const char
*artifact;
double
percent_brightness,
percent_hue,
percent_saturation;
ExceptionInfo
*exception;
GeometryInfo
geometry_info;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickStatusType
flags;
ssize_t
i;
ssize_t
y;
/*
Initialize modulate table.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (modulate == (char *) NULL)
return(MagickFalse);
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
(void) SetImageColorspace(image,sRGBColorspace);
flags=ParseGeometry(modulate,&geometry_info);
percent_brightness=geometry_info.rho;
percent_saturation=geometry_info.sigma;
if ((flags & SigmaValue) == 0)
percent_saturation=100.0;
percent_hue=geometry_info.xi;
if ((flags & XiValue) == 0)
percent_hue=100.0;
colorspace=UndefinedColorspace;
artifact=GetImageArtifact(image,"modulate:colorspace");
if (artifact != (const char *) NULL)
colorspace=(ColorspaceType) ParseCommandOption(MagickColorspaceOptions,
MagickFalse,artifact);
if (image->storage_class == PseudoClass)
for (i=0; i < (ssize_t) image->colors; i++)
{
Quantum
blue,
green,
red;
/*
Modulate image colormap.
*/
red=image->colormap[i].red;
green=image->colormap[i].green;
blue=image->colormap[i].blue;
switch (colorspace)
{
case HCLColorspace:
{
ModulateHCL(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HCLpColorspace:
{
ModulateHCLp(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSBColorspace:
{
ModulateHSB(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSIColorspace:
{
ModulateHSI(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSLColorspace:
default:
{
ModulateHSL(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSVColorspace:
{
ModulateHSV(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HWBColorspace:
{
ModulateHWB(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case LCHabColorspace:
case LCHColorspace:
{
ModulateLCHab(percent_brightness,percent_saturation,percent_hue,
&red,&green,&blue);
break;
}
case LCHuvColorspace:
{
ModulateLCHuv(percent_brightness,percent_saturation,percent_hue,
&red,&green,&blue);
break;
}
}
image->colormap[i].red=red;
image->colormap[i].green=green;
image->colormap[i].blue=blue;
}
/*
Modulate image.
*/
/* call opencl version */
#if defined(MAGICKCORE_OPENCL_SUPPORT)
status=AccelerateModulateImage(image,percent_brightness,percent_hue,
percent_saturation,colorspace,&image->exception);
if (status != MagickFalse)
return status;
#endif
status=MagickTrue;
progress=0;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
Quantum
blue,
green,
red;
red=GetPixelRed(q);
green=GetPixelGreen(q);
blue=GetPixelBlue(q);
switch (colorspace)
{
case HCLColorspace:
{
ModulateHCL(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HCLpColorspace:
{
ModulateHCLp(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSBColorspace:
{
ModulateHSB(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSLColorspace:
default:
{
ModulateHSL(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HSVColorspace:
{
ModulateHSV(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case HWBColorspace:
{
ModulateHWB(percent_hue,percent_saturation,percent_brightness,
&red,&green,&blue);
break;
}
case LCHabColorspace:
{
ModulateLCHab(percent_brightness,percent_saturation,percent_hue,
&red,&green,&blue);
break;
}
case LCHColorspace:
case LCHuvColorspace:
{
ModulateLCHuv(percent_brightness,percent_saturation,percent_hue,
&red,&green,&blue);
break;
}
}
SetPixelRed(q,red);
SetPixelGreen(q,green);
SetPixelBlue(q,blue);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ModulateImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% N e g a t e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% NegateImage() negates the colors in the reference image. The grayscale
% option means that only grayscale values within the image are negated.
%
% The format of the NegateImageChannel method is:
%
% MagickBooleanType NegateImage(Image *image,
% const MagickBooleanType grayscale)
% MagickBooleanType NegateImageChannel(Image *image,
% const ChannelType channel,const MagickBooleanType grayscale)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o grayscale: If MagickTrue, only negate grayscale pixels within the image.
%
*/
MagickExport MagickBooleanType NegateImage(Image *image,
const MagickBooleanType grayscale)
{
MagickBooleanType
status;
status=NegateImageChannel(image,DefaultChannels,grayscale);
return(status);
}
MagickExport MagickBooleanType NegateImageChannel(Image *image,
const ChannelType channel,const MagickBooleanType grayscale)
{
#define NegateImageTag "Negate/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
i;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->storage_class == PseudoClass)
{
/*
Negate colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
if (grayscale != MagickFalse)
if ((image->colormap[i].red != image->colormap[i].green) ||
(image->colormap[i].green != image->colormap[i].blue))
continue;
if ((channel & RedChannel) != 0)
image->colormap[i].red=QuantumRange-image->colormap[i].red;
if ((channel & GreenChannel) != 0)
image->colormap[i].green=QuantumRange-image->colormap[i].green;
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=QuantumRange-image->colormap[i].blue;
}
}
/*
Negate image.
*/
status=MagickTrue;
progress=0;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
if (grayscale != MagickFalse)
{
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((GetPixelRed(q) != GetPixelGreen(q)) ||
(GetPixelGreen(q) != GetPixelBlue(q)))
{
q++;
continue;
}
if ((channel & RedChannel) != 0)
SetPixelRed(q,QuantumRange-GetPixelRed(q));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,QuantumRange-GetPixelGreen(q));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,QuantumRange-GetPixelBlue(q));
if ((channel & OpacityChannel) != 0)
SetPixelOpacity(q,QuantumRange-GetPixelOpacity(q));
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(indexes+x,QuantumRange-GetPixelIndex(indexes+x));
q++;
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,NegateImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(MagickTrue);
}
/*
Negate image.
*/
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
if (channel == DefaultChannels)
for (x=0; x < (ssize_t) image->columns; x++)
{
SetPixelRed(q+x,QuantumRange-GetPixelRed(q+x));
SetPixelGreen(q+x,QuantumRange-GetPixelGreen(q+x));
SetPixelBlue(q+x,QuantumRange-GetPixelBlue(q+x));
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q+x,QuantumRange-GetPixelRed(q+x));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q+x,QuantumRange-GetPixelGreen(q+x));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q+x,QuantumRange-GetPixelBlue(q+x));
if ((channel & OpacityChannel) != 0)
SetPixelOpacity(q+x,QuantumRange-GetPixelOpacity(q+x));
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
for (x=0; x < (ssize_t) image->columns; x++)
SetPixelIndex(indexes+x,QuantumRange-GetPixelIndex(indexes+x));
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,NegateImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% N o r m a l i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The NormalizeImage() method enhances the contrast of a color image by
% mapping the darkest 2 percent of all pixel to black and the brightest
% 1 percent to white.
%
% The format of the NormalizeImage method is:
%
% MagickBooleanType NormalizeImage(Image *image)
% MagickBooleanType NormalizeImageChannel(Image *image,
% const ChannelType channel)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
*/
MagickExport MagickBooleanType NormalizeImage(Image *image)
{
MagickBooleanType
status;
status=NormalizeImageChannel(image,DefaultChannels);
return(status);
}
MagickExport MagickBooleanType NormalizeImageChannel(Image *image,
const ChannelType channel)
{
double
black_point,
white_point;
black_point=(double) image->columns*image->rows*0.0015;
white_point=(double) image->columns*image->rows*0.9995;
return(ContrastStretchImageChannel(image,channel,black_point,white_point));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S i g m o i d a l C o n t r a s t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SigmoidalContrastImage() adjusts the contrast of an image with a non-linear
% sigmoidal contrast algorithm. Increase the contrast of the image using a
% sigmoidal transfer function without saturating highlights or shadows.
% Contrast indicates how much to increase the contrast (0 is none; 3 is
% typical; 20 is pushing it); mid-point indicates where midtones fall in the
% resultant image (0 is white; 50% is middle-gray; 100% is black). Set
% sharpen to MagickTrue to increase the image contrast otherwise the contrast
% is reduced.
%
% The format of the SigmoidalContrastImage method is:
%
% MagickBooleanType SigmoidalContrastImage(Image *image,
% const MagickBooleanType sharpen,const char *levels)
% MagickBooleanType SigmoidalContrastImageChannel(Image *image,
% const ChannelType channel,const MagickBooleanType sharpen,
% const double contrast,const double midpoint)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o sharpen: Increase or decrease image contrast.
%
% o contrast: strength of the contrast, the larger the number the more
% 'threshold-like' it becomes.
%
% o midpoint: midpoint of the function as a color value 0 to QuantumRange.
%
*/
/*
ImageMagick 7 has a version of this function which does not use LUTs.
*/
/*
Sigmoidal function Sigmoidal with inflexion point moved to b and "slope
constant" set to a.
The first version, based on the hyperbolic tangent tanh, when combined with
the scaling step, is an exact arithmetic clone of the sigmoid function
based on the logistic curve. The equivalence is based on the identity
1/(1+exp(-t)) = (1+tanh(t/2))/2
(http://de.wikipedia.org/wiki/Sigmoidfunktion) and the fact that the
scaled sigmoidal derivation is invariant under affine transformations of
the ordinate.
The tanh version is almost certainly more accurate and cheaper. The 0.5
factor in the argument is to clone the legacy ImageMagick behavior. The
reason for making the define depend on atanh even though it only uses tanh
has to do with the construction of the inverse of the scaled sigmoidal.
*/
#if defined(MAGICKCORE_HAVE_ATANH)
#define Sigmoidal(a,b,x) ( tanh((0.5*(a))*((x)-(b))) )
#else
#define Sigmoidal(a,b,x) ( 1.0/(1.0+exp((a)*((b)-(x)))) )
#endif
/*
Scaled sigmoidal function:
( Sigmoidal(a,b,x) - Sigmoidal(a,b,0) ) /
( Sigmoidal(a,b,1) - Sigmoidal(a,b,0) )
See http://osdir.com/ml/video.image-magick.devel/2005-04/msg00006.html and
http://www.cs.dartmouth.edu/farid/downloads/tutorials/fip.pdf. The limit
of ScaledSigmoidal as a->0 is the identity, but a=0 gives a division by
zero. This is fixed below by exiting immediately when contrast is small,
leaving the image (or colormap) unmodified. This appears to be safe because
the series expansion of the logistic sigmoidal function around x=b is
1/2-a*(b-x)/4+...
so that the key denominator s(1)-s(0) is about a/4 (a/2 with tanh).
*/
#define ScaledSigmoidal(a,b,x) ( \
(Sigmoidal((a),(b),(x))-Sigmoidal((a),(b),0.0)) / \
(Sigmoidal((a),(b),1.0)-Sigmoidal((a),(b),0.0)) )
/*
Inverse of ScaledSigmoidal, used for +sigmoidal-contrast. Because b
may be 0 or 1, the argument of the hyperbolic tangent (resp. logistic
sigmoidal) may be outside of the interval (-1,1) (resp. (0,1)), even
when creating a LUT from in gamut values, hence the branching. In
addition, HDRI may have out of gamut values.
InverseScaledSigmoidal is not a two-sided inverse of ScaledSigmoidal:
It is only a right inverse. This is unavoidable.
*/
static inline double InverseScaledSigmoidal(const double a,const double b,
const double x)
{
const double sig0=Sigmoidal(a,b,0.0);
const double sig1=Sigmoidal(a,b,1.0);
const double argument=(sig1-sig0)*x+sig0;
const double clamped=
(
#if defined(MAGICKCORE_HAVE_ATANH)
argument < -1+MagickEpsilon
?
-1+MagickEpsilon
:
( argument > 1-MagickEpsilon ? 1-MagickEpsilon : argument )
);
return(b+(2.0/a)*atanh(clamped));
#else
argument < MagickEpsilon
?
MagickEpsilon
:
( argument > 1-MagickEpsilon ? 1-MagickEpsilon : argument )
);
return(b-log(1.0/clamped-1.0)/a);
#endif
}
MagickExport MagickBooleanType SigmoidalContrastImage(Image *image,
const MagickBooleanType sharpen,const char *levels)
{
GeometryInfo
geometry_info;
MagickBooleanType
status;
MagickStatusType
flags;
flags=ParseGeometry(levels,&geometry_info);
if ((flags & SigmaValue) == 0)
geometry_info.sigma=1.0*QuantumRange/2.0;
if ((flags & PercentValue) != 0)
geometry_info.sigma=1.0*QuantumRange*geometry_info.sigma/100.0;
status=SigmoidalContrastImageChannel(image,DefaultChannels,sharpen,
geometry_info.rho,geometry_info.sigma);
return(status);
}
MagickExport MagickBooleanType SigmoidalContrastImageChannel(Image *image,
const ChannelType channel,const MagickBooleanType sharpen,
const double contrast,const double midpoint)
{
#define SigmoidalContrastImageTag "SigmoidalContrast/Image"
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickRealType
*sigmoidal_map;
ssize_t
i;
ssize_t
y;
/*
Side effect: clamps values unless contrast<MagickEpsilon, in which
case nothing is done.
*/
if (contrast < MagickEpsilon)
return(MagickTrue);
/*
Allocate and initialize sigmoidal maps.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
exception=(&image->exception);
sigmoidal_map=(MagickRealType *) AcquireQuantumMemory(MaxMap+1UL,
sizeof(*sigmoidal_map));
if (sigmoidal_map == (MagickRealType *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
(void) memset(sigmoidal_map,0,(MaxMap+1)*sizeof(*sigmoidal_map));
if (sharpen != MagickFalse)
for (i=0; i <= (ssize_t) MaxMap; i++)
sigmoidal_map[i]=(MagickRealType) ScaleMapToQuantum((MagickRealType)
(MaxMap*ScaledSigmoidal(contrast,QuantumScale*midpoint,(double) i/
MaxMap)));
else
for (i=0; i <= (ssize_t) MaxMap; i++)
sigmoidal_map[i]=(MagickRealType) ScaleMapToQuantum((MagickRealType) (
MaxMap*InverseScaledSigmoidal(contrast,QuantumScale*midpoint,(double) i/
MaxMap)));
/*
Sigmoidal-contrast enhance colormap.
*/
if (image->storage_class == PseudoClass)
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((channel & RedChannel) != 0)
image->colormap[i].red=ClampToQuantum(sigmoidal_map[
ScaleQuantumToMap(image->colormap[i].red)]);
if ((channel & GreenChannel) != 0)
image->colormap[i].green=ClampToQuantum(sigmoidal_map[
ScaleQuantumToMap(image->colormap[i].green)]);
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=ClampToQuantum(sigmoidal_map[
ScaleQuantumToMap(image->colormap[i].blue)]);
if ((channel & OpacityChannel) != 0)
image->colormap[i].opacity=ClampToQuantum(sigmoidal_map[
ScaleQuantumToMap(image->colormap[i].opacity)]);
}
/*
Sigmoidal-contrast enhance image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,ClampToQuantum(sigmoidal_map[ScaleQuantumToMap(
GetPixelRed(q))]));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,ClampToQuantum(sigmoidal_map[ScaleQuantumToMap(
GetPixelGreen(q))]));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,ClampToQuantum(sigmoidal_map[ScaleQuantumToMap(
GetPixelBlue(q))]));
if ((channel & OpacityChannel) != 0)
SetPixelOpacity(q,ClampToQuantum(sigmoidal_map[ScaleQuantumToMap(
GetPixelOpacity(q))]));
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(indexes+x,ClampToQuantum(sigmoidal_map[ScaleQuantumToMap(
GetPixelIndex(indexes+x))]));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,SigmoidalContrastImageTag,progress,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
sigmoidal_map=(MagickRealType *) RelinquishMagickMemory(sigmoidal_map);
return(status);
}