imagemagick/magick/visual-effects.c

3752 lines
118 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% V V IIIII SSSSS U U AAA L %
% V V I SS U U A A L %
% V V I SSS U U AAAAA L %
% V V I SS U U A A L %
% V IIIII SSSSS UUU A A LLLLL %
% %
% EEEEE FFFFF FFFFF EEEEE CCCC TTTTT SSSSS %
% E F F E C T SS %
% EEE FFF FFF EEE C T SSS %
% E F F E C T SS %
% EEEEE F F EEEEE CCCC T SSSSS %
% %
% %
% MagickCore Image Special Effects Methods %
% %
% Software Design %
% Cristy %
% October 1996 %
% %
% %
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/accelerate-private.h"
#include "magick/annotate.h"
#include "magick/artifact.h"
#include "magick/attribute.h"
#include "magick/cache.h"
#include "magick/cache-view.h"
#include "magick/channel.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/colorspace.h"
#include "magick/colorspace-private.h"
#include "magick/composite.h"
#include "magick/decorate.h"
#include "magick/distort.h"
#include "magick/draw.h"
#include "magick/effect.h"
#include "magick/enhance.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/geometry.h"
#include "magick/layer.h"
#include "magick/list.h"
#include "magick/log.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/memory-private.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/opencl-private.h"
#include "magick/option.h"
#include "magick/pixel-accessor.h"
#include "magick/pixel-private.h"
#include "magick/property.h"
#include "magick/quantum.h"
#include "magick/quantum-private.h"
#include "magick/random_.h"
#include "magick/random-private.h"
#include "magick/resample.h"
#include "magick/resample-private.h"
#include "magick/resize.h"
#include "magick/resource_.h"
#include "magick/splay-tree.h"
#include "magick/statistic.h"
#include "magick/string_.h"
#include "magick/string-private.h"
#include "magick/thread-private.h"
#include "magick/threshold.h"
#include "magick/transform.h"
#include "magick/utility.h"
#include "magick/visual-effects.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d d N o i s e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AddNoiseImage() adds random noise to the image.
%
% The format of the AddNoiseImage method is:
%
% Image *AddNoiseImage(const Image *image,const NoiseType noise_type,
% ExceptionInfo *exception)
% Image *AddNoiseImageChannel(const Image *image,const ChannelType channel,
% const NoiseType noise_type,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel type.
%
% o noise_type: The type of noise: Uniform, Gaussian, Multiplicative,
% Impulse, Laplacian, or Poisson.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *AddNoiseImage(const Image *image,const NoiseType noise_type,
ExceptionInfo *exception)
{
Image
*noise_image;
noise_image=AddNoiseImageChannel(image,DefaultChannels,noise_type,exception);
return(noise_image);
}
MagickExport Image *AddNoiseImageChannel(const Image *image,
const ChannelType channel,const NoiseType noise_type,ExceptionInfo *exception)
{
#define AddNoiseImageTag "AddNoise/Image"
CacheView
*image_view,
*noise_view;
const char
*option;
double
attenuate;
Image
*noise_image;
MagickBooleanType
status;
MagickOffsetType
progress;
RandomInfo
**magick_restrict random_info;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
/*
Initialize noise image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
noise_image=AccelerateAddNoiseImage(image,channel,noise_type,exception);
if (noise_image != (Image *) NULL)
return(noise_image);
#endif
noise_image=CloneImage(image,0,0,MagickTrue,exception);
if (noise_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(noise_image,DirectClass) == MagickFalse)
{
InheritException(exception,&noise_image->exception);
noise_image=DestroyImage(noise_image);
return((Image *) NULL);
}
/*
Add noise in each row.
*/
attenuate=1.0;
option=GetImageArtifact(image,"attenuate");
if (option != (char *) NULL)
attenuate=StringToDouble(option,(char **) NULL);
status=MagickTrue;
progress=0;
random_info=AcquireRandomInfoThreadSet();
image_view=AcquireVirtualCacheView(image,exception);
noise_view=AcquireAuthenticCacheView(noise_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,noise_image,image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
MagickBooleanType
sync;
const IndexPacket
*magick_restrict indexes;
const PixelPacket
*magick_restrict p;
IndexPacket
*magick_restrict noise_indexes;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(noise_view,0,y,noise_image->columns,1,
exception);
if ((p == (PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
noise_indexes=GetCacheViewAuthenticIndexQueue(noise_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,ClampToQuantum(GenerateDifferentialNoise(random_info[id],
GetPixelRed(p),noise_type,attenuate)));
if (IsGrayColorspace(image->colorspace) != MagickFalse)
{
SetPixelGreen(q,GetPixelRed(q));
SetPixelBlue(q,GetPixelRed(q));
}
else
{
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,ClampToQuantum(GenerateDifferentialNoise(
random_info[id],GetPixelGreen(p),noise_type,attenuate)));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,ClampToQuantum(GenerateDifferentialNoise(
random_info[id],GetPixelBlue(p),noise_type,attenuate)));
}
if ((channel & OpacityChannel) != 0)
SetPixelOpacity(q,ClampToQuantum(GenerateDifferentialNoise(
random_info[id],GetPixelOpacity(p),noise_type,attenuate)));
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
SetPixelIndex(noise_indexes+x,ClampToQuantum(
GenerateDifferentialNoise(random_info[id],GetPixelIndex(
indexes+x),noise_type,attenuate)));
p++;
q++;
}
sync=SyncCacheViewAuthenticPixels(noise_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,AddNoiseImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
noise_view=DestroyCacheView(noise_view);
image_view=DestroyCacheView(image_view);
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
noise_image=DestroyImage(noise_image);
return(noise_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% B l u e S h i f t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BlueShiftImage() mutes the colors of the image to simulate a scene at
% nighttime in the moonlight.
%
% The format of the BlueShiftImage method is:
%
% Image *BlueShiftImage(const Image *image,const double factor,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o factor: the shift factor.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *BlueShiftImage(const Image *image,const double factor,
ExceptionInfo *exception)
{
#define BlueShiftImageTag "BlueShift/Image"
CacheView
*image_view,
*shift_view;
Image
*shift_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
/*
Allocate blue shift image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
shift_image=CloneImage(image,0,0,MagickTrue,exception);
if (shift_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(shift_image,DirectClass) == MagickFalse)
{
InheritException(exception,&shift_image->exception);
shift_image=DestroyImage(shift_image);
return((Image *) NULL);
}
/*
Blue-shift DirectClass image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
shift_view=AcquireAuthenticCacheView(shift_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,shift_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
MagickPixelPacket
pixel;
Quantum
quantum;
const PixelPacket
*magick_restrict p;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(shift_view,0,y,shift_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
quantum=GetPixelRed(p);
if (GetPixelGreen(p) < quantum)
quantum=GetPixelGreen(p);
if (GetPixelBlue(p) < quantum)
quantum=GetPixelBlue(p);
pixel.red=0.5*(GetPixelRed(p)+factor*quantum);
pixel.green=0.5*(GetPixelGreen(p)+factor*quantum);
pixel.blue=0.5*(GetPixelBlue(p)+factor*quantum);
quantum=GetPixelRed(p);
if (GetPixelGreen(p) > quantum)
quantum=GetPixelGreen(p);
if (GetPixelBlue(p) > quantum)
quantum=GetPixelBlue(p);
pixel.red=0.5*(pixel.red+factor*quantum);
pixel.green=0.5*(pixel.green+factor*quantum);
pixel.blue=0.5*(pixel.blue+factor*quantum);
SetPixelRed(q,ClampToQuantum(pixel.red));
SetPixelGreen(q,ClampToQuantum(pixel.green));
SetPixelBlue(q,ClampToQuantum(pixel.blue));
p++;
q++;
}
sync=SyncCacheViewAuthenticPixels(shift_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,BlueShiftImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
shift_view=DestroyCacheView(shift_view);
if (status == MagickFalse)
shift_image=DestroyImage(shift_image);
return(shift_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C h a r c o a l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% CharcoalImage() creates a new image that is a copy of an existing one with
% the edge highlighted. It allocates the memory necessary for the new Image
% structure and returns a pointer to the new image.
%
% The format of the CharcoalImage method is:
%
% Image *CharcoalImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *CharcoalImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
Image
*charcoal_image,
*edge_image;
MagickBooleanType
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
edge_image=EdgeImage(image,radius,exception);
if (edge_image == (Image *) NULL)
return((Image *) NULL);
charcoal_image=(Image *) NULL;
status=ClampImage(edge_image);
if (status != MagickFalse)
charcoal_image=BlurImage(edge_image,radius,sigma,exception);
edge_image=DestroyImage(edge_image);
if (charcoal_image == (Image *) NULL)
return((Image *) NULL);
status=NormalizeImage(charcoal_image);
if (status != MagickFalse)
status=NegateImage(charcoal_image,MagickFalse);
if (status != MagickFalse)
status=GrayscaleImage(charcoal_image,image->intensity);
if (status == MagickFalse)
charcoal_image=DestroyImage(charcoal_image);
return(charcoal_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o l o r i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ColorizeImage() blends the fill color with each pixel in the image.
% A percentage blend is specified with opacity. Control the application
% of different color components by specifying a different percentage for
% each component (e.g. 90/100/10 is 90% red, 100% green, and 10% blue).
%
% The format of the ColorizeImage method is:
%
% Image *ColorizeImage(const Image *image,const char *opacity,
% const PixelPacket colorize,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o opacity: A character string indicating the level of opacity as a
% percentage.
%
% o colorize: A color value.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ColorizeImage(const Image *image,const char *opacity,
const PixelPacket colorize,ExceptionInfo *exception)
{
#define ColorizeImageTag "Colorize/Image"
CacheView
*colorize_view,
*image_view;
GeometryInfo
geometry_info;
Image
*colorize_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
pixel;
MagickStatusType
flags;
ssize_t
y;
/*
Allocate colorized image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
colorize_image=CloneImage(image,0,0,MagickTrue,exception);
if (colorize_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(colorize_image,DirectClass) == MagickFalse)
{
InheritException(exception,&colorize_image->exception);
colorize_image=DestroyImage(colorize_image);
return((Image *) NULL);
}
if ((IsGrayColorspace(image->colorspace) != MagickFalse) ||
(IsPixelGray(&colorize) != MagickFalse))
(void) SetImageColorspace(colorize_image,sRGBColorspace);
if ((colorize_image->matte == MagickFalse) &&
(colorize.opacity != OpaqueOpacity))
(void) SetImageAlphaChannel(colorize_image,OpaqueAlphaChannel);
if (opacity == (const char *) NULL)
return(colorize_image);
/*
Determine RGB values of the pen color.
*/
flags=ParseGeometry(opacity,&geometry_info);
pixel.red=geometry_info.rho;
pixel.green=geometry_info.rho;
pixel.blue=geometry_info.rho;
pixel.opacity=(MagickRealType) OpaqueOpacity;
if ((flags & SigmaValue) != 0)
pixel.green=geometry_info.sigma;
if ((flags & XiValue) != 0)
pixel.blue=geometry_info.xi;
if ((flags & PsiValue) != 0)
pixel.opacity=geometry_info.psi;
/*
Colorize DirectClass image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
colorize_view=AcquireAuthenticCacheView(colorize_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,colorize_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
const PixelPacket
*magick_restrict p;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(colorize_view,0,y,colorize_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
SetPixelRed(q,((GetPixelRed(p)*(100.0-pixel.red)+
colorize.red*pixel.red)/100.0));
SetPixelGreen(q,((GetPixelGreen(p)*(100.0-pixel.green)+
colorize.green*pixel.green)/100.0));
SetPixelBlue(q,((GetPixelBlue(p)*(100.0-pixel.blue)+
colorize.blue*pixel.blue)/100.0));
if (colorize_image->matte == MagickFalse)
SetPixelOpacity(q,GetPixelOpacity(p));
else
SetPixelOpacity(q,((GetPixelOpacity(p)*(100.0-pixel.opacity)+
colorize.opacity*pixel.opacity)/100.0));
p++;
q++;
}
sync=SyncCacheViewAuthenticPixels(colorize_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ColorizeImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
colorize_view=DestroyCacheView(colorize_view);
if (status == MagickFalse)
colorize_image=DestroyImage(colorize_image);
return(colorize_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o l o r M a t r i x I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ColorMatrixImage() applies color transformation to an image. This method
% permits saturation changes, hue rotation, luminance to alpha, and various
% other effects. Although variable-sized transformation matrices can be used,
% typically one uses a 5x5 matrix for an RGBA image and a 6x6 for CMYKA
% (or RGBA with offsets). The matrix is similar to those used by Adobe Flash
% except offsets are in column 6 rather than 5 (in support of CMYKA images)
% and offsets are normalized (divide Flash offset by 255).
%
% The format of the ColorMatrixImage method is:
%
% Image *ColorMatrixImage(const Image *image,
% const KernelInfo *color_matrix,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o color_matrix: the color matrix.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ColorMatrixImage(const Image *image,
const KernelInfo *color_matrix,ExceptionInfo *exception)
{
#define ColorMatrixImageTag "ColorMatrix/Image"
CacheView
*color_view,
*image_view;
double
ColorMatrix[6][6] =
{
{ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 }
};
Image
*color_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
i;
ssize_t
u,
v,
y;
/*
Create color matrix.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
i=0;
for (v=0; v < (ssize_t) color_matrix->height; v++)
for (u=0; u < (ssize_t) color_matrix->width; u++)
{
if ((v < 6) && (u < 6))
ColorMatrix[v][u]=color_matrix->values[i];
i++;
}
/*
Initialize color image.
*/
color_image=CloneImage(image,0,0,MagickTrue,exception);
if (color_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(color_image,DirectClass) == MagickFalse)
{
InheritException(exception,&color_image->exception);
color_image=DestroyImage(color_image);
return((Image *) NULL);
}
if (image->debug != MagickFalse)
{
char
format[MaxTextExtent],
*message;
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" ColorMatrix image with color matrix:");
message=AcquireString("");
for (v=0; v < 6; v++)
{
*message='\0';
(void) FormatLocaleString(format,MaxTextExtent,"%.20g: ",(double) v);
(void) ConcatenateString(&message,format);
for (u=0; u < 6; u++)
{
(void) FormatLocaleString(format,MaxTextExtent,"%+f ",
ColorMatrix[v][u]);
(void) ConcatenateString(&message,format);
}
(void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message);
}
message=DestroyString(message);
}
/*
ColorMatrix image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
color_view=AcquireAuthenticCacheView(color_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,color_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickRealType
pixel;
const IndexPacket
*magick_restrict indexes;
const PixelPacket
*magick_restrict p;
ssize_t
x;
IndexPacket
*magick_restrict color_indexes;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(color_view,0,y,color_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
color_indexes=GetCacheViewAuthenticIndexQueue(color_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
ssize_t
v;
size_t
height;
height=color_matrix->height > 6 ? 6UL : color_matrix->height;
for (v=0; v < (ssize_t) height; v++)
{
pixel=ColorMatrix[v][0]*GetPixelRed(p)+ColorMatrix[v][1]*
GetPixelGreen(p)+ColorMatrix[v][2]*GetPixelBlue(p);
if (image->matte != MagickFalse)
pixel+=ColorMatrix[v][3]*(QuantumRange-GetPixelOpacity(p));
if (image->colorspace == CMYKColorspace)
pixel+=ColorMatrix[v][4]*GetPixelIndex(indexes+x);
pixel+=QuantumRange*ColorMatrix[v][5];
switch (v)
{
case 0: SetPixelRed(q,ClampToQuantum(pixel)); break;
case 1: SetPixelGreen(q,ClampToQuantum(pixel)); break;
case 2: SetPixelBlue(q,ClampToQuantum(pixel)); break;
case 3:
{
if (image->matte != MagickFalse)
SetPixelAlpha(q,ClampToQuantum(pixel));
break;
}
case 4:
{
if (image->colorspace == CMYKColorspace)
SetPixelIndex(color_indexes+x,ClampToQuantum(pixel));
break;
}
}
}
p++;
q++;
}
if (SyncCacheViewAuthenticPixels(color_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ColorMatrixImageTag,progress,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
color_view=DestroyCacheView(color_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
color_image=DestroyImage(color_image);
return(color_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I m p l o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ImplodeImage() creates a new image that is a copy of an existing
% one with the image pixels "implode" by the specified percentage. It
% allocates the memory necessary for the new Image structure and returns a
% pointer to the new image.
%
% The format of the ImplodeImage method is:
%
% Image *ImplodeImage(const Image *image,const double amount,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o implode_image: Method ImplodeImage returns a pointer to the image
% after it is implode. A null image is returned if there is a memory
% shortage.
%
% o image: the image.
%
% o amount: Define the extent of the implosion.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ImplodeImage(const Image *image,const double amount,
ExceptionInfo *exception)
{
#define ImplodeImageTag "Implode/Image"
CacheView
*image_view,
*implode_view;
double
radius;
Image
*implode_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
zero;
PointInfo
center,
scale;
ssize_t
y;
/*
Initialize implode image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
implode_image=CloneImage(image,0,0,MagickTrue,exception);
if (implode_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(implode_image,DirectClass) == MagickFalse)
{
InheritException(exception,&implode_image->exception);
implode_image=DestroyImage(implode_image);
return((Image *) NULL);
}
if (implode_image->background_color.opacity != OpaqueOpacity)
implode_image->matte=MagickTrue;
/*
Compute scaling factor.
*/
scale.x=1.0;
scale.y=1.0;
center.x=0.5*image->columns;
center.y=0.5*image->rows;
radius=center.x;
if (image->columns > image->rows)
scale.y=(double) image->columns/(double) image->rows;
else
if (image->columns < image->rows)
{
scale.x=(double) image->rows/(double) image->columns;
radius=center.y;
}
/*
Implode image.
*/
status=MagickTrue;
progress=0;
GetMagickPixelPacket(implode_image,&zero);
image_view=AcquireVirtualCacheView(image,exception);
implode_view=AcquireAuthenticCacheView(implode_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,implode_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
distance;
MagickPixelPacket
pixel;
PointInfo
delta;
IndexPacket
*magick_restrict implode_indexes;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(implode_view,0,y,implode_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
implode_indexes=GetCacheViewAuthenticIndexQueue(implode_view);
delta.y=scale.y*(double) (y-center.y);
pixel=zero;
for (x=0; x < (ssize_t) image->columns; x++)
{
/*
Determine if the pixel is within an ellipse.
*/
delta.x=scale.x*(double) (x-center.x);
distance=delta.x*delta.x+delta.y*delta.y;
if (distance < (radius*radius))
{
double
factor;
/*
Implode the pixel.
*/
factor=1.0;
if (distance > 0.0)
factor=pow(sin((double) (MagickPI*sqrt((double) distance)/
radius/2)),-amount);
status=InterpolateMagickPixelPacket(image,image_view,
UndefinedInterpolatePixel,(double) (factor*delta.x/scale.x+
center.x),(double) (factor*delta.y/scale.y+center.y),&pixel,
exception);
if (status == MagickFalse)
break;
SetPixelPacket(implode_image,&pixel,q,implode_indexes+x);
}
q++;
}
if (SyncCacheViewAuthenticPixels(implode_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ImplodeImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
implode_view=DestroyCacheView(implode_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
implode_image=DestroyImage(implode_image);
return(implode_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M o r p h I m a g e s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The MorphImages() method requires a minimum of two images. The first
% image is transformed into the second by a number of intervening images
% as specified by frames.
%
% The format of the MorphImage method is:
%
% Image *MorphImages(const Image *image,const size_t number_frames,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o number_frames: Define the number of in-between image to generate.
% The more in-between frames, the smoother the morph.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *MorphImages(const Image *image,
const size_t number_frames,ExceptionInfo *exception)
{
#define MorphImageTag "Morph/Image"
double
alpha,
beta;
Image
*morph_image,
*morph_images;
MagickBooleanType
status;
MagickOffsetType
scene;
const Image
*next;
ssize_t
i;
ssize_t
y;
/*
Clone first frame in sequence.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
morph_images=CloneImage(image,0,0,MagickTrue,exception);
if (morph_images == (Image *) NULL)
return((Image *) NULL);
if (GetNextImageInList(image) == (Image *) NULL)
{
/*
Morph single image.
*/
for (i=1; i < (ssize_t) number_frames; i++)
{
morph_image=CloneImage(image,0,0,MagickTrue,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
AppendImageToList(&morph_images,morph_image);
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,MorphImageTag,(MagickOffsetType) i,
number_frames);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
return(GetFirstImageInList(morph_images));
}
/*
Morph image sequence.
*/
status=MagickTrue;
scene=0;
next=image;
for ( ; GetNextImageInList(next) != (Image *) NULL; next=GetNextImageInList(next))
{
for (i=0; i < (ssize_t) number_frames; i++)
{
CacheView
*image_view,
*morph_view;
beta=(double) (i+1.0)/(double) (number_frames+1.0);
alpha=1.0-beta;
morph_image=ResizeImage(next,(size_t) (alpha*next->columns+beta*
GetNextImageInList(next)->columns+0.5),(size_t) (alpha*
next->rows+beta*GetNextImageInList(next)->rows+0.5),
next->filter,next->blur,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
if (SetImageStorageClass(morph_image,DirectClass) == MagickFalse)
{
InheritException(exception,&morph_image->exception);
morph_image=DestroyImage(morph_image);
return((Image *) NULL);
}
AppendImageToList(&morph_images,morph_image);
morph_images=GetLastImageInList(morph_images);
morph_image=ResizeImage(GetNextImageInList(next),morph_images->columns,
morph_images->rows,GetNextImageInList(next)->filter,
GetNextImageInList(next)->blur,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
image_view=AcquireVirtualCacheView(morph_image,exception);
morph_view=AcquireAuthenticCacheView(morph_images,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(morph_image,morph_image,morph_image->rows,1)
#endif
for (y=0; y < (ssize_t) morph_images->rows; y++)
{
MagickBooleanType
sync;
const PixelPacket
*magick_restrict p;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,morph_image->columns,1,
exception);
q=GetCacheViewAuthenticPixels(morph_view,0,y,morph_images->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) morph_images->columns; x++)
{
SetPixelRed(q,ClampToQuantum(alpha*
GetPixelRed(q)+beta*GetPixelRed(p)));
SetPixelGreen(q,ClampToQuantum(alpha*
GetPixelGreen(q)+beta*GetPixelGreen(p)));
SetPixelBlue(q,ClampToQuantum(alpha*
GetPixelBlue(q)+beta*GetPixelBlue(p)));
SetPixelOpacity(q,ClampToQuantum(alpha*
GetPixelOpacity(q)+beta*GetPixelOpacity(p)));
p++;
q++;
}
sync=SyncCacheViewAuthenticPixels(morph_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
morph_view=DestroyCacheView(morph_view);
image_view=DestroyCacheView(image_view);
morph_image=DestroyImage(morph_image);
}
if (i < (ssize_t) number_frames)
break;
/*
Clone last frame in sequence.
*/
morph_image=CloneImage(GetNextImageInList(next),0,0,MagickTrue,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
AppendImageToList(&morph_images,morph_image);
morph_images=GetLastImageInList(morph_images);
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,MorphImageTag,scene,
GetImageListLength(image));
if (proceed == MagickFalse)
status=MagickFalse;
}
scene++;
}
if (GetNextImageInList(next) != (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
return(GetFirstImageInList(morph_images));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P l a s m a I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PlasmaImage() initializes an image with plasma fractal values. The image
% must be initialized with a base color and the random number generator
% seeded before this method is called.
%
% The format of the PlasmaImage method is:
%
% MagickBooleanType PlasmaImage(Image *image,const SegmentInfo *segment,
% size_t attenuate,size_t depth)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o segment: Define the region to apply plasma fractals values.
%
% o attenuate: Define the plasma attenuation factor.
%
% o depth: Limit the plasma recursion depth.
%
*/
static inline Quantum PlasmaPixel(RandomInfo *magick_restrict random_info,
const MagickRealType pixel,const double noise)
{
MagickRealType
plasma;
plasma=pixel+noise*GetPseudoRandomValue(random_info)-noise/2.0;
return(ClampToQuantum(plasma));
}
MagickExport MagickBooleanType PlasmaImageProxy(Image *image,
CacheView *image_view,CacheView *u_view,CacheView *v_view,
RandomInfo *magick_restrict random_info,
const SegmentInfo *magick_restrict segment,size_t attenuate,size_t depth)
{
ExceptionInfo
*exception;
double
plasma;
MagickStatusType
status;
PixelPacket
u,
v;
ssize_t
x,
x_mid,
y,
y_mid;
if ((fabs(segment->x2-segment->x1) < MagickEpsilon) &&
(fabs(segment->y2-segment->y1) < MagickEpsilon))
return(MagickTrue);
if (depth != 0)
{
SegmentInfo
local_info;
/*
Divide the area into quadrants and recurse.
*/
depth--;
attenuate++;
x_mid=CastDoubleToLong(ceil((segment->x1+segment->x2)/2-0.5));
y_mid=CastDoubleToLong(ceil((segment->y1+segment->y2)/2-0.5));
local_info=(*segment);
local_info.x2=(double) x_mid;
local_info.y2=(double) y_mid;
status=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth);
local_info=(*segment);
local_info.y1=(double) y_mid;
local_info.x2=(double) x_mid;
status&=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth);
local_info=(*segment);
local_info.x1=(double) x_mid;
local_info.y2=(double) y_mid;
status&=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth);
local_info=(*segment);
local_info.x1=(double) x_mid;
local_info.y1=(double) y_mid;
status&=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth);
return(status == 0 ? MagickFalse : MagickTrue);
}
x_mid=CastDoubleToLong(ceil((segment->x1+segment->x2)/2-0.5));
y_mid=CastDoubleToLong(ceil((segment->y1+segment->y2)/2-0.5));
if ((fabs(segment->x1-x_mid) < MagickEpsilon) &&
(fabs(segment->x2-x_mid) < MagickEpsilon) &&
(fabs(segment->y1-y_mid) < MagickEpsilon) &&
(fabs(segment->y2-y_mid) < MagickEpsilon))
return(MagickFalse);
/*
Average pixels and apply plasma.
*/
status=MagickTrue;
exception=(&image->exception);
plasma=(double) QuantumRange/(2.0*attenuate);
if ((fabs(segment->x1-x_mid) >= MagickEpsilon) ||
(fabs(segment->x2-x_mid) >= MagickEpsilon))
{
PixelPacket
*magick_restrict q;
/*
Left pixel.
*/
x=CastDoubleToLong(ceil(segment->x1-0.5));
(void) GetOneCacheViewVirtualPixel(u_view,x,CastDoubleToLong(ceil(
segment->y1-0.5)),&u,exception);
(void) GetOneCacheViewVirtualPixel(v_view,x,CastDoubleToLong(ceil(
segment->y2-0.5)),&v,exception);
q=QueueCacheViewAuthenticPixels(image_view,x,y_mid,1,1,exception);
if (q == (PixelPacket *) NULL)
return(MagickTrue);
SetPixelRed(q,PlasmaPixel(random_info,((MagickRealType) u.red+
v.red)/2.0,plasma));
SetPixelGreen(q,PlasmaPixel(random_info,((MagickRealType) u.green+
v.green)/2.0,plasma));
SetPixelBlue(q,PlasmaPixel(random_info,((MagickRealType) u.blue+
v.blue)/2.0,plasma));
status=SyncCacheViewAuthenticPixels(image_view,exception);
if (fabs(segment->x1-segment->x2) >= MagickEpsilon)
{
/*
Right pixel.
*/
x=CastDoubleToLong(ceil(segment->x2-0.5));
(void) GetOneCacheViewVirtualPixel(u_view,x,CastDoubleToLong(ceil(
segment->y1-0.5)),&u,exception);
(void) GetOneCacheViewVirtualPixel(v_view,x,CastDoubleToLong(ceil(
segment->y2-0.5)),&v,exception);
q=QueueCacheViewAuthenticPixels(image_view,x,y_mid,1,1,exception);
if (q == (PixelPacket *) NULL)
return(MagickFalse);
SetPixelRed(q,PlasmaPixel(random_info,((MagickRealType) u.red+
v.red)/2.0,plasma));
SetPixelGreen(q,PlasmaPixel(random_info,((MagickRealType) u.green+
v.green)/2.0,plasma));
SetPixelBlue(q,PlasmaPixel(random_info,((MagickRealType) u.blue+
v.blue)/2.0,plasma));
status=SyncCacheViewAuthenticPixels(image_view,exception);
}
}
if ((fabs(segment->y1-y_mid) >= MagickEpsilon) ||
(fabs(segment->y2-y_mid) >= MagickEpsilon))
{
if ((fabs(segment->x1-x_mid) >= MagickEpsilon) ||
(fabs(segment->y2-y_mid) >= MagickEpsilon))
{
PixelPacket
*magick_restrict q;
/*
Bottom pixel.
*/
y=CastDoubleToLong(ceil(segment->y2-0.5));
(void) GetOneCacheViewVirtualPixel(u_view,CastDoubleToLong(ceil(
segment->x1-0.5)),y,&u,exception);
(void) GetOneCacheViewVirtualPixel(v_view,CastDoubleToLong(ceil(
segment->x2-0.5)),y,&v,exception);
q=QueueCacheViewAuthenticPixels(image_view,x_mid,y,1,1,exception);
if (q == (PixelPacket *) NULL)
return(MagickTrue);
SetPixelRed(q,PlasmaPixel(random_info,((MagickRealType) u.red+
v.red)/2.0,plasma));
SetPixelGreen(q,PlasmaPixel(random_info,((MagickRealType) u.green+
v.green)/2.0,plasma));
SetPixelBlue(q,PlasmaPixel(random_info,((MagickRealType) u.blue+
v.blue)/2.0,plasma));
status=SyncCacheViewAuthenticPixels(image_view,exception);
}
if (fabs(segment->y1-segment->y2) >= MagickEpsilon)
{
PixelPacket
*magick_restrict q;
/*
Top pixel.
*/
y=CastDoubleToLong(ceil(segment->y1-0.5));
(void) GetOneCacheViewVirtualPixel(u_view,CastDoubleToLong(ceil(
segment->x1-0.5)),y,&u,exception);
(void) GetOneCacheViewVirtualPixel(v_view,CastDoubleToLong(ceil(
segment->x2-0.5)),y,&v,exception);
q=QueueCacheViewAuthenticPixels(image_view,x_mid,y,1,1,exception);
if (q == (PixelPacket *) NULL)
return(MagickTrue);
SetPixelRed(q,PlasmaPixel(random_info,((MagickRealType) u.red+
v.red)/2.0,plasma));
SetPixelGreen(q,PlasmaPixel(random_info,((MagickRealType) u.green+
v.green)/2.0,plasma));
SetPixelBlue(q,PlasmaPixel(random_info,((MagickRealType) u.blue+
v.blue)/2.0,plasma));
status=SyncCacheViewAuthenticPixels(image_view,exception);
}
}
if ((fabs(segment->x1-segment->x2) >= MagickEpsilon) ||
(fabs(segment->y1-segment->y2) >= MagickEpsilon))
{
PixelPacket
*magick_restrict q;
/*
Middle pixel.
*/
x=CastDoubleToLong(ceil(segment->x1-0.5));
y=CastDoubleToLong(ceil(segment->y1-0.5));
(void) GetOneCacheViewVirtualPixel(u_view,x,y,&u,exception);
x=CastDoubleToLong(ceil(segment->x2-0.5));
y=CastDoubleToLong(ceil(segment->y2-0.5));
(void) GetOneCacheViewVirtualPixel(v_view,x,y,&v,exception);
q=QueueCacheViewAuthenticPixels(image_view,x_mid,y_mid,1,1,exception);
if (q == (PixelPacket *) NULL)
return(MagickTrue);
SetPixelRed(q,PlasmaPixel(random_info,((MagickRealType) u.red+
v.red)/2.0,plasma));
SetPixelGreen(q,PlasmaPixel(random_info,((MagickRealType) u.green+
v.green)/2.0,plasma));
SetPixelBlue(q,PlasmaPixel(random_info,((MagickRealType) u.blue+
v.blue)/2.0,plasma));
status=SyncCacheViewAuthenticPixels(image_view,exception);
}
if ((fabs(segment->x2-segment->x1) < 3.0) &&
(fabs(segment->y2-segment->y1) < 3.0))
return(status == 0 ? MagickFalse : MagickTrue);
return(MagickFalse);
}
MagickExport MagickBooleanType PlasmaImage(Image *image,
const SegmentInfo *segment,size_t attenuate,size_t depth)
{
CacheView
*image_view,
*u_view,
*v_view;
MagickBooleanType
status;
RandomInfo
*random_info;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
return(MagickFalse);
image_view=AcquireAuthenticCacheView(image,&image->exception);
u_view=AcquireVirtualCacheView(image,&image->exception);
v_view=AcquireVirtualCacheView(image,&image->exception);
random_info=AcquireRandomInfo();
status=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,segment,
attenuate,depth);
random_info=DestroyRandomInfo(random_info);
v_view=DestroyCacheView(v_view);
u_view=DestroyCacheView(u_view);
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P o l a r o i d I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PolaroidImage() simulates a Polaroid picture.
%
% The format of the AnnotateImage method is:
%
% Image *PolaroidImage(const Image *image,const DrawInfo *draw_info,
% const double angle,ExceptionInfo exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o angle: Apply the effect along this angle.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *PolaroidImage(const Image *image,const DrawInfo *draw_info,
const double angle,ExceptionInfo *exception)
{
const char
*value;
Image
*bend_image,
*caption_image,
*flop_image,
*picture_image,
*polaroid_image,
*rotate_image,
*trim_image;
size_t
height;
ssize_t
quantum;
/*
Simulate a Polaroid picture.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
quantum=(ssize_t) MagickMax(MagickMax((double) image->columns,(double)
image->rows)/25.0,10.0);
height=image->rows+2*quantum;
caption_image=(Image *) NULL;
value=GetImageProperty(image,"Caption");
if (value != (const char *) NULL)
{
char
*caption;
/*
Generate caption image.
*/
caption_image=CloneImage(image,image->columns,1,MagickTrue,exception);
if (caption_image == (Image *) NULL)
return((Image *) NULL);
caption=InterpretImageProperties((ImageInfo *) NULL,(Image *) image,
value);
if (caption != (char *) NULL)
{
char
geometry[MaxTextExtent];
DrawInfo
*annotate_info;
MagickBooleanType
status;
ssize_t
count;
TypeMetric
metrics;
annotate_info=CloneDrawInfo((const ImageInfo *) NULL,draw_info);
(void) CloneString(&annotate_info->text,caption);
count=FormatMagickCaption(caption_image,annotate_info,MagickTrue,
&metrics,&caption);
status=SetImageExtent(caption_image,image->columns,(size_t)
((count+1)*(metrics.ascent-metrics.descent)+0.5));
if (status == MagickFalse)
caption_image=DestroyImage(caption_image);
else
{
caption_image->background_color=image->border_color;
(void) SetImageBackgroundColor(caption_image);
(void) CloneString(&annotate_info->text,caption);
(void) FormatLocaleString(geometry,MaxTextExtent,"+0+%.20g",
metrics.ascent);
if (annotate_info->gravity == UndefinedGravity)
(void) CloneString(&annotate_info->geometry,AcquireString(
geometry));
(void) AnnotateImage(caption_image,annotate_info);
height+=caption_image->rows;
}
annotate_info=DestroyDrawInfo(annotate_info);
caption=DestroyString(caption);
}
}
picture_image=CloneImage(image,image->columns+2*quantum,height,MagickTrue,
exception);
if (picture_image == (Image *) NULL)
{
if (caption_image != (Image *) NULL)
caption_image=DestroyImage(caption_image);
return((Image *) NULL);
}
picture_image->background_color=image->border_color;
(void) SetImageBackgroundColor(picture_image);
(void) CompositeImage(picture_image,OverCompositeOp,image,quantum,quantum);
if (caption_image != (Image *) NULL)
{
(void) CompositeImage(picture_image,OverCompositeOp,caption_image,
quantum,(ssize_t) (image->rows+3*quantum/2));
caption_image=DestroyImage(caption_image);
}
(void) QueryColorDatabase("none",&picture_image->background_color,exception);
(void) SetImageAlphaChannel(picture_image,OpaqueAlphaChannel);
rotate_image=RotateImage(picture_image,90.0,exception);
picture_image=DestroyImage(picture_image);
if (rotate_image == (Image *) NULL)
return((Image *) NULL);
picture_image=rotate_image;
bend_image=WaveImage(picture_image,0.01*picture_image->rows,2.0*
picture_image->columns,exception);
picture_image=DestroyImage(picture_image);
if (bend_image == (Image *) NULL)
return((Image *) NULL);
InheritException(&bend_image->exception,exception);
picture_image=bend_image;
rotate_image=RotateImage(picture_image,-90.0,exception);
picture_image=DestroyImage(picture_image);
if (rotate_image == (Image *) NULL)
return((Image *) NULL);
picture_image=rotate_image;
picture_image->background_color=image->background_color;
polaroid_image=ShadowImage(picture_image,80.0,2.0,quantum/3,quantum/3,
exception);
if (polaroid_image == (Image *) NULL)
{
picture_image=DestroyImage(picture_image);
return(picture_image);
}
flop_image=FlopImage(polaroid_image,exception);
polaroid_image=DestroyImage(polaroid_image);
if (flop_image == (Image *) NULL)
{
picture_image=DestroyImage(picture_image);
return(picture_image);
}
polaroid_image=flop_image;
(void) CompositeImage(polaroid_image,OverCompositeOp,picture_image,
(ssize_t) (-0.01*picture_image->columns/2.0),0L);
picture_image=DestroyImage(picture_image);
(void) QueryColorDatabase("none",&polaroid_image->background_color,exception);
rotate_image=RotateImage(polaroid_image,angle,exception);
polaroid_image=DestroyImage(polaroid_image);
if (rotate_image == (Image *) NULL)
return((Image *) NULL);
polaroid_image=rotate_image;
trim_image=TrimImage(polaroid_image,exception);
polaroid_image=DestroyImage(polaroid_image);
if (trim_image == (Image *) NULL)
return((Image *) NULL);
polaroid_image=trim_image;
return(polaroid_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e p i a T o n e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MagickSepiaToneImage() applies a special effect to the image, similar to the
% effect achieved in a photo darkroom by sepia toning. Threshold ranges from
% 0 to QuantumRange and is a measure of the extent of the sepia toning. A
% threshold of 80% is a good starting point for a reasonable tone.
%
% The format of the SepiaToneImage method is:
%
% Image *SepiaToneImage(const Image *image,const double threshold,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o threshold: the tone threshold.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SepiaToneImage(const Image *image,const double threshold,
ExceptionInfo *exception)
{
#define SepiaToneImageTag "SepiaTone/Image"
CacheView
*image_view,
*sepia_view;
Image
*sepia_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
/*
Initialize sepia-toned image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
sepia_image=CloneImage(image,0,0,MagickTrue,exception);
if (sepia_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(sepia_image,DirectClass) == MagickFalse)
{
InheritException(exception,&sepia_image->exception);
sepia_image=DestroyImage(sepia_image);
return((Image *) NULL);
}
/*
Tone each row of the image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
sepia_view=AcquireAuthenticCacheView(sepia_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,sepia_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const PixelPacket
*magick_restrict p;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(sepia_view,0,y,sepia_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
intensity,
tone;
intensity=GetPixelIntensity(image,p);
tone=intensity > threshold ? (double) QuantumRange : intensity+
(double) QuantumRange-threshold;
SetPixelRed(q,ClampToQuantum(tone));
tone=intensity > (7.0*threshold/6.0) ? (double) QuantumRange :
intensity+(double) QuantumRange-7.0*threshold/6.0;
SetPixelGreen(q,ClampToQuantum(tone));
tone=intensity < (threshold/6.0) ? 0 : intensity-threshold/6.0;
SetPixelBlue(q,ClampToQuantum(tone));
tone=threshold/7.0;
if ((double) GetPixelGreen(q) < tone)
SetPixelGreen(q,ClampToQuantum(tone));
if ((double) GetPixelBlue(q) < tone)
SetPixelBlue(q,ClampToQuantum(tone));
SetPixelOpacity(q,GetPixelOpacity(p));
p++;
q++;
}
if (SyncCacheViewAuthenticPixels(sepia_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,SepiaToneImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
sepia_view=DestroyCacheView(sepia_view);
image_view=DestroyCacheView(image_view);
(void) NormalizeImage(sepia_image);
(void) ContrastImage(sepia_image,MagickTrue);
if (status == MagickFalse)
sepia_image=DestroyImage(sepia_image);
return(sepia_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S h a d o w I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ShadowImage() simulates a shadow from the specified image and returns it.
%
% The format of the ShadowImage method is:
%
% Image *ShadowImage(const Image *image,const double opacity,
% const double sigma,const ssize_t x_offset,const ssize_t y_offset,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o opacity: percentage transparency.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o x_offset: the shadow x-offset.
%
% o y_offset: the shadow y-offset.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ShadowImage(const Image *image,const double opacity,
const double sigma,const ssize_t x_offset,const ssize_t y_offset,
ExceptionInfo *exception)
{
#define ShadowImageTag "Shadow/Image"
CacheView
*image_view;
Image
*border_image,
*clone_image,
*shadow_image;
MagickBooleanType
status;
MagickOffsetType
progress;
RectangleInfo
border_info;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
clone_image=CloneImage(image,0,0,MagickTrue,exception);
if (clone_image == (Image *) NULL)
return((Image *) NULL);
if (IsGrayColorspace(image->colorspace) != MagickFalse)
(void) SetImageColorspace(clone_image,sRGBColorspace);
(void) SetImageVirtualPixelMethod(clone_image,EdgeVirtualPixelMethod);
clone_image->compose=OverCompositeOp;
border_info.width=(size_t) floor(2.0*sigma+0.5);
border_info.height=(size_t) floor(2.0*sigma+0.5);
border_info.x=0;
border_info.y=0;
(void) QueryColorDatabase("none",&clone_image->border_color,exception);
border_image=BorderImage(clone_image,&border_info,exception);
clone_image=DestroyImage(clone_image);
if (border_image == (Image *) NULL)
return((Image *) NULL);
if (border_image->matte == MagickFalse)
(void) SetImageAlphaChannel(border_image,OpaqueAlphaChannel);
/*
Shadow image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(border_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(border_image,border_image,border_image->rows,1)
#endif
for (y=0; y < (ssize_t) border_image->rows; y++)
{
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,border_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) border_image->columns; x++)
{
SetPixelRed(q,border_image->background_color.red);
SetPixelGreen(q,border_image->background_color.green);
SetPixelBlue(q,border_image->background_color.blue);
if (border_image->matte == MagickFalse)
SetPixelOpacity(q,border_image->background_color.opacity);
else
SetPixelOpacity(q,ClampToQuantum((double) (QuantumRange-
GetPixelAlpha(q)*opacity/100.0)));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ShadowImageTag,progress,
border_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
shadow_image=BlurImageChannel(border_image,AlphaChannel,0.0,sigma,exception);
border_image=DestroyImage(border_image);
if (shadow_image == (Image *) NULL)
return((Image *) NULL);
if (shadow_image->page.width == 0)
shadow_image->page.width=shadow_image->columns;
if (shadow_image->page.height == 0)
shadow_image->page.height=shadow_image->rows;
shadow_image->page.width+=x_offset-(ssize_t) border_info.width;
shadow_image->page.height+=y_offset-(ssize_t) border_info.height;
shadow_image->page.x+=x_offset-(ssize_t) border_info.width;
shadow_image->page.y+=y_offset-(ssize_t) border_info.height;
return(shadow_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S k e t c h I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SketchImage() simulates a pencil sketch. We convolve the image with a
% Gaussian operator of the given radius and standard deviation (sigma). For
% reasonable results, radius should be larger than sigma. Use a radius of 0
% and SketchImage() selects a suitable radius for you. Angle gives the angle
% of the sketch.
%
% The format of the SketchImage method is:
%
% Image *SketchImage(const Image *image,const double radius,
% const double sigma,const double angle,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting
% the center pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o angle: Apply the effect along this angle.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SketchImage(const Image *image,const double radius,
const double sigma,const double angle,ExceptionInfo *exception)
{
CacheView
*random_view;
Image
*blend_image,
*blur_image,
*dodge_image,
*random_image,
*sketch_image;
MagickBooleanType
status;
MagickPixelPacket
zero;
RandomInfo
**magick_restrict random_info;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
/*
Sketch image.
*/
random_image=CloneImage(image,image->columns << 1,image->rows << 1,
MagickTrue,exception);
if (random_image == (Image *) NULL)
return((Image *) NULL);
status=MagickTrue;
GetMagickPixelPacket(random_image,&zero);
random_info=AcquireRandomInfoThreadSet();
random_view=AcquireAuthenticCacheView(random_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(random_image,random_image,random_image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) random_image->rows; y++)
{
const int
id = GetOpenMPThreadId();
MagickPixelPacket
pixel;
IndexPacket
*magick_restrict indexes;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(random_view,0,y,random_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(random_view);
pixel=zero;
for (x=0; x < (ssize_t) random_image->columns; x++)
{
pixel.red=(MagickRealType) (QuantumRange*
GetPseudoRandomValue(random_info[id]));
pixel.green=pixel.red;
pixel.blue=pixel.red;
if (image->colorspace == CMYKColorspace)
pixel.index=pixel.red;
SetPixelPacket(random_image,&pixel,q,indexes+x);
q++;
}
if (SyncCacheViewAuthenticPixels(random_view,exception) == MagickFalse)
status=MagickFalse;
}
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
{
random_view=DestroyCacheView(random_view);
random_image=DestroyImage(random_image);
return(random_image);
}
random_view=DestroyCacheView(random_view);
blur_image=MotionBlurImage(random_image,radius,sigma,angle,exception);
random_image=DestroyImage(random_image);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
dodge_image=EdgeImage(blur_image,radius,exception);
blur_image=DestroyImage(blur_image);
if (dodge_image == (Image *) NULL)
return((Image *) NULL);
status=ClampImage(dodge_image);
if (status != MagickFalse)
status=NormalizeImage(dodge_image);
if (status != MagickFalse)
status=NegateImage(dodge_image,MagickFalse);
if (status != MagickFalse)
status=TransformImage(&dodge_image,(char *) NULL,"50%");
sketch_image=CloneImage(image,0,0,MagickTrue,exception);
if (sketch_image == (Image *) NULL)
{
dodge_image=DestroyImage(dodge_image);
return((Image *) NULL);
}
(void) CompositeImage(sketch_image,ColorDodgeCompositeOp,dodge_image,0,0);
dodge_image=DestroyImage(dodge_image);
blend_image=CloneImage(image,0,0,MagickTrue,exception);
if (blend_image == (Image *) NULL)
{
sketch_image=DestroyImage(sketch_image);
return((Image *) NULL);
}
(void) SetImageArtifact(blend_image,"compose:args","20x80");
(void) CompositeImage(sketch_image,BlendCompositeOp,blend_image,0,0);
blend_image=DestroyImage(blend_image);
return(sketch_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S o l a r i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SolarizeImage() applies a special effect to the image, similar to the effect
% achieved in a photo darkroom by selectively exposing areas of photo
% sensitive paper to light. Threshold ranges from 0 to QuantumRange and is a
% measure of the extent of the solarization.
%
% The format of the SolarizeImage method is:
%
% MagickBooleanType SolarizeImage(Image *image,const double threshold)
% MagickBooleanType SolarizeImageChannel(Image *image,
% const ChannelType channel,const double threshold,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel type.
%
% o threshold: Define the extent of the solarization.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType SolarizeImage(Image *image,
const double threshold)
{
MagickBooleanType
status;
status=SolarizeImageChannel(image,DefaultChannels,threshold,
&image->exception);
return(status);
}
MagickExport MagickBooleanType SolarizeImageChannel(Image *image,
const ChannelType channel,const double threshold,ExceptionInfo *exception)
{
#define SolarizeImageTag "Solarize/Image"
CacheView
*image_view;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (IsGrayColorspace(image->colorspace) != MagickFalse)
(void) SetImageColorspace(image,sRGBColorspace);
if (image->storage_class == PseudoClass)
{
ssize_t
i;
/*
Solarize colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((channel & RedChannel) != 0)
if ((double) image->colormap[i].red > threshold)
image->colormap[i].red=QuantumRange-image->colormap[i].red;
if ((channel & GreenChannel) != 0)
if ((double) image->colormap[i].green > threshold)
image->colormap[i].green=QuantumRange-image->colormap[i].green;
if ((channel & BlueChannel) != 0)
if ((double) image->colormap[i].blue > threshold)
image->colormap[i].blue=QuantumRange-image->colormap[i].blue;
}
}
/*
Solarize image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
if ((double) GetPixelRed(q) > threshold)
SetPixelRed(q,QuantumRange-GetPixelRed(q));
if ((channel & GreenChannel) != 0)
if ((double) GetPixelGreen(q) > threshold)
SetPixelGreen(q,QuantumRange-GetPixelGreen(q));
if ((channel & BlueChannel) != 0)
if ((double) GetPixelBlue(q) > threshold)
SetPixelBlue(q,QuantumRange-GetPixelBlue(q));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,SolarizeImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S t e g a n o I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SteganoImage() hides a digital watermark within the image. Recover
% the hidden watermark later to prove that the authenticity of an image.
% Offset defines the start position within the image to hide the watermark.
%
% The format of the SteganoImage method is:
%
% Image *SteganoImage(const Image *image,Image *watermark,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o watermark: the watermark image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SteganoImage(const Image *image,const Image *watermark,
ExceptionInfo *exception)
{
#define GetBit(alpha,i) ((((size_t) (alpha) >> (size_t) (i)) & 0x01) != 0)
#define SetBit(alpha,i,set) (alpha)=(Quantum) ((set) != 0 ? (size_t) (alpha) \
| (one << (size_t) (i)) : (size_t) (alpha) & ~(one << (size_t) (i)))
#define SteganoImageTag "Stegano/Image"
CacheView
*stegano_view,
*watermark_view;
Image
*stegano_image;
int
c;
MagickBooleanType
status;
PixelPacket
pixel;
PixelPacket
*q;
ssize_t
x;
size_t
depth,
one;
ssize_t
i,
j,
k,
y;
/*
Initialize steganographic image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(watermark != (const Image *) NULL);
assert(watermark->signature == MagickCoreSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
one=1UL;
stegano_image=CloneImage(image,0,0,MagickTrue,exception);
if (stegano_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(stegano_image,DirectClass) == MagickFalse)
{
InheritException(exception,&stegano_image->exception);
stegano_image=DestroyImage(stegano_image);
return((Image *) NULL);
}
stegano_image->depth=MAGICKCORE_QUANTUM_DEPTH;
/*
Hide watermark in low-order bits of image.
*/
c=0;
i=0;
j=0;
depth=stegano_image->depth;
k=image->offset;
status=MagickTrue;
watermark_view=AcquireVirtualCacheView(watermark,exception);
stegano_view=AcquireAuthenticCacheView(stegano_image,exception);
for (i=(ssize_t) depth-1; (i >= 0) && (j < (ssize_t) depth); i--)
{
for (y=0; (y < (ssize_t) watermark->rows) && (j < (ssize_t) depth); y++)
{
for (x=0; (x < (ssize_t) watermark->columns) && (j < (ssize_t) depth); x++)
{
(void) GetOneCacheViewVirtualPixel(watermark_view,x,y,&pixel,exception);
if ((k/(ssize_t) stegano_image->columns) >= (ssize_t) stegano_image->rows)
break;
q=GetCacheViewAuthenticPixels(stegano_view,k % (ssize_t)
stegano_image->columns,k/(ssize_t) stegano_image->columns,1,1,
exception);
if (q == (PixelPacket *) NULL)
break;
switch (c)
{
case 0:
{
SetBit(GetPixelRed(q),j,GetBit(ClampToQuantum(GetPixelIntensity(
image,&pixel)),i));
break;
}
case 1:
{
SetBit(GetPixelGreen(q),j,GetBit(ClampToQuantum(GetPixelIntensity(
image,&pixel)),i));
break;
}
case 2:
{
SetBit(GetPixelBlue(q),j,GetBit(ClampToQuantum(GetPixelIntensity(
image,&pixel)),i));
break;
}
}
if (SyncCacheViewAuthenticPixels(stegano_view,exception) == MagickFalse)
break;
c++;
if (c == 3)
c=0;
k++;
if (k == (ssize_t) (stegano_image->columns*stegano_image->columns))
k=0;
if (k == image->offset)
j++;
}
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,SteganoImageTag,(MagickOffsetType)
(depth-i),depth);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
stegano_view=DestroyCacheView(stegano_view);
watermark_view=DestroyCacheView(watermark_view);
if (stegano_image->storage_class == PseudoClass)
(void) SyncImage(stegano_image);
if (status == MagickFalse)
stegano_image=DestroyImage(stegano_image);
return(stegano_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S t e r e o A n a g l y p h I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% StereoAnaglyphImage() combines two images and produces a single image that
% is the composite of a left and right image of a stereo pair. Special
% red-green stereo glasses are required to view this effect.
%
% The format of the StereoAnaglyphImage method is:
%
% Image *StereoImage(const Image *left_image,const Image *right_image,
% ExceptionInfo *exception)
% Image *StereoAnaglyphImage(const Image *left_image,
% const Image *right_image,const ssize_t x_offset,const ssize_t y_offset,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o left_image: the left image.
%
% o right_image: the right image.
%
% o exception: return any errors or warnings in this structure.
%
% o x_offset: amount, in pixels, by which the left image is offset to the
% right of the right image.
%
% o y_offset: amount, in pixels, by which the left image is offset to the
% bottom of the right image.
%
%
*/
MagickExport Image *StereoImage(const Image *left_image,
const Image *right_image,ExceptionInfo *exception)
{
return(StereoAnaglyphImage(left_image,right_image,0,0,exception));
}
MagickExport Image *StereoAnaglyphImage(const Image *left_image,
const Image *right_image,const ssize_t x_offset,const ssize_t y_offset,
ExceptionInfo *exception)
{
#define StereoImageTag "Stereo/Image"
const Image
*image;
Image
*stereo_image;
MagickBooleanType
status;
ssize_t
y;
assert(left_image != (const Image *) NULL);
assert(left_image->signature == MagickCoreSignature);
if (left_image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
left_image->filename);
assert(right_image != (const Image *) NULL);
assert(right_image->signature == MagickCoreSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=left_image;
if ((left_image->columns != right_image->columns) ||
(left_image->rows != right_image->rows))
ThrowImageException(ImageError,"LeftAndRightImageSizesDiffer");
/*
Initialize stereo image attributes.
*/
stereo_image=CloneImage(left_image,left_image->columns,left_image->rows,
MagickTrue,exception);
if (stereo_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(stereo_image,DirectClass) == MagickFalse)
{
InheritException(exception,&stereo_image->exception);
stereo_image=DestroyImage(stereo_image);
return((Image *) NULL);
}
(void) SetImageColorspace(stereo_image,sRGBColorspace);
/*
Copy left image to red channel and right image to blue channel.
*/
status=MagickTrue;
for (y=0; y < (ssize_t) stereo_image->rows; y++)
{
const PixelPacket
*magick_restrict p,
*magick_restrict q;
ssize_t
x;
PixelPacket
*magick_restrict r;
p=GetVirtualPixels(left_image,-x_offset,y-y_offset,image->columns,1,
exception);
q=GetVirtualPixels(right_image,0,y,right_image->columns,1,exception);
r=QueueAuthenticPixels(stereo_image,0,y,stereo_image->columns,1,exception);
if ((p == (PixelPacket *) NULL) || (q == (PixelPacket *) NULL) ||
(r == (PixelPacket *) NULL))
break;
for (x=0; x < (ssize_t) stereo_image->columns; x++)
{
SetPixelRed(r,GetPixelRed(p));
SetPixelGreen(r,GetPixelGreen(q));
SetPixelBlue(r,GetPixelBlue(q));
SetPixelOpacity(r,(GetPixelOpacity(p)+q->opacity)/2);
p++;
q++;
r++;
}
if (SyncAuthenticPixels(stereo_image,exception) == MagickFalse)
break;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,StereoImageTag,(MagickOffsetType) y,
stereo_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
if (status == MagickFalse)
stereo_image=DestroyImage(stereo_image);
return(stereo_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S w i r l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SwirlImage() swirls the pixels about the center of the image, where
% degrees indicates the sweep of the arc through which each pixel is moved.
% You get a more dramatic effect as the degrees move from 1 to 360.
%
% The format of the SwirlImage method is:
%
% Image *SwirlImage(const Image *image,double degrees,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o degrees: Define the tightness of the swirling effect.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SwirlImage(const Image *image,double degrees,
ExceptionInfo *exception)
{
#define SwirlImageTag "Swirl/Image"
CacheView
*image_view,
*swirl_view;
double
radius;
Image
*swirl_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
zero;
PointInfo
center,
scale;
ssize_t
y;
/*
Initialize swirl image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
swirl_image=CloneImage(image,0,0,MagickTrue,exception);
if (swirl_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(swirl_image,DirectClass) == MagickFalse)
{
InheritException(exception,&swirl_image->exception);
swirl_image=DestroyImage(swirl_image);
return((Image *) NULL);
}
if (swirl_image->background_color.opacity != OpaqueOpacity)
swirl_image->matte=MagickTrue;
/*
Compute scaling factor.
*/
center.x=(double) image->columns/2.0;
center.y=(double) image->rows/2.0;
radius=MagickMax(center.x,center.y);
scale.x=1.0;
scale.y=1.0;
if (image->columns > image->rows)
scale.y=(double) image->columns/(double) image->rows;
else
if (image->columns < image->rows)
scale.x=(double) image->rows/(double) image->columns;
degrees=(double) DegreesToRadians(degrees);
/*
Swirl image.
*/
status=MagickTrue;
progress=0;
GetMagickPixelPacket(swirl_image,&zero);
image_view=AcquireVirtualCacheView(image,exception);
swirl_view=AcquireAuthenticCacheView(swirl_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,swirl_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
distance;
MagickPixelPacket
pixel;
PointInfo
delta;
IndexPacket
*magick_restrict swirl_indexes;
ssize_t
x;
PixelPacket
*magick_restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(swirl_view,0,y,swirl_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
swirl_indexes=GetCacheViewAuthenticIndexQueue(swirl_view);
delta.y=scale.y*(double) (y-center.y);
pixel=zero;
for (x=0; x < (ssize_t) image->columns; x++)
{
/*
Determine if the pixel is within an ellipse.
*/
delta.x=scale.x*(double) (x-center.x);
distance=delta.x*delta.x+delta.y*delta.y;
if (distance < (radius*radius))
{
double
cosine,
factor,
sine;
/*
Swirl the pixel.
*/
factor=1.0-sqrt(distance)/radius;
sine=sin((double) (degrees*factor*factor));
cosine=cos((double) (degrees*factor*factor));
status=InterpolateMagickPixelPacket(image,image_view,
UndefinedInterpolatePixel,(double) ((cosine*delta.x-sine*delta.y)/
scale.x+center.x),(double) ((sine*delta.x+cosine*delta.y)/scale.y+
center.y),&pixel,exception);
if (status == MagickFalse)
break;
SetPixelPacket(swirl_image,&pixel,q,swirl_indexes+x);
}
q++;
}
if (SyncCacheViewAuthenticPixels(swirl_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,SwirlImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
swirl_view=DestroyCacheView(swirl_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
swirl_image=DestroyImage(swirl_image);
return(swirl_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% T i n t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% TintImage() applies a color vector to each pixel in the image. The length
% of the vector is 0 for black and white and at its maximum for the midtones.
% The vector weighting function is f(x)=(1-(4.0*((x-0.5)*(x-0.5))))
%
% The format of the TintImage method is:
%
% Image *TintImage(const Image *image,const char *opacity,
% const PixelPacket tint,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o opacity: A color value used for tinting.
%
% o tint: A color value used for tinting.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *TintImage(const Image *image,const char *opacity,
const PixelPacket tint,ExceptionInfo *exception)
{
#define TintImageTag "Tint/Image"
CacheView
*image_view,
*tint_view;
GeometryInfo
geometry_info;
Image
*tint_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
color_vector,
pixel;
MagickStatusType
flags;
ssize_t
y;
/*
Allocate tint image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
tint_image=CloneImage(image,0,0,MagickTrue,exception);
if (tint_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(tint_image,DirectClass) == MagickFalse)
{
InheritException(exception,&tint_image->exception);
tint_image=DestroyImage(tint_image);
return((Image *) NULL);
}
if ((IsGrayColorspace(image->colorspace) != MagickFalse) &&
(IsPixelGray(&tint) == MagickFalse))
(void) SetImageColorspace(tint_image,sRGBColorspace);
if (opacity == (const char *) NULL)
return(tint_image);
/*
Determine RGB values of the tint color.
*/
flags=ParseGeometry(opacity,&geometry_info);
pixel.red=geometry_info.rho;
pixel.green=geometry_info.rho;
pixel.blue=geometry_info.rho;
pixel.opacity=(MagickRealType) OpaqueOpacity;
if ((flags & SigmaValue) != 0)
pixel.green=geometry_info.sigma;
if ((flags & XiValue) != 0)
pixel.blue=geometry_info.xi;
if ((flags & PsiValue) != 0)
pixel.opacity=geometry_info.psi;
color_vector.red=(MagickRealType) (pixel.red*tint.red/100.0-
PixelPacketIntensity(&tint));
color_vector.green=(MagickRealType) (pixel.green*tint.green/100.0-
PixelPacketIntensity(&tint));
color_vector.blue=(MagickRealType) (pixel.blue*tint.blue/100.0-
PixelPacketIntensity(&tint));
/*
Tint image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
tint_view=AcquireAuthenticCacheView(tint_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,tint_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const PixelPacket
*magick_restrict p;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(tint_view,0,y,tint_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
weight;
MagickPixelPacket
pixel;
weight=QuantumScale*GetPixelRed(p)-0.5;
pixel.red=(MagickRealType) GetPixelRed(p)+color_vector.red*(1.0-(4.0*
(weight*weight)));
SetPixelRed(q,ClampToQuantum(pixel.red));
weight=QuantumScale*GetPixelGreen(p)-0.5;
pixel.green=(MagickRealType) GetPixelGreen(p)+color_vector.green*(1.0-
(4.0*(weight*weight)));
SetPixelGreen(q,ClampToQuantum(pixel.green));
weight=QuantumScale*GetPixelBlue(p)-0.5;
pixel.blue=(MagickRealType) GetPixelBlue(p)+color_vector.blue*(1.0-(4.0*
(weight*weight)));
SetPixelBlue(q,ClampToQuantum(pixel.blue));
SetPixelOpacity(q,GetPixelOpacity(p));
p++;
q++;
}
if (SyncCacheViewAuthenticPixels(tint_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,TintImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
tint_view=DestroyCacheView(tint_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
tint_image=DestroyImage(tint_image);
return(tint_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% V i g n e t t e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% VignetteImage() softens the edges of the image in vignette style.
%
% The format of the VignetteImage method is:
%
% Image *VignetteImage(const Image *image,const double radius,
% const double sigma,const ssize_t x,const ssize_t y,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o x, y: Define the x and y ellipse offset.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *VignetteImage(const Image *image,const double radius,
const double sigma,const ssize_t x,const ssize_t y,ExceptionInfo *exception)
{
char
ellipse[MaxTextExtent];
DrawInfo
*draw_info;
Image
*blur_image,
*canvas_image,
*oval_image,
*vignette_image;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
canvas_image=CloneImage(image,0,0,MagickTrue,exception);
if (canvas_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(canvas_image,DirectClass) == MagickFalse)
{
InheritException(exception,&canvas_image->exception);
canvas_image=DestroyImage(canvas_image);
return((Image *) NULL);
}
canvas_image->matte=MagickTrue;
oval_image=CloneImage(canvas_image,canvas_image->columns,canvas_image->rows,
MagickTrue,exception);
if (oval_image == (Image *) NULL)
{
canvas_image=DestroyImage(canvas_image);
return((Image *) NULL);
}
(void) QueryColorDatabase("#000000",&oval_image->background_color,exception);
(void) SetImageBackgroundColor(oval_image);
draw_info=CloneDrawInfo((const ImageInfo *) NULL,(const DrawInfo *) NULL);
(void) QueryColorDatabase("#ffffff",&draw_info->fill,exception);
(void) QueryColorDatabase("#ffffff",&draw_info->stroke,exception);
(void) FormatLocaleString(ellipse,MaxTextExtent,
"ellipse %g,%g,%g,%g,0.0,360.0",image->columns/2.0,
image->rows/2.0,image->columns/2.0-x,image->rows/2.0-y);
draw_info->primitive=AcquireString(ellipse);
(void) DrawImage(oval_image,draw_info);
draw_info=DestroyDrawInfo(draw_info);
blur_image=BlurImage(oval_image,radius,sigma,exception);
oval_image=DestroyImage(oval_image);
if (blur_image == (Image *) NULL)
{
canvas_image=DestroyImage(canvas_image);
return((Image *) NULL);
}
blur_image->matte=MagickFalse;
(void) CompositeImage(canvas_image,CopyOpacityCompositeOp,blur_image,0,0);
blur_image=DestroyImage(blur_image);
vignette_image=MergeImageLayers(canvas_image,FlattenLayer,exception);
canvas_image=DestroyImage(canvas_image);
if (vignette_image != (Image *) NULL)
(void) TransformImageColorspace(vignette_image,image->colorspace);
return(vignette_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W a v e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WaveImage() creates a "ripple" effect in the image by shifting the pixels
% vertically along a sine wave whose amplitude and wavelength is specified
% by the given parameters.
%
% The format of the WaveImage method is:
%
% Image *WaveImage(const Image *image,const double amplitude,
% const double wave_length,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o amplitude, wave_length: Define the amplitude and wave length of the
% sine wave.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *WaveImage(const Image *image,const double amplitude,
const double wave_length,ExceptionInfo *exception)
{
#define WaveImageTag "Wave/Image"
CacheView
*image_view,
*wave_view;
float
*sine_map;
Image
*wave_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
zero;
ssize_t
i;
ssize_t
y;
/*
Initialize wave image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
wave_image=CloneImage(image,image->columns,(size_t) (image->rows+2.0*
fabs(amplitude)),MagickTrue,exception);
if (wave_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(wave_image,DirectClass) == MagickFalse)
{
InheritException(exception,&wave_image->exception);
wave_image=DestroyImage(wave_image);
return((Image *) NULL);
}
if (wave_image->background_color.opacity != OpaqueOpacity)
wave_image->matte=MagickTrue;
/*
Allocate sine map.
*/
sine_map=(float *) AcquireQuantumMemory((size_t) wave_image->columns,
sizeof(*sine_map));
if (sine_map == (float *) NULL)
{
wave_image=DestroyImage(wave_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
for (i=0; i < (ssize_t) wave_image->columns; i++)
sine_map[i]=(float) fabs(amplitude)+amplitude*sin((double)
((2.0*MagickPI*i)/wave_length));
/*
Wave image.
*/
status=MagickTrue;
progress=0;
GetMagickPixelPacket(wave_image,&zero);
image_view=AcquireVirtualCacheView(image,exception);
wave_view=AcquireAuthenticCacheView(wave_image,exception);
(void) SetCacheViewVirtualPixelMethod(image_view,
BackgroundVirtualPixelMethod);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,wave_image,wave_image->rows,1)
#endif
for (y=0; y < (ssize_t) wave_image->rows; y++)
{
MagickPixelPacket
pixel;
IndexPacket
*magick_restrict indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(wave_view,0,y,wave_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(wave_view);
pixel=zero;
for (x=0; x < (ssize_t) wave_image->columns; x++)
{
status=InterpolateMagickPixelPacket(image,image_view,
UndefinedInterpolatePixel,(double) x,(double) (y-sine_map[x]),&pixel,
exception);
if (status == MagickFalse)
break;
SetPixelPacket(wave_image,&pixel,q,indexes+x);
q++;
}
if (SyncCacheViewAuthenticPixels(wave_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,WaveImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
wave_view=DestroyCacheView(wave_view);
image_view=DestroyCacheView(image_view);
sine_map=(float *) RelinquishMagickMemory(sine_map);
if (status == MagickFalse)
wave_image=DestroyImage(wave_image);
return(wave_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W a v e l e t D e n o i s e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WaveletDenoiseImage() removes noise from the image using a wavelet
% transform. The wavelet transform is a fast hierarchical scheme for
% processing an image using a set of consecutive lowpass and high_pass filters,
% followed by a decimation. This results in a decomposition into different
% scales which can be regarded as different “frequency bands”, determined by
% the mother wavelet. Adapted from dcraw.c by David Coffin.
%
% The format of the WaveletDenoiseImage method is:
%
% Image *WaveletDenoiseImage(const Image *image,const double threshold,
% const double softness,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o threshold: set the threshold for smoothing.
%
% o softness: attenuate the smoothing threshold.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline void HatTransform(const float *magick_restrict pixels,
const size_t stride,const size_t extent,const size_t scale,float *kernel)
{
const float
*magick_restrict p,
*magick_restrict q,
*magick_restrict r;
ssize_t
i;
p=pixels;
q=pixels+scale*stride,
r=pixels+scale*stride;
for (i=0; i < (ssize_t) scale; i++)
{
kernel[i]=0.25f*(*p+(*p)+(*q)+(*r));
p+=stride;
q-=stride;
r+=stride;
}
for ( ; i < (ssize_t) (extent-scale); i++)
{
kernel[i]=0.25f*(2.0f*(*p)+*(p-scale*stride)+*(p+scale*stride));
p+=stride;
}
q=p-scale*stride;
r=pixels+stride*(extent-2);
for ( ; i < (ssize_t) extent; i++)
{
kernel[i]=0.25f*(*p+(*p)+(*q)+(*r));
p+=stride;
q+=stride;
r-=stride;
}
}
MagickExport Image *WaveletDenoiseImage(const Image *image,
const double threshold,const double softness,ExceptionInfo *exception)
{
CacheView
*image_view,
*noise_view;
float
*kernel,
*pixels;
Image
*noise_image;
MagickBooleanType
status;
MagickSizeType
number_pixels;
MemoryInfo
*pixels_info;
size_t
max_channels;
ssize_t
channel;
static const double
noise_levels[]= {
0.8002, 0.2735, 0.1202, 0.0585, 0.0291, 0.0152, 0.0080, 0.0044 };
/*
Initialize noise image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
noise_image=(Image *) NULL;
#if defined(MAGICKCORE_OPENCL_SUPPORT)
noise_image=AccelerateWaveletDenoiseImage(image,threshold,exception);
if (noise_image != (Image *) NULL)
return(noise_image);
#endif
noise_image=CloneImage(image,0,0,MagickTrue,exception);
if (noise_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(noise_image,DirectClass) == MagickFalse)
{
noise_image=DestroyImage(noise_image);
return((Image *) NULL);
}
if (AcquireMagickResource(WidthResource,3*image->columns) == MagickFalse)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
pixels_info=AcquireVirtualMemory(3*image->columns,image->rows*
sizeof(*pixels));
kernel=(float *) AcquireQuantumMemory(MagickMax(image->rows,image->columns)+1,
GetOpenMPMaximumThreads()*sizeof(*kernel));
if ((pixels_info == (MemoryInfo *) NULL) || (kernel == (float *) NULL))
{
if (kernel != (float *) NULL)
kernel=(float *) RelinquishMagickMemory(kernel);
if (pixels_info != (MemoryInfo *) NULL)
pixels_info=RelinquishVirtualMemory(pixels_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
pixels=(float *) GetVirtualMemoryBlob(pixels_info);
status=MagickTrue;
number_pixels=image->columns*image->rows;
max_channels=(size_t) (image->colorspace == CMYKColorspace ? 4 : 3);
image_view=AcquireAuthenticCacheView(image,exception);
noise_view=AcquireAuthenticCacheView(noise_image,exception);
for (channel=0; channel < (ssize_t) max_channels; channel++)
{
ssize_t
i;
size_t
high_pass,
low_pass;
ssize_t
level,
y;
if (status == MagickFalse)
continue;
/*
Copy channel from image to wavelet pixel array.
*/
i=0;
for (y=0; y < (ssize_t) image->rows; y++)
{
const IndexPacket
*magick_restrict indexes;
const PixelPacket
*magick_restrict p;
ssize_t
x;
p=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
switch (channel)
{
case 0: pixels[i]=(float) GetPixelRed(p); break;
case 1: pixels[i]=(float) GetPixelGreen(p); break;
case 2: pixels[i]=(float) GetPixelBlue(p); break;
case 3: pixels[i]=(float) indexes[x]; break;
default: break;
}
i++;
p++;
}
}
/*
Low pass filter outputs are called approximation kernel & high pass
filters are referred to as detail kernel. The detail kernel
have high values in the noisy parts of the signal.
*/
high_pass=0;
for (level=0; level < 5; level++)
{
double
magnitude;
ssize_t
x,
y;
low_pass=(size_t) (number_pixels*((level & 0x01)+1));
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,1) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
float
*magick_restrict p,
*magick_restrict q;
ssize_t
x;
p=kernel+id*image->columns;
q=pixels+y*image->columns;
HatTransform(q+high_pass,1,image->columns,(size_t) (1UL << level),p);
q+=low_pass;
for (x=0; x < (ssize_t) image->columns; x++)
*q++=(*p++);
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,1) \
magick_number_threads(image,image,image->columns,1)
#endif
for (x=0; x < (ssize_t) image->columns; x++)
{
const int
id = GetOpenMPThreadId();
float
*magick_restrict p,
*magick_restrict q;
ssize_t
y;
p=kernel+id*image->rows;
q=pixels+x+low_pass;
HatTransform(q,image->columns,image->rows,(size_t) (1UL << level),p);
for (y=0; y < (ssize_t) image->rows; y++)
{
*q=(*p++);
q+=image->columns;
}
}
/*
To threshold, each coefficient is compared to a threshold value and
attenuated / shrunk by some factor.
*/
magnitude=threshold*noise_levels[level];
for (i=0; i < (ssize_t) number_pixels; ++i)
{
pixels[high_pass+i]-=pixels[low_pass+i];
if (pixels[high_pass+i] < -magnitude)
pixels[high_pass+i]+=magnitude-softness*magnitude;
else
if (pixels[high_pass+i] > magnitude)
pixels[high_pass+i]-=magnitude-softness*magnitude;
else
pixels[high_pass+i]*=softness;
if (high_pass != 0)
pixels[i]+=pixels[high_pass+i];
}
high_pass=low_pass;
}
/*
Reconstruct image from the thresholded wavelet kernel.
*/
i=0;
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
IndexPacket
*magick_restrict noise_indexes;
PixelPacket
*magick_restrict q;
ssize_t
x;
q=GetCacheViewAuthenticPixels(noise_view,0,y,noise_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
break;
}
noise_indexes=GetCacheViewAuthenticIndexQueue(noise_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
float
pixel;
pixel=pixels[i]+pixels[low_pass+i];
switch (channel)
{
case 0: SetPixelRed(q,ClampToQuantum(pixel)); break;
case 1: SetPixelGreen(q,ClampToQuantum(pixel)); break;
case 2: SetPixelBlue(q,ClampToQuantum(pixel)); break;
case 3: SetPixelIndex(noise_indexes+x,ClampToQuantum(pixel)); break;
default: break;
}
i++;
q++;
}
sync=SyncCacheViewAuthenticPixels(noise_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,AddNoiseImageTag,(MagickOffsetType)
channel,max_channels);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
noise_view=DestroyCacheView(noise_view);
image_view=DestroyCacheView(image_view);
kernel=(float *) RelinquishMagickMemory(kernel);
pixels_info=RelinquishVirtualMemory(pixels_info);
return(noise_image);
}