libscalar-list-utils-perl/ListUtil.xs

2120 lines
52 KiB
Plaintext

/* Copyright (c) 1997-2000 Graham Barr <gbarr@pobox.com>. All rights reserved.
* This program is free software; you can redistribute it and/or
* modify it under the same terms as Perl itself.
*/
#define PERL_NO_GET_CONTEXT /* we want efficiency */
#include <EXTERN.h>
#include <perl.h>
#include <XSUB.h>
#ifdef USE_PPPORT_H
# define NEED_sv_2pv_flags 1
# define NEED_newSVpvn_flags 1
# define NEED_sv_catpvn_flags
# include "ppport.h"
#endif
/* For uniqnum, define ACTUAL_NVSIZE to be the number *
* of bytes that are actually used to store the NV */
#if defined(USE_LONG_DOUBLE) && LDBL_MANT_DIG == 64
# define ACTUAL_NVSIZE 10
#else
# define ACTUAL_NVSIZE NVSIZE
#endif
/* Detect "DoubleDouble" nvtype */
#if defined(USE_LONG_DOUBLE) && LDBL_MANT_DIG == 106
# define NV_IS_DOUBLEDOUBLE
#endif
#ifndef PERL_VERSION_DECIMAL
# define PERL_VERSION_DECIMAL(r,v,s) (r*1000000 + v*1000 + s)
#endif
#ifndef PERL_DECIMAL_VERSION
# define PERL_DECIMAL_VERSION \
PERL_VERSION_DECIMAL(PERL_REVISION,PERL_VERSION,PERL_SUBVERSION)
#endif
#ifndef PERL_VERSION_GE
# define PERL_VERSION_GE(r,v,s) \
(PERL_DECIMAL_VERSION >= PERL_VERSION_DECIMAL(r,v,s))
#endif
#ifndef PERL_VERSION_LE
# define PERL_VERSION_LE(r,v,s) \
(PERL_DECIMAL_VERSION <= PERL_VERSION_DECIMAL(r,v,s))
#endif
#if PERL_VERSION_GE(5,6,0)
# include "multicall.h"
#endif
#if !PERL_VERSION_GE(5,23,8)
# define UNUSED_VAR_newsp PERL_UNUSED_VAR(newsp)
#else
# define UNUSED_VAR_newsp NOOP
#endif
#ifndef CvISXSUB
# define CvISXSUB(cv) CvXSUB(cv)
#endif
#ifndef HvNAMELEN_get
#define HvNAMELEN_get(stash) strlen(HvNAME(stash))
#endif
#ifndef HvNAMEUTF8
#define HvNAMEUTF8(stash) 0
#endif
#ifndef GvNAMEUTF8
#ifdef GvNAME_HEK
#define GvNAMEUTF8(gv) HEK_UTF8(GvNAME_HEK(gv))
#else
#define GvNAMEUTF8(gv) 0
#endif
#endif
#ifndef SV_CATUTF8
#define SV_CATUTF8 0
#endif
#ifndef SV_CATBYTES
#define SV_CATBYTES 0
#endif
#ifndef sv_catpvn_flags
#define sv_catpvn_flags(b,n,l,f) sv_catpvn(b,n,l)
#endif
#if !PERL_VERSION_GE(5,8,3)
static NV Perl_ceil(NV nv) {
return -Perl_floor(-nv);
}
#endif
/* Some platforms have strict exports. And before 5.7.3 cxinc (or Perl_cxinc)
was not exported. Therefore platforms like win32, VMS etc have problems
so we redefine it here -- GMB
*/
#if !PERL_VERSION_GE(5,7,0)
/* Not in 5.6.1. */
# ifdef cxinc
# undef cxinc
# endif
# define cxinc() my_cxinc(aTHX)
static I32
my_cxinc(pTHX)
{
cxstack_max = cxstack_max * 3 / 2;
Renew(cxstack, cxstack_max + 1, struct context); /* fencepost bug in older CXINC macros requires +1 here */
return cxstack_ix + 1;
}
#endif
#ifndef sv_copypv
#define sv_copypv(a, b) my_sv_copypv(aTHX_ a, b)
static void
my_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
{
STRLEN len;
const char * const s = SvPV_const(ssv,len);
sv_setpvn(dsv,s,len);
if(SvUTF8(ssv))
SvUTF8_on(dsv);
else
SvUTF8_off(dsv);
}
#endif
#ifdef SVf_IVisUV
# define slu_sv_value(sv) (SvIOK(sv)) ? (SvIOK_UV(sv)) ? (NV)(SvUVX(sv)) : (NV)(SvIVX(sv)) : (SvNV(sv))
#else
# define slu_sv_value(sv) (SvIOK(sv)) ? (NV)(SvIVX(sv)) : (SvNV(sv))
#endif
#if PERL_VERSION < 13 || (PERL_VERSION == 13 && PERL_SUBVERSION < 9)
# define PERL_HAS_BAD_MULTICALL_REFCOUNT
#endif
#ifndef SvNV_nomg
# define SvNV_nomg SvNV
#endif
#if PERL_VERSION_GE(5,16,0)
# define HAVE_UNICODE_PACKAGE_NAMES
# ifndef sv_sethek
# define sv_sethek(a, b) Perl_sv_sethek(aTHX_ a, b)
# endif
# ifndef sv_ref
# define sv_ref(dst, sv, ob) my_sv_ref(aTHX_ dst, sv, ob)
static SV *
my_sv_ref(pTHX_ SV *dst, const SV *sv, int ob)
{
/* cargoculted from perl 5.22's sv.c */
if(!dst)
dst = sv_newmortal();
if(ob && SvOBJECT(sv)) {
if(HvNAME_get(SvSTASH(sv)))
sv_sethek(dst, HvNAME_HEK(SvSTASH(sv)));
else
sv_setpvs(dst, "__ANON__");
}
else {
const char *reftype = sv_reftype(sv, 0);
sv_setpv(dst, reftype);
}
return dst;
}
# endif
#endif /* HAVE_UNICODE_PACKAGE_NAMES */
enum slu_accum {
ACC_IV,
ACC_NV,
ACC_SV,
};
static enum slu_accum accum_type(SV *sv) {
if(SvAMAGIC(sv))
return ACC_SV;
if(SvIOK(sv) && !SvNOK(sv) && !SvUOK(sv))
return ACC_IV;
return ACC_NV;
}
/* Magic for set_subname */
static MGVTBL subname_vtbl;
static void MY_initrand(pTHX)
{
#if (PERL_VERSION < 9)
struct op dmy_op;
struct op *old_op = PL_op;
/* We call pp_rand here so that Drand01 get initialized if rand()
or srand() has not already been called
*/
memzero((char*)(&dmy_op), sizeof(struct op));
/* we let pp_rand() borrow the TARG allocated for this XS sub */
dmy_op.op_targ = PL_op->op_targ;
PL_op = &dmy_op;
(void)*(PL_ppaddr[OP_RAND])(aTHX);
PL_op = old_op;
#else
/* Initialize Drand01 if rand() or srand() has
not already been called
*/
if(!PL_srand_called) {
(void)seedDrand01((Rand_seed_t)Perl_seed(aTHX));
PL_srand_called = TRUE;
}
#endif
}
static double MY_callrand(pTHX_ CV *randcv)
{
dSP;
double ret, dummy;
ENTER;
PUSHMARK(SP);
PUTBACK;
call_sv((SV *)randcv, G_SCALAR);
SPAGAIN;
ret = modf(POPn, &dummy); /* bound to < 1 */
if(ret < 0) ret += 1.0; /* bound to 0 <= ret < 1 */
LEAVE;
return ret;
}
#define sv_to_cv(sv, subname) MY_sv_to_cv(aTHX_ sv, subname);
static CV* MY_sv_to_cv(pTHX_ SV* sv, const char * const subname)
{
GV *gv;
HV *stash;
CV *cv = sv_2cv(sv, &stash, &gv, 0);
if(cv == Nullcv)
croak("Not a subroutine reference");
if(!CvROOT(cv) && !CvXSUB(cv))
croak("Undefined subroutine in %s", subname);
return cv;
}
enum {
ZIP_SHORTEST = 1,
ZIP_LONGEST = 2,
ZIP_MESH = 4,
ZIP_MESH_LONGEST = ZIP_MESH|ZIP_LONGEST,
ZIP_MESH_SHORTEST = ZIP_MESH|ZIP_SHORTEST,
};
MODULE=List::Util PACKAGE=List::Util
void
min(...)
PROTOTYPE: @
ALIAS:
min = 0
max = 1
CODE:
{
int index;
NV retval = 0.0; /* avoid 'uninit var' warning */
SV *retsv;
int magic;
if(!items)
XSRETURN_UNDEF;
retsv = ST(0);
SvGETMAGIC(retsv);
magic = SvAMAGIC(retsv);
if(!magic)
retval = slu_sv_value(retsv);
for(index = 1 ; index < items ; index++) {
SV *stacksv = ST(index);
SV *tmpsv;
SvGETMAGIC(stacksv);
if((magic || SvAMAGIC(stacksv)) && (tmpsv = amagic_call(retsv, stacksv, gt_amg, 0))) {
if(SvTRUE(tmpsv) ? !ix : ix) {
retsv = stacksv;
magic = SvAMAGIC(retsv);
if(!magic) {
retval = slu_sv_value(retsv);
}
}
}
else {
NV val = slu_sv_value(stacksv);
if(magic) {
retval = slu_sv_value(retsv);
magic = 0;
}
if(val < retval ? !ix : ix) {
retsv = stacksv;
retval = val;
}
}
}
ST(0) = retsv;
XSRETURN(1);
}
void
sum(...)
PROTOTYPE: @
ALIAS:
sum = 0
sum0 = 1
product = 2
CODE:
{
dXSTARG;
SV *sv;
IV retiv = 0;
NV retnv = 0.0;
SV *retsv = NULL;
int index;
enum slu_accum accum;
int is_product = (ix == 2);
SV *tmpsv;
if(!items)
switch(ix) {
case 0: XSRETURN_UNDEF;
case 1: ST(0) = sv_2mortal(newSViv(0)); XSRETURN(1);
case 2: ST(0) = sv_2mortal(newSViv(1)); XSRETURN(1);
}
sv = ST(0);
SvGETMAGIC(sv);
switch((accum = accum_type(sv))) {
case ACC_SV:
retsv = TARG;
sv_setsv(retsv, sv);
break;
case ACC_IV:
retiv = SvIV(sv);
break;
case ACC_NV:
retnv = slu_sv_value(sv);
break;
}
for(index = 1 ; index < items ; index++) {
sv = ST(index);
SvGETMAGIC(sv);
if(accum < ACC_SV && SvAMAGIC(sv)){
if(!retsv)
retsv = TARG;
sv_setnv(retsv, accum == ACC_NV ? retnv : retiv);
accum = ACC_SV;
}
switch(accum) {
case ACC_SV:
tmpsv = amagic_call(retsv, sv,
is_product ? mult_amg : add_amg,
SvAMAGIC(retsv) ? AMGf_assign : 0);
if(tmpsv) {
switch((accum = accum_type(tmpsv))) {
case ACC_SV:
retsv = tmpsv;
break;
case ACC_IV:
retiv = SvIV(tmpsv);
break;
case ACC_NV:
retnv = slu_sv_value(tmpsv);
break;
}
}
else {
/* fall back to default */
accum = ACC_NV;
is_product ? (retnv = SvNV(retsv) * SvNV(sv))
: (retnv = SvNV(retsv) + SvNV(sv));
}
break;
case ACC_IV:
if(is_product) {
/* TODO: Consider if product() should shortcircuit the moment its
* accumulator becomes zero
*/
/* XXX testing flags before running get_magic may
* cause some valid tied values to fallback to the NV path
* - DAPM */
if(!SvNOK(sv) && SvIOK(sv)) {
IV i = SvIV(sv);
if (retiv == 0) /* avoid later division by zero */
break;
if (retiv < -1) { /* avoid -1 because that causes SIGFPE */
if (i < 0) {
if (i >= IV_MAX / retiv) {
retiv *= i;
break;
}
}
else {
if (i <= IV_MIN / retiv) {
retiv *= i;
break;
}
}
}
else if (retiv > 0) {
if (i < 0) {
if (i >= IV_MIN / retiv) {
retiv *= i;
break;
}
}
else {
if (i <= IV_MAX / retiv) {
retiv *= i;
break;
}
}
}
}
/* else fallthrough */
}
else {
/* XXX testing flags before running get_magic may
* cause some valid tied values to fallback to the NV path
* - DAPM */
if(!SvNOK(sv) && SvIOK(sv)) {
IV i = SvIV(sv);
if (retiv >= 0 && i >= 0) {
if (retiv <= IV_MAX - i) {
retiv += i;
break;
}
/* else fallthrough */
}
else if (retiv < 0 && i < 0) {
if (retiv >= IV_MIN - i) {
retiv += i;
break;
}
/* else fallthrough */
}
else {
/* mixed signs can't overflow */
retiv += i;
break;
}
}
/* else fallthrough */
}
retnv = retiv;
accum = ACC_NV;
/* FALLTHROUGH */
case ACC_NV:
is_product ? (retnv *= slu_sv_value(sv))
: (retnv += slu_sv_value(sv));
break;
}
}
if(!retsv)
retsv = TARG;
switch(accum) {
case ACC_SV: /* nothing to do */
break;
case ACC_IV:
sv_setiv(retsv, retiv);
break;
case ACC_NV:
sv_setnv(retsv, retnv);
break;
}
ST(0) = retsv;
XSRETURN(1);
}
#define SLU_CMP_LARGER 1
#define SLU_CMP_SMALLER -1
void
minstr(...)
PROTOTYPE: @
ALIAS:
minstr = SLU_CMP_LARGER
maxstr = SLU_CMP_SMALLER
CODE:
{
SV *left;
int index;
if(!items)
XSRETURN_UNDEF;
left = ST(0);
#ifdef OPpLOCALE
if(MAXARG & OPpLOCALE) {
for(index = 1 ; index < items ; index++) {
SV *right = ST(index);
if(sv_cmp_locale(left, right) == ix)
left = right;
}
}
else {
#endif
for(index = 1 ; index < items ; index++) {
SV *right = ST(index);
if(sv_cmp(left, right) == ix)
left = right;
}
#ifdef OPpLOCALE
}
#endif
ST(0) = left;
XSRETURN(1);
}
void
reduce(block,...)
SV *block
PROTOTYPE: &@
ALIAS:
reduce = 0
reductions = 1
CODE:
{
SV *ret = sv_newmortal();
int index;
AV *retvals = NULL;
GV *agv,*bgv;
SV **args = &PL_stack_base[ax];
CV *cv = sv_to_cv(block, ix ? "reductions" : "reduce");
if(items <= 1) {
if(ix)
XSRETURN(0);
else
XSRETURN_UNDEF;
}
agv = gv_fetchpv("a", GV_ADD, SVt_PV);
bgv = gv_fetchpv("b", GV_ADD, SVt_PV);
SAVESPTR(GvSV(agv));
SAVESPTR(GvSV(bgv));
GvSV(agv) = ret;
SvSetMagicSV(ret, args[1]);
if(ix) {
/* Precreate an AV for return values; -1 for cv, -1 for top index */
retvals = newAV();
av_extend(retvals, items-1-1);
/* so if throw an exception they can be reclaimed */
SAVEFREESV(retvals);
av_push(retvals, newSVsv(ret));
}
#ifdef dMULTICALL
assert(cv);
if(!CvISXSUB(cv)) {
dMULTICALL;
I32 gimme = G_SCALAR;
UNUSED_VAR_newsp;
PUSH_MULTICALL(cv);
for(index = 2 ; index < items ; index++) {
GvSV(bgv) = args[index];
MULTICALL;
SvSetMagicSV(ret, *PL_stack_sp);
if(ix)
av_push(retvals, newSVsv(ret));
}
# ifdef PERL_HAS_BAD_MULTICALL_REFCOUNT
if(CvDEPTH(multicall_cv) > 1)
SvREFCNT_inc_simple_void_NN(multicall_cv);
# endif
POP_MULTICALL;
}
else
#endif
{
for(index = 2 ; index < items ; index++) {
dSP;
GvSV(bgv) = args[index];
PUSHMARK(SP);
call_sv((SV*)cv, G_SCALAR);
SvSetMagicSV(ret, *PL_stack_sp);
if(ix)
av_push(retvals, newSVsv(ret));
}
}
if(ix) {
int i;
SV **svs = AvARRAY(retvals);
/* steal the SVs from retvals */
for(i = 0; i < items-1; i++) {
ST(i) = sv_2mortal(svs[i]);
svs[i] = NULL;
}
XSRETURN(items-1);
}
else {
ST(0) = ret;
XSRETURN(1);
}
}
void
first(block,...)
SV *block
PROTOTYPE: &@
CODE:
{
int index;
SV **args = &PL_stack_base[ax];
CV *cv = sv_to_cv(block, "first");
if(items <= 1)
XSRETURN_UNDEF;
SAVESPTR(GvSV(PL_defgv));
#ifdef dMULTICALL
assert(cv);
if(!CvISXSUB(cv)) {
dMULTICALL;
I32 gimme = G_SCALAR;
UNUSED_VAR_newsp;
PUSH_MULTICALL(cv);
for(index = 1 ; index < items ; index++) {
SV *def_sv = GvSV(PL_defgv) = args[index];
# ifdef SvTEMP_off
SvTEMP_off(def_sv);
# endif
MULTICALL;
if(SvTRUEx(*PL_stack_sp)) {
# ifdef PERL_HAS_BAD_MULTICALL_REFCOUNT
if(CvDEPTH(multicall_cv) > 1)
SvREFCNT_inc_simple_void_NN(multicall_cv);
# endif
POP_MULTICALL;
ST(0) = ST(index);
XSRETURN(1);
}
}
# ifdef PERL_HAS_BAD_MULTICALL_REFCOUNT
if(CvDEPTH(multicall_cv) > 1)
SvREFCNT_inc_simple_void_NN(multicall_cv);
# endif
POP_MULTICALL;
}
else
#endif
{
for(index = 1 ; index < items ; index++) {
dSP;
GvSV(PL_defgv) = args[index];
PUSHMARK(SP);
call_sv((SV*)cv, G_SCALAR);
if(SvTRUEx(*PL_stack_sp)) {
ST(0) = ST(index);
XSRETURN(1);
}
}
}
XSRETURN_UNDEF;
}
void
any(block,...)
SV *block
ALIAS:
none = 0
all = 1
any = 2
notall = 3
PROTOTYPE: &@
PPCODE:
{
int ret_true = !(ix & 2); /* return true at end of loop for none/all; false for any/notall */
int invert = (ix & 1); /* invert block test for all/notall */
SV **args = &PL_stack_base[ax];
CV *cv = sv_to_cv(block,
ix == 0 ? "none" :
ix == 1 ? "all" :
ix == 2 ? "any" :
ix == 3 ? "notall" :
"unknown 'any' alias");
SAVESPTR(GvSV(PL_defgv));
#ifdef dMULTICALL
assert(cv);
if(!CvISXSUB(cv)) {
dMULTICALL;
I32 gimme = G_SCALAR;
int index;
UNUSED_VAR_newsp;
PUSH_MULTICALL(cv);
for(index = 1; index < items; index++) {
SV *def_sv = GvSV(PL_defgv) = args[index];
# ifdef SvTEMP_off
SvTEMP_off(def_sv);
# endif
MULTICALL;
if(SvTRUEx(*PL_stack_sp) ^ invert) {
POP_MULTICALL;
ST(0) = ret_true ? &PL_sv_no : &PL_sv_yes;
XSRETURN(1);
}
}
POP_MULTICALL;
}
else
#endif
{
int index;
for(index = 1; index < items; index++) {
dSP;
GvSV(PL_defgv) = args[index];
PUSHMARK(SP);
call_sv((SV*)cv, G_SCALAR);
if(SvTRUEx(*PL_stack_sp) ^ invert) {
ST(0) = ret_true ? &PL_sv_no : &PL_sv_yes;
XSRETURN(1);
}
}
}
ST(0) = ret_true ? &PL_sv_yes : &PL_sv_no;
XSRETURN(1);
}
void
head(size,...)
PROTOTYPE: $@
ALIAS:
head = 0
tail = 1
PPCODE:
{
int size = 0;
int start = 0;
int end = 0;
int i = 0;
size = SvIV( ST(0) );
if ( ix == 0 ) {
start = 1;
end = start + size;
if ( size < 0 ) {
end += items - 1;
}
if ( end > items ) {
end = items;
}
}
else {
end = items;
if ( size < 0 ) {
start = -size + 1;
}
else {
start = end - size;
}
if ( start < 1 ) {
start = 1;
}
}
if ( end <= start ) {
XSRETURN(0);
}
else {
EXTEND( SP, end - start );
for ( i = start; i < end; i++ ) {
PUSHs( sv_2mortal( newSVsv( ST(i) ) ) );
}
XSRETURN( end - start );
}
}
void
pairs(...)
PROTOTYPE: @
PPCODE:
{
int argi = 0;
int reti = 0;
HV *pairstash = get_hv("List::Util::_Pair::", GV_ADD);
if(items % 2 && ckWARN(WARN_MISC))
warn("Odd number of elements in pairs");
{
for(; argi < items; argi += 2) {
SV *a = ST(argi);
SV *b = argi < items-1 ? ST(argi+1) : &PL_sv_undef;
AV *av = newAV();
av_push(av, newSVsv(a));
av_push(av, newSVsv(b));
ST(reti) = sv_2mortal(newRV_noinc((SV *)av));
sv_bless(ST(reti), pairstash);
reti++;
}
}
XSRETURN(reti);
}
void
unpairs(...)
PROTOTYPE: @
PPCODE:
{
/* Unlike pairs(), we're going to trash the input values on the stack
* almost as soon as we start generating output. So clone them first
*/
int i;
SV **args_copy;
Newx(args_copy, items, SV *);
SAVEFREEPV(args_copy);
Copy(&ST(0), args_copy, items, SV *);
for(i = 0; i < items; i++) {
SV *pair = args_copy[i];
AV *pairav;
SvGETMAGIC(pair);
if(SvTYPE(pair) != SVt_RV)
croak("Not a reference at List::Util::unpairs() argument %d", i);
if(SvTYPE(SvRV(pair)) != SVt_PVAV)
croak("Not an ARRAY reference at List::Util::unpairs() argument %d", i);
/* TODO: assert pair is an ARRAY ref */
pairav = (AV *)SvRV(pair);
EXTEND(SP, 2);
if(AvFILL(pairav) >= 0)
mPUSHs(newSVsv(AvARRAY(pairav)[0]));
else
PUSHs(&PL_sv_undef);
if(AvFILL(pairav) >= 1)
mPUSHs(newSVsv(AvARRAY(pairav)[1]));
else
PUSHs(&PL_sv_undef);
}
XSRETURN(items * 2);
}
void
pairkeys(...)
PROTOTYPE: @
PPCODE:
{
int argi = 0;
int reti = 0;
if(items % 2 && ckWARN(WARN_MISC))
warn("Odd number of elements in pairkeys");
{
for(; argi < items; argi += 2) {
SV *a = ST(argi);
ST(reti++) = sv_2mortal(newSVsv(a));
}
}
XSRETURN(reti);
}
void
pairvalues(...)
PROTOTYPE: @
PPCODE:
{
int argi = 0;
int reti = 0;
if(items % 2 && ckWARN(WARN_MISC))
warn("Odd number of elements in pairvalues");
{
for(; argi < items; argi += 2) {
SV *b = argi < items-1 ? ST(argi+1) : &PL_sv_undef;
ST(reti++) = sv_2mortal(newSVsv(b));
}
}
XSRETURN(reti);
}
void
pairfirst(block,...)
SV *block
PROTOTYPE: &@
PPCODE:
{
GV *agv,*bgv;
CV *cv = sv_to_cv(block, "pairfirst");
I32 ret_gimme = GIMME_V;
int argi = 1; /* "shift" the block */
if(!(items % 2) && ckWARN(WARN_MISC))
warn("Odd number of elements in pairfirst");
agv = gv_fetchpv("a", GV_ADD, SVt_PV);
bgv = gv_fetchpv("b", GV_ADD, SVt_PV);
SAVESPTR(GvSV(agv));
SAVESPTR(GvSV(bgv));
#ifdef dMULTICALL
assert(cv);
if(!CvISXSUB(cv)) {
/* Since MULTICALL is about to move it */
SV **stack = PL_stack_base + ax;
dMULTICALL;
I32 gimme = G_SCALAR;
UNUSED_VAR_newsp;
PUSH_MULTICALL(cv);
for(; argi < items; argi += 2) {
SV *a = GvSV(agv) = stack[argi];
SV *b = GvSV(bgv) = argi < items-1 ? stack[argi+1] : &PL_sv_undef;
MULTICALL;
if(!SvTRUEx(*PL_stack_sp))
continue;
POP_MULTICALL;
if(ret_gimme == G_LIST) {
ST(0) = sv_mortalcopy(a);
ST(1) = sv_mortalcopy(b);
XSRETURN(2);
}
else
XSRETURN_YES;
}
POP_MULTICALL;
XSRETURN(0);
}
else
#endif
{
for(; argi < items; argi += 2) {
dSP;
SV *a = GvSV(agv) = ST(argi);
SV *b = GvSV(bgv) = argi < items-1 ? ST(argi+1) : &PL_sv_undef;
PUSHMARK(SP);
call_sv((SV*)cv, G_SCALAR);
SPAGAIN;
if(!SvTRUEx(*PL_stack_sp))
continue;
if(ret_gimme == G_LIST) {
ST(0) = sv_mortalcopy(a);
ST(1) = sv_mortalcopy(b);
XSRETURN(2);
}
else
XSRETURN_YES;
}
}
XSRETURN(0);
}
void
pairgrep(block,...)
SV *block
PROTOTYPE: &@
PPCODE:
{
GV *agv,*bgv;
CV *cv = sv_to_cv(block, "pairgrep");
I32 ret_gimme = GIMME_V;
/* This function never returns more than it consumed in arguments. So we
* can build the results "live", behind the arguments
*/
int argi = 1; /* "shift" the block */
int reti = 0;
if(!(items % 2) && ckWARN(WARN_MISC))
warn("Odd number of elements in pairgrep");
agv = gv_fetchpv("a", GV_ADD, SVt_PV);
bgv = gv_fetchpv("b", GV_ADD, SVt_PV);
SAVESPTR(GvSV(agv));
SAVESPTR(GvSV(bgv));
#ifdef dMULTICALL
assert(cv);
if(!CvISXSUB(cv)) {
/* Since MULTICALL is about to move it */
SV **stack = PL_stack_base + ax;
int i;
dMULTICALL;
I32 gimme = G_SCALAR;
UNUSED_VAR_newsp;
PUSH_MULTICALL(cv);
for(; argi < items; argi += 2) {
SV *a = GvSV(agv) = stack[argi];
SV *b = GvSV(bgv) = argi < items-1 ? stack[argi+1] : &PL_sv_undef;
MULTICALL;
if(SvTRUEx(*PL_stack_sp)) {
if(ret_gimme == G_LIST) {
/* We can't mortalise yet or they'd be mortal too early */
stack[reti++] = newSVsv(a);
stack[reti++] = newSVsv(b);
}
else if(ret_gimme == G_SCALAR)
reti++;
}
}
POP_MULTICALL;
if(ret_gimme == G_LIST)
for(i = 0; i < reti; i++)
sv_2mortal(stack[i]);
}
else
#endif
{
for(; argi < items; argi += 2) {
dSP;
SV *a = GvSV(agv) = ST(argi);
SV *b = GvSV(bgv) = argi < items-1 ? ST(argi+1) : &PL_sv_undef;
PUSHMARK(SP);
call_sv((SV*)cv, G_SCALAR);
SPAGAIN;
if(SvTRUEx(*PL_stack_sp)) {
if(ret_gimme == G_LIST) {
ST(reti++) = sv_mortalcopy(a);
ST(reti++) = sv_mortalcopy(b);
}
else if(ret_gimme == G_SCALAR)
reti++;
}
}
}
if(ret_gimme == G_LIST)
XSRETURN(reti);
else if(ret_gimme == G_SCALAR) {
ST(0) = newSViv(reti);
XSRETURN(1);
}
}
void
pairmap(block,...)
SV *block
PROTOTYPE: &@
PPCODE:
{
GV *agv,*bgv;
CV *cv = sv_to_cv(block, "pairmap");
SV **args_copy = NULL;
I32 ret_gimme = GIMME_V;
int argi = 1; /* "shift" the block */
int reti = 0;
if(!(items % 2) && ckWARN(WARN_MISC))
warn("Odd number of elements in pairmap");
agv = gv_fetchpv("a", GV_ADD, SVt_PV);
bgv = gv_fetchpv("b", GV_ADD, SVt_PV);
SAVESPTR(GvSV(agv));
SAVESPTR(GvSV(bgv));
/* This MULTICALL-based code appears to fail on perl 5.10.0 and 5.8.9
* Skip it on those versions (RT#87857)
*/
#if defined(dMULTICALL) && (PERL_VERSION_GE(5,10,1) || PERL_VERSION_LE(5,8,8))
assert(cv);
if(!CvISXSUB(cv)) {
/* Since MULTICALL is about to move it */
SV **stack = PL_stack_base + ax;
I32 ret_gimme = GIMME_V;
int i;
AV *spill = NULL; /* accumulates results if too big for stack */
dMULTICALL;
I32 gimme = G_LIST;
UNUSED_VAR_newsp;
PUSH_MULTICALL(cv);
for(; argi < items; argi += 2) {
int count;
GvSV(agv) = stack[argi];
GvSV(bgv) = argi < items-1 ? stack[argi+1]: &PL_sv_undef;
MULTICALL;
count = PL_stack_sp - PL_stack_base;
if (count > 2 || spill) {
/* We can't return more than 2 results for a given input pair
* without trashing the remaining arguments on the stack still
* to be processed, or possibly overrunning the stack end.
* So, we'll accumulate the results in a temporary buffer
* instead.
* We didn't do this initially because in the common case, most
* code blocks will return only 1 or 2 items so it won't be
* necessary
*/
int fill;
if (!spill) {
spill = newAV();
AvREAL_off(spill); /* don't ref count its contents */
/* can't mortalize here as every nextstate in the code
* block frees temps */
SAVEFREESV(spill);
}
fill = (int)AvFILL(spill);
av_extend(spill, fill + count);
for(i = 0; i < count; i++)
(void)av_store(spill, ++fill,
newSVsv(PL_stack_base[i + 1]));
}
else
for(i = 0; i < count; i++)
stack[reti++] = newSVsv(PL_stack_base[i + 1]);
}
if (spill) {
/* the POP_MULTICALL will trigger the SAVEFREESV above;
* keep it alive it on the temps stack instead */
SvREFCNT_inc_simple_void_NN(spill);
sv_2mortal((SV*)spill);
}
POP_MULTICALL;
if (spill) {
int n = (int)AvFILL(spill) + 1;
SP = &ST(reti - 1);
EXTEND(SP, n);
for (i = 0; i < n; i++)
*++SP = *av_fetch(spill, i, FALSE);
reti += n;
av_clear(spill);
}
if(ret_gimme == G_LIST)
for(i = 0; i < reti; i++)
sv_2mortal(ST(i));
}
else
#endif
{
for(; argi < items; argi += 2) {
dSP;
int count;
int i;
GvSV(agv) = args_copy ? args_copy[argi] : ST(argi);
GvSV(bgv) = argi < items-1 ?
(args_copy ? args_copy[argi+1] : ST(argi+1)) :
&PL_sv_undef;
PUSHMARK(SP);
count = call_sv((SV*)cv, G_LIST);
SPAGAIN;
if(count > 2 && !args_copy && ret_gimme == G_LIST) {
int n_args = items - argi;
Newx(args_copy, n_args, SV *);
SAVEFREEPV(args_copy);
Copy(&ST(argi), args_copy, n_args, SV *);
argi = 0;
items = n_args;
}
if(ret_gimme == G_LIST)
for(i = 0; i < count; i++)
ST(reti++) = sv_mortalcopy(SP[i - count + 1]);
else
reti += count;
PUTBACK;
}
}
if(ret_gimme == G_LIST)
XSRETURN(reti);
ST(0) = sv_2mortal(newSViv(reti));
XSRETURN(1);
}
void
shuffle(...)
PROTOTYPE: @
CODE:
{
int index;
SV *randsv = get_sv("List::Util::RAND", 0);
CV * const randcv = randsv && SvROK(randsv) && SvTYPE(SvRV(randsv)) == SVt_PVCV ?
(CV *)SvRV(randsv) : NULL;
if(!randcv)
MY_initrand(aTHX);
for (index = items ; index > 1 ; ) {
int swap = (int)(
(randcv ? MY_callrand(aTHX_ randcv) : Drand01()) * (double)(index--)
);
SV *tmp = ST(swap);
ST(swap) = ST(index);
ST(index) = tmp;
}
XSRETURN(items);
}
void
sample(...)
PROTOTYPE: $@
CODE:
{
IV count = items ? SvUV(ST(0)) : 0;
IV reti = 0;
SV *randsv = get_sv("List::Util::RAND", 0);
CV * const randcv = randsv && SvROK(randsv) && SvTYPE(SvRV(randsv)) == SVt_PVCV ?
(CV *)SvRV(randsv) : NULL;
if(!count)
XSRETURN(0);
/* Now we've extracted count from ST(0) the rest of this logic will be a
* lot neater if we move the topmost item into ST(0) so we can just work
* within 0..items-1 */
ST(0) = POPs;
items--;
if(count > items)
count = items;
if(!randcv)
MY_initrand(aTHX);
/* Partition the stack into ST(0)..ST(reti-1) containing the sampled results
* and ST(reti)..ST(items-1) containing the remaining pending candidates
*/
while(reti < count) {
int index = (int)(
(randcv ? MY_callrand(aTHX_ randcv) : Drand01()) * (double)(items - reti)
);
SV *selected = ST(reti + index);
/* preserve the element we're about to stomp on by putting it back into
* the pending partition */
ST(reti + index) = ST(reti);
ST(reti) = selected;
reti++;
}
XSRETURN(reti);
}
void
uniq(...)
PROTOTYPE: @
ALIAS:
uniqint = 0
uniqstr = 1
uniq = 2
CODE:
{
int retcount = 0;
int index;
SV **args = &PL_stack_base[ax];
HV *seen;
int seen_undef = 0;
if(items == 0 || (items == 1 && !SvGAMAGIC(args[0]) && SvOK(args[0]))) {
/* Optimise for the case of the empty list or a defined nonmagic
* singleton. Leave a singleton magical||undef for the regular case */
retcount = items;
goto finish;
}
sv_2mortal((SV *)(seen = newHV()));
for(index = 0 ; index < items ; index++) {
SV *arg = args[index];
#ifdef HV_FETCH_EMPTY_HE
HE *he;
#endif
if(SvGAMAGIC(arg))
/* clone the value so we don't invoke magic again */
arg = sv_mortalcopy(arg);
if(ix == 2 && !SvOK(arg)) {
/* special handling of undef for uniq() */
if(seen_undef)
continue;
seen_undef++;
if(GIMME_V == G_LIST)
ST(retcount) = arg;
retcount++;
continue;
}
if(ix == 0) {
/* uniqint */
/* coerce to integer */
#if PERL_VERSION >= 8
/* int_amg only appeared in perl 5.8.0 */
if(SvAMAGIC(arg) && (arg = AMG_CALLun(arg, int)))
; /* nothing to do */
else
#endif
if(!SvOK(arg) || SvNOK(arg) || SvPOK(arg))
{
/* Convert undef, NVs and PVs into a well-behaved int */
NV nv = SvNV(arg);
if(nv > (NV)UV_MAX)
/* Too positive for UV - use NV */
arg = newSVnv(Perl_floor(nv));
else if(nv < (NV)IV_MIN)
/* Too negative for IV - use NV */
arg = newSVnv(Perl_ceil(nv));
else if(nv > 0 && (UV)nv > (UV)IV_MAX)
/* Too positive for IV - use UV */
arg = newSVuv(nv);
else
/* Must now fit into IV */
arg = newSViv(nv);
sv_2mortal(arg);
}
}
#ifdef HV_FETCH_EMPTY_HE
he = (HE*) hv_common(seen, arg, NULL, 0, 0, HV_FETCH_LVALUE | HV_FETCH_EMPTY_HE, NULL, 0);
if (HeVAL(he))
continue;
HeVAL(he) = &PL_sv_undef;
#else
if (hv_exists_ent(seen, arg, 0))
continue;
hv_store_ent(seen, arg, &PL_sv_yes, 0);
#endif
if(GIMME_V == G_LIST)
ST(retcount) = SvOK(arg) ? arg : sv_2mortal(newSVpvn("", 0));
retcount++;
}
finish:
if(GIMME_V == G_LIST)
XSRETURN(retcount);
else
ST(0) = sv_2mortal(newSViv(retcount));
}
void
uniqnum(...)
PROTOTYPE: @
CODE:
{
int retcount = 0;
int index;
SV **args = &PL_stack_base[ax];
HV *seen;
/* A temporary buffer for number stringification */
SV *keysv = sv_newmortal();
if(items == 0 || (items == 1 && !SvGAMAGIC(args[0]) && SvOK(args[0]))) {
/* Optimise for the case of the empty list or a defined nonmagic
* singleton. Leave a singleton magical||undef for the regular case */
retcount = items;
goto finish;
}
sv_2mortal((SV *)(seen = newHV()));
for(index = 0 ; index < items ; index++) {
SV *arg = args[index];
NV nv_arg;
#ifdef HV_FETCH_EMPTY_HE
HE* he;
#endif
if(SvGAMAGIC(arg))
/* clone the value so we don't invoke magic again */
arg = sv_mortalcopy(arg);
if(SvOK(arg) && !(SvUOK(arg) || SvIOK(arg) || SvNOK(arg))) {
#if PERL_VERSION >= 8
SvIV(arg); /* sets SVf_IOK/SVf_IsUV if it's an integer */
#else
SvNV(arg); /* SvIV() sets SVf_IOK even on floats on 5.6 */
#endif
}
#if NVSIZE > IVSIZE /* $Config{nvsize} > $Config{ivsize} */
/* Avoid altering arg's flags */
if(SvUOK(arg)) nv_arg = (NV)SvUV(arg);
else if(SvIOK(arg)) nv_arg = (NV)SvIV(arg);
else nv_arg = SvNV(arg);
/* use 0 for all zeros */
if(nv_arg == 0) sv_setpvs(keysv, "0");
/* for NaN, use the platform's normal stringification */
else if (nv_arg != nv_arg) sv_setpvf(keysv, "%" NVgf, nv_arg);
#ifdef NV_IS_DOUBLEDOUBLE
/* If the least significant double is zero, it could be either 0.0 *
* or -0.0. We therefore ignore the least significant double and *
* assign to keysv the bytes of the most significant double only. */
else if(nv_arg == (double)nv_arg) {
double double_arg = (double)nv_arg;
sv_setpvn(keysv, (char *) &double_arg, 8);
}
#endif
else {
/* Use the byte structure of the NV. *
* ACTUAL_NVSIZE == sizeof(NV) minus the number of bytes *
* that are allocated but never used. (It is only the 10-byte *
* extended precision long double that allocates bytes that are *
* never used. For all other NV types ACTUAL_NVSIZE == sizeof(NV). */
sv_setpvn(keysv, (char *) &nv_arg, ACTUAL_NVSIZE);
}
#else /* $Config{nvsize} == $Config{ivsize} == 8 */
if( SvIOK(arg) || !SvOK(arg) ) {
/* It doesn't matter if SvUOK(arg) is TRUE */
IV iv = SvIV(arg);
/* use "0" for all zeros */
if(iv == 0) sv_setpvs(keysv, "0");
else {
int uok = SvUOK(arg);
int sign = ( iv > 0 || uok ) ? 1 : -1;
/* Set keysv to the bytes of SvNV(arg) if and only if the integer value *
* held by arg can be represented exactly as a double - ie if there are *
* no more than 51 bits between its least significant set bit and its *
* most significant set bit. *
* The neatest approach I could find was provided by roboticus at: *
* https://www.perlmonks.org/?node_id=11113490 *
* First, identify the lowest set bit and assign its value to an IV. *
* Note that this value will always be > 0, and always a power of 2. */
IV lowest_set = iv & -iv;
/* Second, shift it left 53 bits to get location of the first bit *
* beyond arg's highest "allowed" set bit. *
* NOTE: If lowest set bit is initially far enough left, then this left *
* shift operation will result in a value of 0, which is fine. *
* Then subtract 1 so that all of the ("allowed") bits below the set bit *
* are 1 && all other ("disallowed") bits are set to 0. *
* (If the value prior to subtraction was 0, then subtracting 1 will set *
* all bits - which is also fine.) */
UV valid_bits = (lowest_set << 53) - 1;
/* The value of arg can be exactly represented by a double unless one *
* or more of its "disallowed" bits are set - ie if iv & (~valid_bits) *
* is untrue. However, if (iv < 0 && !SvUOK(arg)) we need to multiply iv *
* by -1 prior to performing that '&' operation - so multiply iv by sign.*/
if( !((iv * sign) & (~valid_bits)) ) {
/* Avoid altering arg's flags */
nv_arg = uok ? (NV)SvUV(arg) : (NV)SvIV(arg);
sv_setpvn(keysv, (char *) &nv_arg, 8);
}
else {
/* Read in the bytes, rather than the numeric value of the IV/UV as *
* this is more efficient, despite having to sv_catpvn an extra byte.*/
sv_setpvn(keysv, (char *) &iv, 8);
/* We add an extra byte to distinguish between an IV/UV and an NV. *
* We also use that byte to distinguish between a -ve IV and a UV. */
if(uok) sv_catpvn(keysv, "U", 1);
else sv_catpvn(keysv, "I", 1);
}
}
}
else {
nv_arg = SvNV(arg);
/* for NaN, use the platform's normal stringification */
if (nv_arg != nv_arg) sv_setpvf(keysv, "%" NVgf, nv_arg);
/* use "0" for all zeros */
else if(nv_arg == 0) sv_setpvs(keysv, "0");
else sv_setpvn(keysv, (char *) &nv_arg, 8);
}
#endif
#ifdef HV_FETCH_EMPTY_HE
he = (HE*) hv_common(seen, NULL, SvPVX(keysv), SvCUR(keysv), 0, HV_FETCH_LVALUE | HV_FETCH_EMPTY_HE, NULL, 0);
if (HeVAL(he))
continue;
HeVAL(he) = &PL_sv_undef;
#else
if(hv_exists(seen, SvPVX(keysv), SvCUR(keysv)))
continue;
hv_store(seen, SvPVX(keysv), SvCUR(keysv), &PL_sv_yes, 0);
#endif
if(GIMME_V == G_LIST)
ST(retcount) = SvOK(arg) ? arg : sv_2mortal(newSViv(0));
retcount++;
}
finish:
if(GIMME_V == G_LIST)
XSRETURN(retcount);
else
ST(0) = sv_2mortal(newSViv(retcount));
}
void
zip(...)
ALIAS:
zip_longest = ZIP_LONGEST
zip_shortest = ZIP_SHORTEST
mesh = ZIP_MESH
mesh_longest = ZIP_MESH_LONGEST
mesh_shortest = ZIP_MESH_SHORTEST
PPCODE:
Size_t nlists = items; /* number of lists */
AV **lists; /* inbound lists */
Size_t len = 0; /* length of longest inbound list = length of result */
Size_t i;
bool is_mesh = (ix & ZIP_MESH);
ix &= ~ZIP_MESH;
if(!nlists)
XSRETURN(0);
Newx(lists, nlists, AV *);
SAVEFREEPV(lists);
/* TODO: This may or maynot work on objects with arrayification overload */
/* Remember to unit test it */
for(i = 0; i < nlists; i++) {
SV *arg = ST(i);
AV *av;
if(!SvROK(arg) || SvTYPE(SvRV(arg)) != SVt_PVAV)
croak("Expected an ARRAY reference to zip");
av = lists[i] = (AV *)SvRV(arg);
if(!i) {
len = av_count(av);
continue;
}
switch(ix) {
case 0: /* zip is alias to zip_longest */
case ZIP_LONGEST:
if(av_count(av) > len)
len = av_count(av);
break;
case ZIP_SHORTEST:
if(av_count(av) < len)
len = av_count(av);
break;
}
}
if(is_mesh) {
SSize_t retcount = (SSize_t)(len * nlists);
EXTEND(SP, retcount);
for(i = 0; i < len; i++) {
Size_t listi;
for(listi = 0; listi < nlists; listi++) {
SV *item = (i < av_count(lists[listi])) ?
AvARRAY(lists[listi])[i] :
&PL_sv_undef;
mPUSHs(SvREFCNT_inc(item));
}
}
XSRETURN(retcount);
}
else {
EXTEND(SP, (SSize_t)len);
for(i = 0; i < len; i++) {
Size_t listi;
AV *ret = newAV();
av_extend(ret, nlists);
for(listi = 0; listi < nlists; listi++) {
SV *item = (i < av_count(lists[listi])) ?
AvARRAY(lists[listi])[i] :
&PL_sv_undef;
av_push(ret, SvREFCNT_inc(item));
}
mPUSHs(newRV_noinc((SV *)ret));
}
XSRETURN(len);
}
MODULE=List::Util PACKAGE=Scalar::Util
void
dualvar(num,str)
SV *num
SV *str
PROTOTYPE: $$
CODE:
{
dXSTARG;
(void)SvUPGRADE(TARG, SVt_PVNV);
sv_copypv(TARG,str);
if(SvNOK(num) || SvPOK(num) || SvMAGICAL(num)) {
SvNV_set(TARG, SvNV(num));
SvNOK_on(TARG);
}
#ifdef SVf_IVisUV
else if(SvUOK(num)) {
SvUV_set(TARG, SvUV(num));
SvIOK_on(TARG);
SvIsUV_on(TARG);
}
#endif
else {
SvIV_set(TARG, SvIV(num));
SvIOK_on(TARG);
}
if(PL_tainting && (SvTAINTED(num) || SvTAINTED(str)))
SvTAINTED_on(TARG);
ST(0) = TARG;
XSRETURN(1);
}
void
isdual(sv)
SV *sv
PROTOTYPE: $
CODE:
if(SvMAGICAL(sv))
mg_get(sv);
ST(0) = boolSV((SvPOK(sv) || SvPOKp(sv)) && (SvNIOK(sv) || SvNIOKp(sv)));
XSRETURN(1);
SV *
blessed(sv)
SV *sv
PROTOTYPE: $
CODE:
{
SvGETMAGIC(sv);
if(!(SvROK(sv) && SvOBJECT(SvRV(sv))))
XSRETURN_UNDEF;
#ifdef HAVE_UNICODE_PACKAGE_NAMES
RETVAL = newSVsv(sv_ref(NULL, SvRV(sv), TRUE));
#else
RETVAL = newSV(0);
sv_setpv(RETVAL, sv_reftype(SvRV(sv), TRUE));
#endif
}
OUTPUT:
RETVAL
char *
reftype(sv)
SV *sv
PROTOTYPE: $
CODE:
{
SvGETMAGIC(sv);
if(!SvROK(sv))
XSRETURN_UNDEF;
RETVAL = (char*)sv_reftype(SvRV(sv),FALSE);
}
OUTPUT:
RETVAL
UV
refaddr(sv)
SV *sv
PROTOTYPE: $
CODE:
{
SvGETMAGIC(sv);
if(!SvROK(sv))
XSRETURN_UNDEF;
RETVAL = PTR2UV(SvRV(sv));
}
OUTPUT:
RETVAL
void
weaken(sv)
SV *sv
PROTOTYPE: $
CODE:
sv_rvweaken(sv);
void
unweaken(sv)
SV *sv
PROTOTYPE: $
INIT:
SV *tsv;
CODE:
#if defined(sv_rvunweaken)
PERL_UNUSED_VAR(tsv);
sv_rvunweaken(sv);
#else
/* This code stolen from core's sv_rvweaken() and modified */
if (!SvOK(sv))
return;
if (!SvROK(sv))
croak("Can't unweaken a nonreference");
else if (!SvWEAKREF(sv)) {
if(ckWARN(WARN_MISC))
warn("Reference is not weak");
return;
}
else if (SvREADONLY(sv)) croak_no_modify();
tsv = SvRV(sv);
#if PERL_VERSION >= 14
SvWEAKREF_off(sv); SvROK_on(sv);
SvREFCNT_inc_NN(tsv);
Perl_sv_del_backref(aTHX_ tsv, sv);
#else
/* Lacking sv_del_backref() the best we can do is clear the old (weak) ref
* then set a new strong one
*/
sv_setsv(sv, &PL_sv_undef);
SvRV_set(sv, SvREFCNT_inc_NN(tsv));
SvROK_on(sv);
#endif
#endif
void
isweak(sv)
SV *sv
PROTOTYPE: $
CODE:
ST(0) = boolSV(SvROK(sv) && SvWEAKREF(sv));
XSRETURN(1);
int
readonly(sv)
SV *sv
PROTOTYPE: $
CODE:
SvGETMAGIC(sv);
RETVAL = SvREADONLY(sv);
OUTPUT:
RETVAL
int
tainted(sv)
SV *sv
PROTOTYPE: $
CODE:
SvGETMAGIC(sv);
RETVAL = SvTAINTED(sv);
OUTPUT:
RETVAL
void
isvstring(sv)
SV *sv
PROTOTYPE: $
CODE:
#ifdef SvVOK
SvGETMAGIC(sv);
ST(0) = boolSV(SvVOK(sv));
XSRETURN(1);
#else
croak("vstrings are not implemented in this release of perl");
#endif
SV *
looks_like_number(sv)
SV *sv
PROTOTYPE: $
CODE:
SV *tempsv;
SvGETMAGIC(sv);
if(SvAMAGIC(sv) && (tempsv = AMG_CALLun(sv, numer))) {
sv = tempsv;
}
#if !PERL_VERSION_GE(5,8,5)
if(SvPOK(sv) || SvPOKp(sv)) {
RETVAL = looks_like_number(sv) ? &PL_sv_yes : &PL_sv_no;
}
else {
RETVAL = (SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK)) ? &PL_sv_yes : &PL_sv_no;
}
#else
RETVAL = looks_like_number(sv) ? &PL_sv_yes : &PL_sv_no;
#endif
OUTPUT:
RETVAL
void
openhandle(SV *sv)
PROTOTYPE: $
CODE:
{
IO *io = NULL;
SvGETMAGIC(sv);
if(SvROK(sv)){
/* deref first */
sv = SvRV(sv);
}
/* must be GLOB or IO */
if(isGV(sv)){
io = GvIO((GV*)sv);
}
else if(SvTYPE(sv) == SVt_PVIO){
io = (IO*)sv;
}
if(io){
/* real or tied filehandle? */
if(IoIFP(io) || SvTIED_mg((SV*)io, PERL_MAGIC_tiedscalar)){
XSRETURN(1);
}
}
XSRETURN_UNDEF;
}
MODULE=List::Util PACKAGE=Sub::Util
void
set_prototype(proto, code)
SV *proto
SV *code
PREINIT:
SV *cv; /* not CV * */
PPCODE:
SvGETMAGIC(code);
if(!SvROK(code))
croak("set_prototype: not a reference");
cv = SvRV(code);
if(SvTYPE(cv) != SVt_PVCV)
croak("set_prototype: not a subroutine reference");
if(SvPOK(proto)) {
/* set the prototype */
sv_copypv(cv, proto);
}
else {
/* delete the prototype */
SvPOK_off(cv);
}
PUSHs(code);
XSRETURN(1);
void
set_subname(name, sub)
SV *name
SV *sub
PREINIT:
CV *cv = NULL;
GV *gv;
HV *stash = CopSTASH(PL_curcop);
const char *s, *end = NULL, *begin = NULL;
MAGIC *mg;
STRLEN namelen;
const char* nameptr = SvPV(name, namelen);
int utf8flag = SvUTF8(name);
int quotes_seen = 0;
bool need_subst = FALSE;
PPCODE:
if (!SvROK(sub) && SvGMAGICAL(sub))
mg_get(sub);
if (SvROK(sub))
cv = (CV *) SvRV(sub);
else if (SvTYPE(sub) == SVt_PVGV)
cv = GvCVu(sub);
else if (!SvOK(sub))
croak(PL_no_usym, "a subroutine");
else if (PL_op->op_private & HINT_STRICT_REFS)
croak("Can't use string (\"%.32s\") as %s ref while \"strict refs\" in use",
SvPV_nolen(sub), "a subroutine");
else if ((gv = gv_fetchsv(sub, FALSE, SVt_PVCV)))
cv = GvCVu(gv);
if (!cv)
croak("Undefined subroutine %s", SvPV_nolen(sub));
if (SvTYPE(cv) != SVt_PVCV && SvTYPE(cv) != SVt_PVFM)
croak("Not a subroutine reference");
for (s = nameptr; s <= nameptr + namelen; s++) {
if (s > nameptr && *s == ':' && s[-1] == ':') {
end = s - 1;
begin = ++s;
if (quotes_seen)
need_subst = TRUE;
}
else if (s > nameptr && *s != '\0' && s[-1] == '\'') {
end = s - 1;
begin = s;
if (quotes_seen++)
need_subst = TRUE;
}
}
s--;
if (end) {
SV* tmp;
if (need_subst) {
STRLEN length = end - nameptr + quotes_seen - (*end == '\'' ? 1 : 0);
char* left;
int i, j;
tmp = sv_2mortal(newSV(length));
left = SvPVX(tmp);
for (i = 0, j = 0; j < end - nameptr; ++i, ++j) {
if (nameptr[j] == '\'') {
left[i] = ':';
left[++i] = ':';
}
else {
left[i] = nameptr[j];
}
}
stash = gv_stashpvn(left, length, GV_ADD | utf8flag);
}
else
stash = gv_stashpvn(nameptr, end - nameptr, GV_ADD | utf8flag);
nameptr = begin;
namelen -= begin - nameptr;
}
/* under debugger, provide information about sub location */
if (PL_DBsub && CvGV(cv)) {
HV* DBsub = GvHV(PL_DBsub);
HE* old_data = NULL;
GV* oldgv = CvGV(cv);
HV* oldhv = GvSTASH(oldgv);
if (oldhv) {
SV* old_full_name = sv_2mortal(newSVpvn_flags(HvNAME(oldhv), HvNAMELEN_get(oldhv), HvNAMEUTF8(oldhv) ? SVf_UTF8 : 0));
sv_catpvn(old_full_name, "::", 2);
sv_catpvn_flags(old_full_name, GvNAME(oldgv), GvNAMELEN(oldgv), GvNAMEUTF8(oldgv) ? SV_CATUTF8 : SV_CATBYTES);
old_data = hv_fetch_ent(DBsub, old_full_name, 0, 0);
}
if (old_data && HeVAL(old_data)) {
SV* old_val = HeVAL(old_data);
SV* new_full_name = sv_2mortal(newSVpvn_flags(HvNAME(stash), HvNAMELEN_get(stash), HvNAMEUTF8(stash) ? SVf_UTF8 : 0));
sv_catpvn(new_full_name, "::", 2);
sv_catpvn_flags(new_full_name, nameptr, s - nameptr, utf8flag ? SV_CATUTF8 : SV_CATBYTES);
SvREFCNT_inc(old_val);
if (!hv_store_ent(DBsub, new_full_name, old_val, 0))
SvREFCNT_dec(old_val);
}
}
gv = (GV *) newSV(0);
gv_init_pvn(gv, stash, nameptr, s - nameptr, GV_ADDMULTI | utf8flag);
/*
* set_subname needs to create a GV to store the name. The CvGV field of a
* CV is not refcounted, so perl wouldn't know to SvREFCNT_dec() this GV if
* it destroys the containing CV. We use a MAGIC with an empty vtable
* simply for the side-effect of using MGf_REFCOUNTED to store the
* actually-counted reference to the GV.
*/
mg = SvMAGIC(cv);
while (mg && mg->mg_virtual != &subname_vtbl)
mg = mg->mg_moremagic;
if (!mg) {
Newxz(mg, 1, MAGIC);
mg->mg_moremagic = SvMAGIC(cv);
mg->mg_type = PERL_MAGIC_ext;
mg->mg_virtual = &subname_vtbl;
SvMAGIC_set(cv, mg);
}
if (mg->mg_flags & MGf_REFCOUNTED)
SvREFCNT_dec(mg->mg_obj);
mg->mg_flags |= MGf_REFCOUNTED;
mg->mg_obj = (SV *) gv;
SvRMAGICAL_on(cv);
CvANON_off(cv);
#ifndef CvGV_set
CvGV(cv) = gv;
#else
CvGV_set(cv, gv);
#endif
PUSHs(sub);
void
subname(code)
SV *code
PREINIT:
CV *cv;
GV *gv;
const char *stashname;
PPCODE:
if (!SvROK(code) && SvGMAGICAL(code))
mg_get(code);
if(!SvROK(code) || SvTYPE(cv = (CV *)SvRV(code)) != SVt_PVCV)
croak("Not a subroutine reference");
if(!(gv = CvGV(cv)))
XSRETURN(0);
if(GvSTASH(gv))
stashname = HvNAME(GvSTASH(gv));
else
stashname = "__ANON__";
mPUSHs(newSVpvf("%s::%s", stashname, GvNAME(gv)));
XSRETURN(1);
BOOT:
{
HV *lu_stash = gv_stashpvn("List::Util", 10, TRUE);
GV *rmcgv = *(GV**)hv_fetch(lu_stash, "REAL_MULTICALL", 14, TRUE);
SV *rmcsv;
#if !defined(SvVOK)
HV *su_stash = gv_stashpvn("Scalar::Util", 12, TRUE);
GV *vargv = *(GV**)hv_fetch(su_stash, "EXPORT_FAIL", 11, TRUE);
AV *varav;
if(SvTYPE(vargv) != SVt_PVGV)
gv_init(vargv, su_stash, "Scalar::Util", 12, TRUE);
varav = GvAVn(vargv);
#endif
if(SvTYPE(rmcgv) != SVt_PVGV)
gv_init(rmcgv, lu_stash, "List::Util", 10, TRUE);
rmcsv = GvSVn(rmcgv);
#ifndef SvVOK
av_push(varav, newSVpv("isvstring",9));
#endif
#ifdef REAL_MULTICALL
sv_setsv(rmcsv, &PL_sv_yes);
#else
sv_setsv(rmcsv, &PL_sv_no);
#endif
}