libvirt/docs/api.html.in

243 lines
13 KiB
HTML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<body>
<h1>The libvirt API concepts</h1>
<p> This page describes the main principles and architecture choices
behind the definition of the libvirt API:</p>
<ul id="toc"></ul>
2013-02-13 01:48:46 +08:00
<h2><a name="Objects">Objects Exposed</a></h2>
<p> As defined in the <a href="goals.html">goals section</a>, the libvirt
API is designed to expose all the resources needed to manage the
virtualization support of recent operating systems. The first object
manipulated through the API is the <code>virConnectPtr</code>, which
represents the connection to a hypervisor. Any application using libvirt
is likely to start using the
API by calling one of <a href="html/libvirt-libvirt.html#virConnectOpen"
>the virConnectOpen functions</a>. You will note that those functions take
2013-02-13 01:48:46 +08:00
a name argument which is actually a <a href="uri.html">connection URI</a>
to select the right hypervisor to open.
A URI is needed to allow remote connections and also select between
different possible hypervisors. For example, on a Linux system it may be
possible to use both KVM and LinuxContainers on the same node. A NULL
name will default to a preselected hypervisor, but it's probably not a
wise thing to do in most cases. See the <a href="uri.html">connection
URI</a> page for a full descriptions of the values allowed.</p>
2013-02-13 01:48:46 +08:00
<p> Once the application obtains a <code class='docref'>virConnectPtr</code>
connection to the hypervisor it can then use it to manage the hypervisor's
available domains and related virtualization
resources, such as storage and networking. All those are
exposed as first class objects and connected to the hypervisor connection
(and the node or cluster where it is available).</p>
<p class="image">
<img alt="first class objects exposed by the API"
src="libvirt-object-model.png"/>
</p>
<p> The figure above shows the five main objects exported by the API:</p>
<ul>
<li><code class='docref'>virConnectPtr</code>
<p>Represents the connection to a hypervisor. Use one of the
<a href="html/libvirt-libvirt.html#virConnectOpen">virConnectOpen</a>
functions to obtain connection to the hypervisor which is then used
as a parameter to other connection API's.</p></li>
<li><code class='docref'>virDomainPtr</code>
<p>Represents one domain either active or defined (i.e. existing as
permanent config file and storage but not currently running on that
node). The function <code class='docref'>virConnectListAllDomains</code>
lists all the domains for the hypervisor.</p></li>
<li><code class='docref'>virNetworkPtr</code>
<p>Represents one network either active or defined (i.e. existing
as permanent config file and storage but not currently activated).
The function <code class='docref'>virConnectListAllNetworks</code>
lists all the virtualization networks for the hypervisor.</p></li>
<li><code class='docref'>virStorageVolPtr</code>
<p>Represents one storage volume generally used
as a block device available to one of the domains. The function
<code class="docref">virStorageVolLookupByPath</code> finds
the storage volume object based on its path on the node.</p></li>
<li><code class='docref'>virStoragePoolPtr</code>
<p>Represents a storage pool, which is a logical area
used to allocate and store storage volumes. The function
<code class='docref'>virConnectListAllStoragePools</code> lists
all of the virtualization storage pools on the hypervisor. The function
<code class="docref">virStoragePoolLookupByVolume</code> finds
the storage pool containing a given storage volume.</p></li>
</ul>
<p> Most objects manipulated by the library can also be represented using
XML descriptions. This is used primarily to create those object, but is
also helpful to modify or save their description back.</p>
<p> Domains, networks, and storage pools can be either <code>active</code>
i.e. either running or available for immediate use, or
<code>defined</code> in which case they are inactive but there is
a permanent definition available in the system for them. Based on this
they can be activated dynamically in order to be used.</p>
<p> Most objects can also be named in various ways:</p>
<ul>
<li><code>name</code>
<p>A user friendly identifier but whose uniqueness
cannot be guaranteed between two nodes.</p></li>
<li><code>ID</code>
<p>A runtime unique identifier
provided by the hypervisor for one given activation of the object;
however, it becomes invalid once the resource is deactivated.</p></li >
<li><code>UUID</code>
<p> A 16 byte unique identifier
as defined in <a href="http://www.ietf.org/rfc/rfc4122.txt">RFC 4122</a>,
2012-10-12 00:31:20 +08:00
which is guaranteed to be unique for long term usage and across a
set of nodes.</p></li>
</ul>
<h2><a name="Functions">Functions and Naming Conventions</a></h2>
<p> The naming of the functions present in the library is usually
composed by a prefix describing the object associated to the function
and a verb describing the action on that object.</p>
<p> For each first class object you will find APIs
for the following actions:</p>
<ul>
<li><b>Lookup</b> [...LookupBy...]
<p>Used to perform lookups on objects by some type of identifier,
such as:</p>
<ul>
<li><code class='docref'>virDomainLookupByID</code></li>
<li><code class='docref'>virDomainLookupByName</code></li>
<li><code class='docref'>virDomainLookupByUUID</code></li>
<li><code class='docref'>virDomainLookupByUUIDString</code></li>
</ul>
</li>
<li><b>Enumeration</b> [virConnectList..., virConnectNumOf...]
<p>Used to enumerate a set of object available to an given
hypervisor connection such as:</p>
<ul>
<li><code class='docref'>virConnectListDomains</code></li>
<li><code class='docref'>virConnectNumOfDomains</code></li>
<li><code class='docref'>virConnectListNetworks</code></li>
<li><code class='docref'>virConnectListStoragePools</code></li>
</ul>
</li>
<li><b>Description</b> [...GetInfo]
<p>Generic accessor providing a set of generic information about an
object, such as: </p>
<ul>
<li><code class='docref'>virNodeGetInfo</code></li>
<li><code class='docref'>virDomainGetInfo</code></li>
<li><code class='docref'>virStoragePoolGetInfo</code></li>
<li><code class='docref'>virStorageVolGetInfo</code></li>
</ul>
</li>
<li><b>Accessors</b> [...Get..., ...Set...]
<p>Specific accessors used to query or modify data for the given object,
such as: </p>
<ul>
<li><code class='docref'>virConnectGetType</code></li>
<li><code class='docref'>virDomainGetMaxMemory</code></li>
<li><code class='docref'>virDomainSetMemory</code></li>
<li><code class='docref'>virDomainGetVcpus</code></li>
<li><code class='docref'>virStoragePoolSetAutostart</code></li>
<li><code class='docref'>virNetworkGetBridgeName</code></li>
</ul>
</li>
<li><b>Creation</b> [...Create, ...CreateXML]
<p>Used to create and start objects. The ...CreateXML APIs will create
the object based on an XML description, while the ...Create APIs will
create the object based on existing object pointer, such as: </p>
<ul>
<li><code class='docref'>virDomainCreate</code></li>
<li><code class='docref'>virDomainCreateXML</code></li>
<li><code class='docref'>virNetworkCreate</code></li>
<li><code class='docref'>virNetworkCreateXML</code></li>
</ul>
</li>
<li><b>Destruction</b> [...Destroy]
<p>Used to shutdown or deactivate and destroy objects, such as: </p>
<ul>
<li><code class='docref'>virDomainDestroy</code></li>
<li><code class='docref'>virNetworkDestroy</code></li>
<li><code class='docref'>virStoragePoolDestroy</code></li>
</ul>
</li>
</ul>
<p>Note: functions returning vir*Ptr (like the virDomainLookup functions)
allocate memory which needs to be freed by the caller by the corresponding
vir*Free function (e.g. virDomainFree for a virDomainPtr object).
</p>
<p> For more in-depth details of the storage related APIs see
<a href="storage.html">the storage management page</a>.
</p>
<h2><a name="Drivers">The libvirt Drivers</a></h2>
<p>Drivers are the basic building block for libvirt functionality
to support the capability to handle specific hypervisor driver calls.
Drivers are discovered and registered during connection processing as
part of the <code class='docref'>virInitialize</code> API. Each driver
has a registration API which loads up the driver specific function
references for the libvirt APIs to call. The following is a simplistic
view of the hypervisor driver mechanism. Consider the stacked list of
drivers as a series of modules that can be plugged into the architecture
depending on how libvirt is configured to be built.</p>
<p class="image">
<img alt="The libvirt driver architecture"
src="libvirt-driver-arch.png"/>
</p>
<p>The driver architecture is also used to support other virtualization
components such as storage, storage pools, host device, networking,
network interfaces, and network filters.</p>
<p>See the <a href="drivers.html">libvirt drivers</a> page for more
information on hypervisor and storage specific drivers.</p>
<p>Not all drivers support every virtualization function possible.
The <a href="hvsupport.html">libvirt API support matrix</a> lists
the various functions and support found in each driver by the version
support was added into libvirt.
</p>
<h2><a name="Remote">Daemon and Remote Access</a></h2>
<p>Access to libvirt drivers is primarily handled by the libvirtd
daemon through the <a href="remote.html">remote</a> driver via an
<a href="internals/rpc.html">RPC</a>. Some hypervisors do support
client-side connections and responses, such as Test, OpenVZ, VMware,
Power VM (phyp), VirtualBox (vbox), ESX, Hyper-V, Xen, and Parallels.
The libvirtd daemon service is started on the host at system boot
time and can also be restarted at any time by a properly privileged
user, such as root. The libvirtd daemon uses the same libvirt API
<code class='docref'>virInitialize</code> sequence as applications
for client-side driver registrations, but then extends the registered
driver list to encompass all known drivers supported for all driver
types supported on the host. </p>
<p>The libvirt client <a href="apps.html">applications</a> use a
<a href="uri.html">URI</a> to obtain the <code>virConnectPtr</code>.
The <code>virConnectPtr</code> keeps track of the driver connection
plus a variety of other connections (network, interface, storage, etc.).
The <code>virConnectPtr</code> is then used as a parameter to other
virtualization <a href="#Functions">functions</a>. Depending upon the
driver being used, calls will be routed through the remote driver to
the libvirtd daemon. The daemon will reference the connection specific
driver in order to retrieve the requested information and then pass
back status and/or data through the connection back to the application.
The application can then decide what to do with that data, such as
display, write log data, etc. <a href="migration.html">Migration</a>
is an example of many facets of the architecture in use.</p>
<p class="image">
<img alt="The libvirt daemon and remote architecture"
src="libvirt-daemon-arch.png"/>
</p>
<p>
The key takeaway from the above diagram is that there is a remote driver
which handles transactions for a majority of the drivers. The libvirtd
daemon running on the host will receive transaction requests from the
remote driver and will then query the hypervisor driver as specified in
the <code>virConnectPtr</code> in order to fetch the data. The data will
then be returned through the remote driver to the client application
for processing.
</p>
<p>If you are interested in contributing to libvirt, read the
<a href="http://wiki.libvirt.org/page/FAQ">FAQ</a> and
<a href="hacking.html">hacking</a> guidelines to gain an understanding
of basic rules and guidelines. In order to add new API functionality
follow the instructions regarding
<a href="api_extension.html">implementing a new API in libvirt</a>.
</p>
</body>
</html>