linux/Documentation/x86/x86_64/mm.txt

154 lines
11 KiB
Plaintext
Raw Normal View History

x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
====================================================
Complete virtual memory map with 4-level page tables
====================================================
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
Notes:
- Negative addresses such as "-23 TB" are absolute addresses in bytes, counted down
from the top of the 64-bit address space. It's easier to understand the layout
when seen both in absolute addresses and in distance-from-top notation.
For example 0xffffe90000000000 == -23 TB, it's 23 TB lower than the top of the
64-bit address space (ffffffffffffffff).
Note that as we get closer to the top of the address space, the notation changes
from TB to GB and then MB/KB.
- "16M TB" might look weird at first sight, but it's an easier to visualize size
notation than "16 EB", which few will recognize at first sight as 16 exabytes.
It also shows it nicely how incredibly large 64-bit address space is.
========================================================================================================================
Start addr | Offset | End addr | Size | VM area description
========================================================================================================================
| | | |
0000000000000000 | 0 | 00007fffffffffff | 128 TB | user-space virtual memory, different per mm
__________________|____________|__________________|_________|___________________________________________________________
| | | |
0000800000000000 | +128 TB | ffff7fffffffffff | ~16M TB | ... huge, almost 64 bits wide hole of non-canonical
| | | | virtual memory addresses up to the -128 TB
| | | | starting offset of kernel mappings.
__________________|____________|__________________|_________|___________________________________________________________
|
| Kernel-space virtual memory, shared between all processes:
____________________________________________________________|___________________________________________________________
| | | |
ffff800000000000 | -128 TB | ffff87ffffffffff | 8 TB | ... guard hole, also reserved for hypervisor
ffff880000000000 | -120 TB | ffff887fffffffff | 0.5 TB | LDT remap for PTI
ffff888000000000 | -119.5 TB | ffffc87fffffffff | 64 TB | direct mapping of all physical memory (page_offset_base)
ffffc88000000000 | -55.5 TB | ffffc8ffffffffff | 0.5 TB | ... unused hole
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
ffffc90000000000 | -55 TB | ffffe8ffffffffff | 32 TB | vmalloc/ioremap space (vmalloc_base)
ffffe90000000000 | -23 TB | ffffe9ffffffffff | 1 TB | ... unused hole
ffffea0000000000 | -22 TB | ffffeaffffffffff | 1 TB | virtual memory map (vmemmap_base)
ffffeb0000000000 | -21 TB | ffffebffffffffff | 1 TB | ... unused hole
ffffec0000000000 | -20 TB | fffffbffffffffff | 16 TB | KASAN shadow memory
__________________|____________|__________________|_________|____________________________________________________________
|
| Identical layout to the 56-bit one from here on:
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
____________________________________________________________|____________________________________________________________
| | | |
fffffc0000000000 | -4 TB | fffffdffffffffff | 2 TB | ... unused hole
| | | | vaddr_end for KASLR
fffffe0000000000 | -2 TB | fffffe7fffffffff | 0.5 TB | cpu_entry_area mapping
fffffe8000000000 | -1.5 TB | fffffeffffffffff | 0.5 TB | ... unused hole
ffffff0000000000 | -1 TB | ffffff7fffffffff | 0.5 TB | %esp fixup stacks
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
ffffff8000000000 | -512 GB | ffffffeeffffffff | 444 GB | ... unused hole
ffffffef00000000 | -68 GB | fffffffeffffffff | 64 GB | EFI region mapping space
ffffffff00000000 | -4 GB | ffffffff7fffffff | 2 GB | ... unused hole
ffffffff80000000 | -2 GB | ffffffff9fffffff | 512 MB | kernel text mapping, mapped to physical address 0
ffffffff80000000 |-2048 MB | | |
ffffffffa0000000 |-1536 MB | fffffffffeffffff | 1520 MB | module mapping space
ffffffffff000000 | -16 MB | | |
FIXADDR_START | ~-11 MB | ffffffffff5fffff | ~0.5 MB | kernel-internal fixmap range, variable size and offset
ffffffffff600000 | -10 MB | ffffffffff600fff | 4 kB | legacy vsyscall ABI
ffffffffffe00000 | -2 MB | ffffffffffffffff | 2 MB | ... unused hole
__________________|____________|__________________|_________|___________________________________________________________
====================================================
Complete virtual memory map with 5-level page tables
====================================================
Notes:
- With 56-bit addresses, user-space memory gets expanded by a factor of 512x,
from 0.125 PB to 64 PB. All kernel mappings shift down to the -64 PT starting
offset and many of the regions expand to support the much larger physical
memory supported.
========================================================================================================================
Start addr | Offset | End addr | Size | VM area description
========================================================================================================================
| | | |
0000000000000000 | 0 | 00ffffffffffffff | 64 PB | user-space virtual memory, different per mm
__________________|____________|__________________|_________|___________________________________________________________
| | | |
0000800000000000 | +64 PB | ffff7fffffffffff | ~16K PB | ... huge, still almost 64 bits wide hole of non-canonical
| | | | virtual memory addresses up to the -64 PB
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
| | | | starting offset of kernel mappings.
__________________|____________|__________________|_________|___________________________________________________________
|
| Kernel-space virtual memory, shared between all processes:
____________________________________________________________|___________________________________________________________
| | | |
ff00000000000000 | -64 PB | ff0fffffffffffff | 4 PB | ... guard hole, also reserved for hypervisor
ff10000000000000 | -60 PB | ff10ffffffffffff | 0.25 PB | LDT remap for PTI
ff11000000000000 | -59.75 PB | ff90ffffffffffff | 32 PB | direct mapping of all physical memory (page_offset_base)
ff91000000000000 | -27.75 PB | ff9fffffffffffff | 3.75 PB | ... unused hole
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
ffa0000000000000 | -24 PB | ffd1ffffffffffff | 12.5 PB | vmalloc/ioremap space (vmalloc_base)
ffd2000000000000 | -11.5 PB | ffd3ffffffffffff | 0.5 PB | ... unused hole
ffd4000000000000 | -11 PB | ffd5ffffffffffff | 0.5 PB | virtual memory map (vmemmap_base)
ffd6000000000000 | -10.5 PB | ffdeffffffffffff | 2.25 PB | ... unused hole
ffdf000000000000 | -8.25 PB | fffffdffffffffff | ~8 PB | KASAN shadow memory
__________________|____________|__________________|_________|____________________________________________________________
|
| Identical layout to the 47-bit one from here on:
____________________________________________________________|____________________________________________________________
| | | |
fffffc0000000000 | -4 TB | fffffdffffffffff | 2 TB | ... unused hole
| | | | vaddr_end for KASLR
fffffe0000000000 | -2 TB | fffffe7fffffffff | 0.5 TB | cpu_entry_area mapping
fffffe8000000000 | -1.5 TB | fffffeffffffffff | 0.5 TB | ... unused hole
ffffff0000000000 | -1 TB | ffffff7fffffffff | 0.5 TB | %esp fixup stacks
x86/mm/doc: Enhance the x86-64 virtual memory layout descriptions After the cleanups from Baoquan He, make it even more readable: - Remove the 'bits' area size column: it's pretty pointless and was even wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20, 30 and 40 bits, a "8 TB" size description makes it obvious that it's 43 bits. - Introduce an "offset" column: -------------------------------------------------------------------------------- start addr | offset | end addr | size | VM area description -----------------|------------|------------------|---------|-------------------- ... ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base), this is what limits max physical memory supported. The -120 TB notation makes it obvious where this particular virtual memory region starts: 120 TB down from the top of the 64-bit virtual memory space. Especially the layout of the kernel mappings is a *lot* more obvious when written this way, plus it's much easier to compare it with the size column and understand/check/validate and modify the kernel's layout in the future. - Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical, this starts at the -512 GB offset and the EFI region. - Re-shuffle the size desciptions to be continous blocks of sizes, instead of the often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in the TB-granular region of the map. - Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording, and only differ where there's a material difference. This makes it easy to compare the two tables side by side by switching between two terminal tabs. - Plus enhance a lot of other stylistic/typographical details: make the tables explicitly tabular, add headers, enhance certain entries, etc. etc. Note that there are some apparent errors in the tables as well, but I'll fix them in a separate patch to make it easier to review/validate. Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: corbet@lwn.net Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-06 19:41:12 +08:00
ffffff8000000000 | -512 GB | ffffffeeffffffff | 444 GB | ... unused hole
ffffffef00000000 | -68 GB | fffffffeffffffff | 64 GB | EFI region mapping space
ffffffff00000000 | -4 GB | ffffffff7fffffff | 2 GB | ... unused hole
ffffffff80000000 | -2 GB | ffffffff9fffffff | 512 MB | kernel text mapping, mapped to physical address 0
ffffffff80000000 |-2048 MB | | |
ffffffffa0000000 |-1536 MB | fffffffffeffffff | 1520 MB | module mapping space
ffffffffff000000 | -16 MB | | |
FIXADDR_START | ~-11 MB | ffffffffff5fffff | ~0.5 MB | kernel-internal fixmap range, variable size and offset
ffffffffff600000 | -10 MB | ffffffffff600fff | 4 kB | legacy vsyscall ABI
ffffffffffe00000 | -2 MB | ffffffffffffffff | 2 MB | ... unused hole
__________________|____________|__________________|_________|___________________________________________________________
Architecture defines a 64-bit virtual address. Implementations can support
less. Currently supported are 48- and 57-bit virtual addresses. Bits 63
through to the most-significant implemented bit are sign extended.
This causes hole between user space and kernel addresses if you interpret them
as unsigned.
The direct mapping covers all memory in the system up to the highest
memory address (this means in some cases it can also include PCI memory
holes).
vmalloc space is lazily synchronized into the different PML4/PML5 pages of
the processes using the page fault handler, with init_top_pgt as
reference.
We map EFI runtime services in the 'efi_pgd' PGD in a 64Gb large virtual
memory window (this size is arbitrary, it can be raised later if needed).
The mappings are not part of any other kernel PGD and are only available
during EFI runtime calls.
x86/mm: Implement ASLR for kernel memory regions Randomizes the virtual address space of kernel memory regions for x86_64. This first patch adds the infrastructure and does not randomize any region. The following patches will randomize the physical memory mapping, vmalloc and vmemmap regions. This security feature mitigates exploits relying on predictable kernel addresses. These addresses can be used to disclose the kernel modules base addresses or corrupt specific structures to elevate privileges bypassing the current implementation of KASLR. This feature can be enabled with the CONFIG_RANDOMIZE_MEMORY option. The order of each memory region is not changed. The feature looks at the available space for the regions based on different configuration options and randomizes the base and space between each. The size of the physical memory mapping is the available physical memory. No performance impact was detected while testing the feature. Entropy is generated using the KASLR early boot functions now shared in the lib directory (originally written by Kees Cook). Randomization is done on PGD & PUD page table levels to increase possible addresses. The physical memory mapping code was adapted to support PUD level virtual addresses. This implementation on the best configuration provides 30,000 possible virtual addresses in average for each memory region. An additional low memory page is used to ensure each CPU can start with a PGD aligned virtual address (for realmode). x86/dump_pagetable was updated to correctly display each region. Updated documentation on x86_64 memory layout accordingly. Performance data, after all patches in the series: Kernbench shows almost no difference (-+ less than 1%): Before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.63 (1.2695) User Time 1034.89 (1.18115) System Time 87.056 (0.456416) Percent CPU 1092.9 (13.892) Context Switches 199805 (3455.33) Sleeps 97907.8 (900.636) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.489 (1.10636) User Time 1034.86 (1.36053) System Time 87.764 (0.49345) Percent CPU 1095 (12.7715) Context Switches 199036 (4298.1) Sleeps 97681.6 (1031.11) Hackbench shows 0% difference on average (hackbench 90 repeated 10 times): attemp,before,after 1,0.076,0.069 2,0.072,0.069 3,0.066,0.066 4,0.066,0.068 5,0.066,0.067 6,0.066,0.069 7,0.067,0.066 8,0.063,0.067 9,0.067,0.065 10,0.068,0.071 average,0.0677,0.0677 Signed-off-by: Thomas Garnier <thgarnie@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: Alexander Popov <alpopov@ptsecurity.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lv Zheng <lv.zheng@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: linux-doc@vger.kernel.org Link: http://lkml.kernel.org/r/1466556426-32664-6-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 08:47:02 +08:00
Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all
physical memory, vmalloc/ioremap space and virtual memory map are randomized.
Their order is preserved but their base will be offset early at boot time.
Be very careful vs. KASLR when changing anything here. The KASLR address
range must not overlap with anything except the KASAN shadow area, which is
correct as KASAN disables KASLR.
New gcc plugin: stackleak - Introduces the stackleak gcc plugin ported from grsecurity by Alexander Popov, with x86 and arm64 support. -----BEGIN PGP SIGNATURE----- Comment: Kees Cook <kees@outflux.net> iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5 nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk u6q++2ReDpJXF81rBw== =Ks6B -----END PGP SIGNATURE----- Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull stackleak gcc plugin from Kees Cook: "Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin was ported from grsecurity by Alexander Popov. It provides efficient stack content poisoning at syscall exit. This creates a defense against at least two classes of flaws: - Uninitialized stack usage. (We continue to work on improving the compiler to do this in other ways: e.g. unconditional zero init was proposed to GCC and Clang, and more plugin work has started too). - Stack content exposure. By greatly reducing the lifetime of valid stack contents, exposures via either direct read bugs or unknown cache side-channels become much more difficult to exploit. This complements the existing buddy and heap poisoning options, but provides the coverage for stacks. The x86 hooks are included in this series (which have been reviewed by Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already been merged through the arm64 tree (written by Laura Abbott and reviewed by Mark Rutland and Will Deacon). With VLAs having been removed this release, there is no need for alloca() protection, so it has been removed from the plugin" * tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: Drop unneeded stackleak_check_alloca() stackleak: Allow runtime disabling of kernel stack erasing doc: self-protection: Add information about STACKLEAK feature fs/proc: Show STACKLEAK metrics in the /proc file system lkdtm: Add a test for STACKLEAK gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
2018-11-02 02:46:27 +08:00
For both 4- and 5-level layouts, the STACKLEAK_POISON value in the last 2MB
hole: ffffffffffff4111