2019-05-27 14:55:06 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2014-11-27 09:30:27 +08:00
|
|
|
/*
|
|
|
|
* Copyright 2014 Google, Inc
|
|
|
|
* Author: Alexandru M Stan <amstan@chromium.org>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/slab.h>
|
2015-06-20 06:00:46 +08:00
|
|
|
#include <linux/clk.h>
|
2014-11-27 09:30:27 +08:00
|
|
|
#include <linux/clk-provider.h>
|
2015-07-05 17:00:15 +08:00
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/kernel.h>
|
2014-11-27 09:30:27 +08:00
|
|
|
#include "clk.h"
|
|
|
|
|
|
|
|
struct rockchip_mmc_clock {
|
|
|
|
struct clk_hw hw;
|
|
|
|
void __iomem *reg;
|
|
|
|
int id;
|
|
|
|
int shift;
|
2018-03-09 09:51:03 +08:00
|
|
|
int cached_phase;
|
|
|
|
struct notifier_block clk_rate_change_nb;
|
2014-11-27 09:30:27 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
#define to_mmc_clock(_hw) container_of(_hw, struct rockchip_mmc_clock, hw)
|
|
|
|
|
|
|
|
#define RK3288_MMC_CLKGEN_DIV 2
|
|
|
|
|
|
|
|
static unsigned long rockchip_mmc_recalc(struct clk_hw *hw,
|
|
|
|
unsigned long parent_rate)
|
|
|
|
{
|
|
|
|
return parent_rate / RK3288_MMC_CLKGEN_DIV;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ROCKCHIP_MMC_DELAY_SEL BIT(10)
|
|
|
|
#define ROCKCHIP_MMC_DEGREE_MASK 0x3
|
|
|
|
#define ROCKCHIP_MMC_DELAYNUM_OFFSET 2
|
|
|
|
#define ROCKCHIP_MMC_DELAYNUM_MASK (0xff << ROCKCHIP_MMC_DELAYNUM_OFFSET)
|
|
|
|
|
|
|
|
#define PSECS_PER_SEC 1000000000000LL
|
|
|
|
|
|
|
|
/*
|
2015-09-30 22:07:37 +08:00
|
|
|
* Each fine delay is between 44ps-77ps. Assume each fine delay is 60ps to
|
|
|
|
* simplify calculations. So 45degs could be anywhere between 33deg and 57.8deg.
|
2014-11-27 09:30:27 +08:00
|
|
|
*/
|
|
|
|
#define ROCKCHIP_MMC_DELAY_ELEMENT_PSEC 60
|
|
|
|
|
|
|
|
static int rockchip_mmc_get_phase(struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
struct rockchip_mmc_clock *mmc_clock = to_mmc_clock(hw);
|
2019-05-08 04:49:35 +08:00
|
|
|
unsigned long rate = clk_hw_get_rate(hw);
|
2014-11-27 09:30:27 +08:00
|
|
|
u32 raw_value;
|
|
|
|
u16 degrees;
|
|
|
|
u32 delay_num = 0;
|
|
|
|
|
2018-03-05 11:25:58 +08:00
|
|
|
/* See the comment for rockchip_mmc_set_phase below */
|
2019-05-04 05:22:08 +08:00
|
|
|
if (!rate)
|
2018-03-05 11:25:58 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
2014-11-27 09:30:27 +08:00
|
|
|
raw_value = readl(mmc_clock->reg) >> (mmc_clock->shift);
|
|
|
|
|
|
|
|
degrees = (raw_value & ROCKCHIP_MMC_DEGREE_MASK) * 90;
|
|
|
|
|
|
|
|
if (raw_value & ROCKCHIP_MMC_DELAY_SEL) {
|
2019-05-08 04:57:42 +08:00
|
|
|
/* degrees/delaynum * 1000000 */
|
2014-11-27 09:30:27 +08:00
|
|
|
unsigned long factor = (ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10) *
|
2019-05-08 04:57:42 +08:00
|
|
|
36 * (rate / 10000);
|
2014-11-27 09:30:27 +08:00
|
|
|
|
|
|
|
delay_num = (raw_value & ROCKCHIP_MMC_DELAYNUM_MASK);
|
|
|
|
delay_num >>= ROCKCHIP_MMC_DELAYNUM_OFFSET;
|
2019-05-08 04:57:42 +08:00
|
|
|
degrees += DIV_ROUND_CLOSEST(delay_num * factor, 1000000);
|
2014-11-27 09:30:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return degrees % 360;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rockchip_mmc_set_phase(struct clk_hw *hw, int degrees)
|
|
|
|
{
|
|
|
|
struct rockchip_mmc_clock *mmc_clock = to_mmc_clock(hw);
|
2019-05-08 04:49:35 +08:00
|
|
|
unsigned long rate = clk_hw_get_rate(hw);
|
2014-11-27 09:30:27 +08:00
|
|
|
u8 nineties, remainder;
|
|
|
|
u8 delay_num;
|
|
|
|
u32 raw_value;
|
2015-09-30 22:07:38 +08:00
|
|
|
u32 delay;
|
2014-11-27 09:30:27 +08:00
|
|
|
|
2018-03-05 11:25:58 +08:00
|
|
|
/*
|
|
|
|
* The below calculation is based on the output clock from
|
|
|
|
* MMC host to the card, which expects the phase clock inherits
|
|
|
|
* the clock rate from its parent, namely the output clock
|
|
|
|
* provider of MMC host. However, things may go wrong if
|
|
|
|
* (1) It is orphan.
|
|
|
|
* (2) It is assigned to the wrong parent.
|
|
|
|
*
|
|
|
|
* This check help debug the case (1), which seems to be the
|
|
|
|
* most likely problem we often face and which makes it difficult
|
|
|
|
* for people to debug unstable mmc tuning results.
|
|
|
|
*/
|
|
|
|
if (!rate) {
|
|
|
|
pr_err("%s: invalid clk rate\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2014-11-27 09:30:27 +08:00
|
|
|
nineties = degrees / 90;
|
2015-09-30 22:07:37 +08:00
|
|
|
remainder = (degrees % 90);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Due to the inexact nature of the "fine" delay, we might
|
|
|
|
* actually go non-monotonic. We don't go _too_ monotonic
|
|
|
|
* though, so we should be OK. Here are options of how we may
|
|
|
|
* work:
|
|
|
|
*
|
|
|
|
* Ideally we end up with:
|
|
|
|
* 1.0, 2.0, ..., 69.0, 70.0, ..., 89.0, 90.0
|
|
|
|
*
|
|
|
|
* On one extreme (if delay is actually 44ps):
|
|
|
|
* .73, 1.5, ..., 50.6, 51.3, ..., 65.3, 90.0
|
|
|
|
* The other (if delay is actually 77ps):
|
|
|
|
* 1.3, 2.6, ..., 88.6. 89.8, ..., 114.0, 90
|
|
|
|
*
|
|
|
|
* It's possible we might make a delay that is up to 25
|
|
|
|
* degrees off from what we think we're making. That's OK
|
|
|
|
* though because we should be REALLY far from any bad range.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert to delay; do a little extra work to make sure we
|
|
|
|
* don't overflow 32-bit / 64-bit numbers.
|
|
|
|
*/
|
2015-09-30 22:07:38 +08:00
|
|
|
delay = 10000000; /* PSECS_PER_SEC / 10000 / 10 */
|
2014-11-27 09:30:27 +08:00
|
|
|
delay *= remainder;
|
2015-09-30 22:07:38 +08:00
|
|
|
delay = DIV_ROUND_CLOSEST(delay,
|
|
|
|
(rate / 1000) * 36 *
|
|
|
|
(ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10));
|
2015-09-30 22:07:37 +08:00
|
|
|
|
2015-09-30 22:07:38 +08:00
|
|
|
delay_num = (u8) min_t(u32, delay, 255);
|
2014-11-27 09:30:27 +08:00
|
|
|
|
|
|
|
raw_value = delay_num ? ROCKCHIP_MMC_DELAY_SEL : 0;
|
|
|
|
raw_value |= delay_num << ROCKCHIP_MMC_DELAYNUM_OFFSET;
|
|
|
|
raw_value |= nineties;
|
2016-04-20 03:29:27 +08:00
|
|
|
writel(HIWORD_UPDATE(raw_value, 0x07ff, mmc_clock->shift),
|
|
|
|
mmc_clock->reg);
|
2014-11-27 09:30:27 +08:00
|
|
|
|
|
|
|
pr_debug("%s->set_phase(%d) delay_nums=%u reg[0x%p]=0x%03x actual_degrees=%d\n",
|
2015-08-13 02:42:23 +08:00
|
|
|
clk_hw_get_name(hw), degrees, delay_num,
|
2014-11-27 09:30:27 +08:00
|
|
|
mmc_clock->reg, raw_value>>(mmc_clock->shift),
|
|
|
|
rockchip_mmc_get_phase(hw)
|
|
|
|
);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct clk_ops rockchip_mmc_clk_ops = {
|
|
|
|
.recalc_rate = rockchip_mmc_recalc,
|
|
|
|
.get_phase = rockchip_mmc_get_phase,
|
|
|
|
.set_phase = rockchip_mmc_set_phase,
|
|
|
|
};
|
|
|
|
|
2018-03-09 09:51:03 +08:00
|
|
|
#define to_rockchip_mmc_clock(x) \
|
|
|
|
container_of(x, struct rockchip_mmc_clock, clk_rate_change_nb)
|
|
|
|
static int rockchip_mmc_clk_rate_notify(struct notifier_block *nb,
|
|
|
|
unsigned long event, void *data)
|
|
|
|
{
|
|
|
|
struct rockchip_mmc_clock *mmc_clock = to_rockchip_mmc_clock(nb);
|
2018-03-21 10:39:20 +08:00
|
|
|
struct clk_notifier_data *ndata = data;
|
2018-03-09 09:51:03 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* rockchip_mmc_clk is mostly used by mmc controllers to sample
|
|
|
|
* the intput data, which expects the fixed phase after the tuning
|
|
|
|
* process. However if the clock rate is changed, the phase is stale
|
|
|
|
* and may break the data sampling. So here we try to restore the phase
|
2018-03-21 10:39:20 +08:00
|
|
|
* for that case, except that
|
|
|
|
* (1) cached_phase is invaild since we inevitably cached it when the
|
|
|
|
* clock provider be reparented from orphan to its real parent in the
|
|
|
|
* first place. Otherwise we may mess up the initialization of MMC cards
|
|
|
|
* since we only set the default sample phase and drive phase later on.
|
|
|
|
* (2) the new coming rate is higher than the older one since mmc driver
|
|
|
|
* set the max-frequency to match the boards' ability but we can't go
|
|
|
|
* over the heads of that, otherwise the tests smoke out the issue.
|
2018-03-09 09:51:03 +08:00
|
|
|
*/
|
2018-03-21 10:39:20 +08:00
|
|
|
if (ndata->old_rate <= ndata->new_rate)
|
|
|
|
return NOTIFY_DONE;
|
|
|
|
|
2018-03-09 09:51:03 +08:00
|
|
|
if (event == PRE_RATE_CHANGE)
|
|
|
|
mmc_clock->cached_phase =
|
|
|
|
rockchip_mmc_get_phase(&mmc_clock->hw);
|
2018-03-21 10:39:20 +08:00
|
|
|
else if (mmc_clock->cached_phase != -EINVAL &&
|
|
|
|
event == POST_RATE_CHANGE)
|
2018-03-09 09:51:03 +08:00
|
|
|
rockchip_mmc_set_phase(&mmc_clock->hw, mmc_clock->cached_phase);
|
|
|
|
|
|
|
|
return NOTIFY_DONE;
|
|
|
|
}
|
|
|
|
|
2014-11-27 09:30:27 +08:00
|
|
|
struct clk *rockchip_clk_register_mmc(const char *name,
|
2015-05-28 16:45:51 +08:00
|
|
|
const char *const *parent_names, u8 num_parents,
|
2014-11-27 09:30:27 +08:00
|
|
|
void __iomem *reg, int shift)
|
|
|
|
{
|
|
|
|
struct clk_init_data init;
|
|
|
|
struct rockchip_mmc_clock *mmc_clock;
|
|
|
|
struct clk *clk;
|
2018-03-09 09:51:03 +08:00
|
|
|
int ret;
|
2014-11-27 09:30:27 +08:00
|
|
|
|
|
|
|
mmc_clock = kmalloc(sizeof(*mmc_clock), GFP_KERNEL);
|
|
|
|
if (!mmc_clock)
|
2016-02-15 11:33:41 +08:00
|
|
|
return ERR_PTR(-ENOMEM);
|
2014-11-27 09:30:27 +08:00
|
|
|
|
2015-07-05 17:00:15 +08:00
|
|
|
init.name = name;
|
2016-05-18 02:57:50 +08:00
|
|
|
init.flags = 0;
|
2014-11-27 09:30:27 +08:00
|
|
|
init.num_parents = num_parents;
|
|
|
|
init.parent_names = parent_names;
|
|
|
|
init.ops = &rockchip_mmc_clk_ops;
|
|
|
|
|
|
|
|
mmc_clock->hw.init = &init;
|
|
|
|
mmc_clock->reg = reg;
|
|
|
|
mmc_clock->shift = shift;
|
|
|
|
|
|
|
|
clk = clk_register(NULL, &mmc_clock->hw);
|
2018-03-21 10:39:20 +08:00
|
|
|
if (IS_ERR(clk)) {
|
|
|
|
ret = PTR_ERR(clk);
|
2018-03-09 09:51:03 +08:00
|
|
|
goto err_register;
|
2018-03-21 10:39:20 +08:00
|
|
|
}
|
2014-11-27 09:30:27 +08:00
|
|
|
|
2018-03-09 09:51:03 +08:00
|
|
|
mmc_clock->clk_rate_change_nb.notifier_call =
|
|
|
|
&rockchip_mmc_clk_rate_notify;
|
|
|
|
ret = clk_notifier_register(clk, &mmc_clock->clk_rate_change_nb);
|
|
|
|
if (ret)
|
|
|
|
goto err_notifier;
|
|
|
|
|
|
|
|
return clk;
|
|
|
|
err_notifier:
|
|
|
|
clk_unregister(clk);
|
|
|
|
err_register:
|
|
|
|
kfree(mmc_clock);
|
2018-03-21 10:39:20 +08:00
|
|
|
return ERR_PTR(ret);
|
2014-11-27 09:30:27 +08:00
|
|
|
}
|