linux/drivers/media/usb/go7007/go7007-fw.c

1632 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (C) 2005-2006 Micronas USA Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* This file contains code to generate a firmware image for the GO7007SB
* encoder. Much of the firmware is read verbatim from a file, but some of
* it concerning bitrate control and other things that can be configured at
* run-time are generated dynamically. Note that the format headers
* generated here do not affect the functioning of the encoder; they are
* merely parroted back to the host at the start of each frame.
*/
#include <linux/module.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/firmware.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/byteorder.h>
#include "go7007-priv.h"
#define GO7007_FW_NAME "go7007/go7007tv.bin"
/* Constants used in the source firmware image to describe code segments */
#define FLAG_MODE_MJPEG (1)
#define FLAG_MODE_MPEG1 (1<<1)
#define FLAG_MODE_MPEG2 (1<<2)
#define FLAG_MODE_MPEG4 (1<<3)
#define FLAG_MODE_H263 (1<<4)
#define FLAG_MODE_ALL (FLAG_MODE_MJPEG | FLAG_MODE_MPEG1 | \
FLAG_MODE_MPEG2 | FLAG_MODE_MPEG4 | \
FLAG_MODE_H263)
#define FLAG_SPECIAL (1<<8)
#define SPECIAL_FRM_HEAD 0
#define SPECIAL_BRC_CTRL 1
#define SPECIAL_CONFIG 2
#define SPECIAL_SEQHEAD 3
#define SPECIAL_AV_SYNC 4
#define SPECIAL_FINAL 5
#define SPECIAL_AUDIO 6
#define SPECIAL_MODET 7
/* Little data class for creating MPEG headers bit-by-bit */
struct code_gen {
unsigned char *p; /* destination */
u32 a; /* collects bits at the top of the variable */
int b; /* bit position of most recently-written bit */
int len; /* written out so far */
};
#define CODE_GEN(name, dest) struct code_gen name = { dest, 0, 32, 0 }
#define CODE_ADD(name, val, length) do { \
name.b -= (length); \
name.a |= (val) << name.b; \
while (name.b <= 24) { \
*name.p = name.a >> 24; \
++name.p; \
name.a <<= 8; \
name.b += 8; \
name.len += 8; \
} \
} while (0)
#define CODE_LENGTH(name) (name.len + (32 - name.b))
/* Tables for creating the bitrate control data */
static const s16 converge_speed_ip[101] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4,
5, 5, 5, 6, 6, 6, 7, 7, 8, 8,
9, 10, 10, 11, 12, 13, 14, 15, 16, 17,
19, 20, 22, 23, 25, 27, 30, 32, 35, 38,
41, 45, 49, 53, 58, 63, 69, 76, 83, 91,
100
};
static const s16 converge_speed_ipb[101] = {
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4,
4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
6, 6, 6, 7, 7, 7, 7, 8, 8, 9,
9, 9, 10, 10, 11, 12, 12, 13, 14, 14,
15, 16, 17, 18, 19, 20, 22, 23, 25, 26,
28, 30, 32, 34, 37, 40, 42, 46, 49, 53,
57, 61, 66, 71, 77, 83, 90, 97, 106, 115,
125, 135, 147, 161, 175, 191, 209, 228, 249, 273,
300
};
static const s16 LAMBDA_table[4][101] = {
{ 16, 16, 16, 16, 17, 17, 17, 18, 18, 18,
19, 19, 19, 20, 20, 20, 21, 21, 22, 22,
22, 23, 23, 24, 24, 25, 25, 25, 26, 26,
27, 27, 28, 28, 29, 29, 30, 31, 31, 32,
32, 33, 33, 34, 35, 35, 36, 37, 37, 38,
39, 39, 40, 41, 42, 42, 43, 44, 45, 46,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
67, 68, 69, 70, 72, 73, 74, 76, 77, 78,
80, 81, 83, 84, 86, 87, 89, 90, 92, 94,
96
},
{
20, 20, 20, 21, 21, 21, 22, 22, 23, 23,
23, 24, 24, 25, 25, 26, 26, 27, 27, 28,
28, 29, 29, 30, 30, 31, 31, 32, 33, 33,
34, 34, 35, 36, 36, 37, 38, 38, 39, 40,
40, 41, 42, 43, 43, 44, 45, 46, 47, 48,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 64, 65, 66, 67, 68,
70, 71, 72, 73, 75, 76, 78, 79, 80, 82,
83, 85, 86, 88, 90, 91, 93, 95, 96, 98,
100, 102, 103, 105, 107, 109, 111, 113, 115, 117,
120
},
{
24, 24, 24, 25, 25, 26, 26, 27, 27, 28,
28, 29, 29, 30, 30, 31, 31, 32, 33, 33,
34, 34, 35, 36, 36, 37, 38, 38, 39, 40,
41, 41, 42, 43, 44, 44, 45, 46, 47, 48,
49, 50, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 62, 63, 64, 65, 66, 67, 69,
70, 71, 72, 74, 75, 76, 78, 79, 81, 82,
84, 85, 87, 88, 90, 92, 93, 95, 97, 98,
100, 102, 104, 106, 108, 110, 112, 114, 116, 118,
120, 122, 124, 127, 129, 131, 134, 136, 138, 141,
144
},
{
32, 32, 33, 33, 34, 34, 35, 36, 36, 37,
38, 38, 39, 40, 41, 41, 42, 43, 44, 44,
45, 46, 47, 48, 49, 50, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 62, 63, 64,
65, 66, 67, 69, 70, 71, 72, 74, 75, 76,
78, 79, 81, 82, 84, 85, 87, 88, 90, 92,
93, 95, 97, 98, 100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122, 124, 127, 129, 131,
134, 136, 139, 141, 144, 146, 149, 152, 154, 157,
160, 163, 166, 169, 172, 175, 178, 181, 185, 188,
192
}
};
/* MPEG blank frame generation tables */
enum mpeg_frame_type {
PFRAME,
BFRAME_PRE,
BFRAME_POST,
BFRAME_BIDIR,
BFRAME_EMPTY
};
static const u32 addrinctab[33][2] = {
{ 0x01, 1 }, { 0x03, 3 }, { 0x02, 3 }, { 0x03, 4 },
{ 0x02, 4 }, { 0x03, 5 }, { 0x02, 5 }, { 0x07, 7 },
{ 0x06, 7 }, { 0x0b, 8 }, { 0x0a, 8 }, { 0x09, 8 },
{ 0x08, 8 }, { 0x07, 8 }, { 0x06, 8 }, { 0x17, 10 },
{ 0x16, 10 }, { 0x15, 10 }, { 0x14, 10 }, { 0x13, 10 },
{ 0x12, 10 }, { 0x23, 11 }, { 0x22, 11 }, { 0x21, 11 },
{ 0x20, 11 }, { 0x1f, 11 }, { 0x1e, 11 }, { 0x1d, 11 },
{ 0x1c, 11 }, { 0x1b, 11 }, { 0x1a, 11 }, { 0x19, 11 },
{ 0x18, 11 }
};
/* Standard JPEG tables */
static const u8 default_intra_quant_table[] = {
8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83
};
static const u8 bits_dc_luminance[] = {
0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
};
static const u8 val_dc_luminance[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
};
static const u8 bits_dc_chrominance[] = {
0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
};
static const u8 val_dc_chrominance[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
};
static const u8 bits_ac_luminance[] = {
0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d
};
static const u8 val_ac_luminance[] = {
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
static const u8 bits_ac_chrominance[] = {
0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77
};
static const u8 val_ac_chrominance[] = {
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
/* Zig-zag mapping for quant table
*
* OK, let's do this mapping on the actual table above so it doesn't have
* to be done on the fly.
*/
static const int zz[64] = {
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
};
static int copy_packages(__le16 *dest, u16 *src, int pkg_cnt, int space)
{
int i, cnt = pkg_cnt * 32;
if (space < cnt)
return -1;
for (i = 0; i < cnt; ++i)
dest[i] = cpu_to_le16p(src + i);
return cnt;
}
static int mjpeg_frame_header(struct go7007 *go, unsigned char *buf, int q)
{
int i, p = 0;
buf[p++] = 0xff;
buf[p++] = 0xd8;
buf[p++] = 0xff;
buf[p++] = 0xdb;
buf[p++] = 0;
buf[p++] = 2 + 65;
buf[p++] = 0;
buf[p++] = default_intra_quant_table[0];
for (i = 1; i < 64; ++i)
/* buf[p++] = (default_intra_quant_table[i] * q) >> 3; */
buf[p++] = (default_intra_quant_table[zz[i]] * q) >> 3;
buf[p++] = 0xff;
buf[p++] = 0xc0;
buf[p++] = 0;
buf[p++] = 17;
buf[p++] = 8;
buf[p++] = go->height >> 8;
buf[p++] = go->height & 0xff;
buf[p++] = go->width >> 8;
buf[p++] = go->width & 0xff;
buf[p++] = 3;
buf[p++] = 1;
buf[p++] = 0x22;
buf[p++] = 0;
buf[p++] = 2;
buf[p++] = 0x11;
buf[p++] = 0;
buf[p++] = 3;
buf[p++] = 0x11;
buf[p++] = 0;
buf[p++] = 0xff;
buf[p++] = 0xc4;
buf[p++] = 418 >> 8;
buf[p++] = 418 & 0xff;
buf[p++] = 0x00;
memcpy(buf + p, bits_dc_luminance + 1, 16);
p += 16;
memcpy(buf + p, val_dc_luminance, sizeof(val_dc_luminance));
p += sizeof(val_dc_luminance);
buf[p++] = 0x01;
memcpy(buf + p, bits_dc_chrominance + 1, 16);
p += 16;
memcpy(buf + p, val_dc_chrominance, sizeof(val_dc_chrominance));
p += sizeof(val_dc_chrominance);
buf[p++] = 0x10;
memcpy(buf + p, bits_ac_luminance + 1, 16);
p += 16;
memcpy(buf + p, val_ac_luminance, sizeof(val_ac_luminance));
p += sizeof(val_ac_luminance);
buf[p++] = 0x11;
memcpy(buf + p, bits_ac_chrominance + 1, 16);
p += 16;
memcpy(buf + p, val_ac_chrominance, sizeof(val_ac_chrominance));
p += sizeof(val_ac_chrominance);
buf[p++] = 0xff;
buf[p++] = 0xda;
buf[p++] = 0;
buf[p++] = 12;
buf[p++] = 3;
buf[p++] = 1;
buf[p++] = 0x00;
buf[p++] = 2;
buf[p++] = 0x11;
buf[p++] = 3;
buf[p++] = 0x11;
buf[p++] = 0;
buf[p++] = 63;
buf[p++] = 0;
return p;
}
static int gen_mjpeghdr_to_package(struct go7007 *go, __le16 *code, int space)
{
u8 *buf;
u16 mem = 0x3e00;
unsigned int addr = 0x19;
int size = 0, i, off = 0, chunk;
buf = kzalloc(4096, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
for (i = 1; i < 32; ++i) {
mjpeg_frame_header(go, buf + size, i);
size += 80;
}
chunk = mjpeg_frame_header(go, buf + size, 1);
memmove(buf + size, buf + size + 80, chunk - 80);
size += chunk - 80;
for (i = 0; i < size; i += chunk * 2) {
if (space - off < 32) {
off = -1;
goto done;
}
code[off + 1] = __cpu_to_le16(0x8000 | mem);
chunk = 28;
if (mem + chunk > 0x4000)
chunk = 0x4000 - mem;
if (i + 2 * chunk > size)
chunk = (size - i) / 2;
if (chunk < 28) {
code[off] = __cpu_to_le16(0x4000 | chunk);
code[off + 31] = __cpu_to_le16(addr++);
mem = 0x3e00;
} else {
code[off] = __cpu_to_le16(0x1000 | 28);
code[off + 31] = 0;
mem += 28;
}
memcpy(&code[off + 2], buf + i, chunk * 2);
off += 32;
}
done:
kfree(buf);
return off;
}
static int mpeg1_frame_header(struct go7007 *go, unsigned char *buf,
int modulo, int pict_struct, enum mpeg_frame_type frame)
{
int i, j, mb_code, mb_len;
int rows = go->interlace_coding ? go->height / 32 : go->height / 16;
CODE_GEN(c, buf + 6);
switch (frame) {
case PFRAME:
mb_code = 0x1;
mb_len = 3;
break;
case BFRAME_PRE:
mb_code = 0x2;
mb_len = 4;
break;
case BFRAME_POST:
mb_code = 0x2;
mb_len = 3;
break;
case BFRAME_BIDIR:
mb_code = 0x2;
mb_len = 2;
break;
default: /* keep the compiler happy */
mb_code = mb_len = 0;
break;
}
CODE_ADD(c, frame == PFRAME ? 0x2 : 0x3, 13);
CODE_ADD(c, 0xffff, 16);
CODE_ADD(c, go->format == V4L2_PIX_FMT_MPEG2 ? 0x7 : 0x4, 4);
if (frame != PFRAME)
CODE_ADD(c, go->format == V4L2_PIX_FMT_MPEG2 ? 0x7 : 0x4, 4);
else
CODE_ADD(c, 0, 4); /* Is this supposed to be here?? */
CODE_ADD(c, 0, 3); /* What is this?? */
/* Byte-align with zeros */
j = 8 - (CODE_LENGTH(c) % 8);
if (j != 8)
CODE_ADD(c, 0, j);
if (go->format == V4L2_PIX_FMT_MPEG2) {
CODE_ADD(c, 0x1, 24);
CODE_ADD(c, 0xb5, 8);
CODE_ADD(c, 0x844, 12);
CODE_ADD(c, frame == PFRAME ? 0xff : 0x44, 8);
if (go->interlace_coding) {
CODE_ADD(c, pict_struct, 4);
if (go->dvd_mode)
CODE_ADD(c, 0x000, 11);
else
CODE_ADD(c, 0x200, 11);
} else {
CODE_ADD(c, 0x3, 4);
CODE_ADD(c, 0x20c, 11);
}
/* Byte-align with zeros */
j = 8 - (CODE_LENGTH(c) % 8);
if (j != 8)
CODE_ADD(c, 0, j);
}
for (i = 0; i < rows; ++i) {
CODE_ADD(c, 1, 24);
CODE_ADD(c, i + 1, 8);
CODE_ADD(c, 0x2, 6);
CODE_ADD(c, 0x1, 1);
CODE_ADD(c, mb_code, mb_len);
if (go->interlace_coding) {
CODE_ADD(c, 0x1, 2);
CODE_ADD(c, pict_struct == 1 ? 0x0 : 0x1, 1);
}
if (frame == BFRAME_BIDIR) {
CODE_ADD(c, 0x3, 2);
if (go->interlace_coding)
CODE_ADD(c, pict_struct == 1 ? 0x0 : 0x1, 1);
}
CODE_ADD(c, 0x3, 2);
for (j = (go->width >> 4) - 2; j >= 33; j -= 33)
CODE_ADD(c, 0x8, 11);
CODE_ADD(c, addrinctab[j][0], addrinctab[j][1]);
CODE_ADD(c, mb_code, mb_len);
if (go->interlace_coding) {
CODE_ADD(c, 0x1, 2);
CODE_ADD(c, pict_struct == 1 ? 0x0 : 0x1, 1);
}
if (frame == BFRAME_BIDIR) {
CODE_ADD(c, 0x3, 2);
if (go->interlace_coding)
CODE_ADD(c, pict_struct == 1 ? 0x0 : 0x1, 1);
}
CODE_ADD(c, 0x3, 2);
/* Byte-align with zeros */
j = 8 - (CODE_LENGTH(c) % 8);
if (j != 8)
CODE_ADD(c, 0, j);
}
i = CODE_LENGTH(c) + 4 * 8;
buf[2] = 0x00;
buf[3] = 0x00;
buf[4] = 0x01;
buf[5] = 0x00;
return i;
}
static int mpeg1_sequence_header(struct go7007 *go, unsigned char *buf, int ext)
{
int i, aspect_ratio, picture_rate;
CODE_GEN(c, buf + 6);
if (go->format == V4L2_PIX_FMT_MPEG1) {
switch (go->aspect_ratio) {
case GO7007_RATIO_4_3:
aspect_ratio = go->standard == GO7007_STD_NTSC ? 3 : 2;
break;
case GO7007_RATIO_16_9:
aspect_ratio = go->standard == GO7007_STD_NTSC ? 5 : 4;
break;
default:
aspect_ratio = 1;
break;
}
} else {
switch (go->aspect_ratio) {
case GO7007_RATIO_4_3:
aspect_ratio = 2;
break;
case GO7007_RATIO_16_9:
aspect_ratio = 3;
break;
default:
aspect_ratio = 1;
break;
}
}
switch (go->sensor_framerate) {
case 24000:
picture_rate = 1;
break;
case 24024:
picture_rate = 2;
break;
case 25025:
picture_rate = go->interlace_coding ? 6 : 3;
break;
case 30000:
picture_rate = go->interlace_coding ? 7 : 4;
break;
case 30030:
picture_rate = go->interlace_coding ? 8 : 5;
break;
default:
picture_rate = 5; /* 30 fps seems like a reasonable default */
break;
}
CODE_ADD(c, go->width, 12);
CODE_ADD(c, go->height, 12);
CODE_ADD(c, aspect_ratio, 4);
CODE_ADD(c, picture_rate, 4);
CODE_ADD(c, go->format == V4L2_PIX_FMT_MPEG2 ? 20000 : 0x3ffff, 18);
CODE_ADD(c, 1, 1);
CODE_ADD(c, go->format == V4L2_PIX_FMT_MPEG2 ? 112 : 20, 10);
CODE_ADD(c, 0, 3);
/* Byte-align with zeros */
i = 8 - (CODE_LENGTH(c) % 8);
if (i != 8)
CODE_ADD(c, 0, i);
if (go->format == V4L2_PIX_FMT_MPEG2) {
CODE_ADD(c, 0x1, 24);
CODE_ADD(c, 0xb5, 8);
CODE_ADD(c, 0x148, 12);
if (go->interlace_coding)
CODE_ADD(c, 0x20001, 20);
else
CODE_ADD(c, 0xa0001, 20);
CODE_ADD(c, 0, 16);
/* Byte-align with zeros */
i = 8 - (CODE_LENGTH(c) % 8);
if (i != 8)
CODE_ADD(c, 0, i);
if (ext) {
CODE_ADD(c, 0x1, 24);
CODE_ADD(c, 0xb52, 12);
CODE_ADD(c, go->standard == GO7007_STD_NTSC ? 2 : 1, 3);
CODE_ADD(c, 0x105, 9);
CODE_ADD(c, 0x505, 16);
CODE_ADD(c, go->width, 14);
CODE_ADD(c, 1, 1);
CODE_ADD(c, go->height, 14);
/* Byte-align with zeros */
i = 8 - (CODE_LENGTH(c) % 8);
if (i != 8)
CODE_ADD(c, 0, i);
}
}
i = CODE_LENGTH(c) + 4 * 8;
buf[0] = i & 0xff;
buf[1] = i >> 8;
buf[2] = 0x00;
buf[3] = 0x00;
buf[4] = 0x01;
buf[5] = 0xb3;
return i;
}
static int gen_mpeg1hdr_to_package(struct go7007 *go,
__le16 *code, int space, int *framelen)
{
u8 *buf;
u16 mem = 0x3e00;
unsigned int addr = 0x19;
int i, off = 0, chunk;
buf = kzalloc(5120, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
framelen[0] = mpeg1_frame_header(go, buf, 0, 1, PFRAME);
if (go->interlace_coding)
framelen[0] += mpeg1_frame_header(go, buf + framelen[0] / 8,
0, 2, PFRAME);
buf[0] = framelen[0] & 0xff;
buf[1] = framelen[0] >> 8;
i = 368;
framelen[1] = mpeg1_frame_header(go, buf + i, 0, 1, BFRAME_PRE);
if (go->interlace_coding)
framelen[1] += mpeg1_frame_header(go, buf + i + framelen[1] / 8,
0, 2, BFRAME_PRE);
buf[i] = framelen[1] & 0xff;
buf[i + 1] = framelen[1] >> 8;
i += 1632;
framelen[2] = mpeg1_frame_header(go, buf + i, 0, 1, BFRAME_POST);
if (go->interlace_coding)
framelen[2] += mpeg1_frame_header(go, buf + i + framelen[2] / 8,
0, 2, BFRAME_POST);
buf[i] = framelen[2] & 0xff;
buf[i + 1] = framelen[2] >> 8;
i += 1432;
framelen[3] = mpeg1_frame_header(go, buf + i, 0, 1, BFRAME_BIDIR);
if (go->interlace_coding)
framelen[3] += mpeg1_frame_header(go, buf + i + framelen[3] / 8,
0, 2, BFRAME_BIDIR);
buf[i] = framelen[3] & 0xff;
buf[i + 1] = framelen[3] >> 8;
i += 1632 + 16;
mpeg1_sequence_header(go, buf + i, 0);
i += 40;
for (i = 0; i < 5120; i += chunk * 2) {
if (space - off < 32) {
off = -1;
goto done;
}
code[off + 1] = __cpu_to_le16(0x8000 | mem);
chunk = 28;
if (mem + chunk > 0x4000)
chunk = 0x4000 - mem;
if (i + 2 * chunk > 5120)
chunk = (5120 - i) / 2;
if (chunk < 28) {
code[off] = __cpu_to_le16(0x4000 | chunk);
code[off + 31] = __cpu_to_le16(addr);
if (mem + chunk == 0x4000) {
mem = 0x3e00;
++addr;
}
} else {
code[off] = __cpu_to_le16(0x1000 | 28);
code[off + 31] = 0;
mem += 28;
}
memcpy(&code[off + 2], buf + i, chunk * 2);
off += 32;
}
done:
kfree(buf);
return off;
}
static int vti_bitlen(struct go7007 *go)
{
unsigned int i, max_time_incr = go->sensor_framerate / go->fps_scale;
for (i = 31; (max_time_incr & ((1 << i) - 1)) == max_time_incr; --i)
;
return i + 1;
}
static int mpeg4_frame_header(struct go7007 *go, unsigned char *buf,
int modulo, enum mpeg_frame_type frame)
{
int i;
CODE_GEN(c, buf + 6);
int mb_count = (go->width >> 4) * (go->height >> 4);
CODE_ADD(c, frame == PFRAME ? 0x1 : 0x2, 2);
if (modulo)
CODE_ADD(c, 0x1, 1);
CODE_ADD(c, 0x1, 2);
CODE_ADD(c, 0, vti_bitlen(go));
CODE_ADD(c, 0x3, 2);
if (frame == PFRAME)
CODE_ADD(c, 0, 1);
CODE_ADD(c, 0xc, 11);
if (frame != PFRAME)
CODE_ADD(c, 0x4, 3);
if (frame != BFRAME_EMPTY) {
for (i = 0; i < mb_count; ++i) {
switch (frame) {
case PFRAME:
CODE_ADD(c, 0x1, 1);
break;
case BFRAME_PRE:
CODE_ADD(c, 0x47, 8);
break;
case BFRAME_POST:
CODE_ADD(c, 0x27, 7);
break;
case BFRAME_BIDIR:
CODE_ADD(c, 0x5f, 8);
break;
case BFRAME_EMPTY: /* keep compiler quiet */
break;
}
}
}
/* Byte-align with a zero followed by ones */
i = 8 - (CODE_LENGTH(c) % 8);
CODE_ADD(c, 0, 1);
CODE_ADD(c, (1 << (i - 1)) - 1, i - 1);
i = CODE_LENGTH(c) + 4 * 8;
buf[0] = i & 0xff;
buf[1] = i >> 8;
buf[2] = 0x00;
buf[3] = 0x00;
buf[4] = 0x01;
buf[5] = 0xb6;
return i;
}
static int mpeg4_sequence_header(struct go7007 *go, unsigned char *buf, int ext)
{
const unsigned char head[] = { 0x00, 0x00, 0x01, 0xb0, go->pali,
0x00, 0x00, 0x01, 0xb5, 0x09,
0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x01, 0x20, };
int i, aspect_ratio;
int fps = go->sensor_framerate / go->fps_scale;
CODE_GEN(c, buf + 2 + sizeof(head));
switch (go->aspect_ratio) {
case GO7007_RATIO_4_3:
aspect_ratio = go->standard == GO7007_STD_NTSC ? 3 : 2;
break;
case GO7007_RATIO_16_9:
aspect_ratio = go->standard == GO7007_STD_NTSC ? 5 : 4;
break;
default:
aspect_ratio = 1;
break;
}
memcpy(buf + 2, head, sizeof(head));
CODE_ADD(c, 0x191, 17);
CODE_ADD(c, aspect_ratio, 4);
CODE_ADD(c, 0x1, 4);
CODE_ADD(c, fps, 16);
CODE_ADD(c, 0x3, 2);
CODE_ADD(c, 1001, vti_bitlen(go));
CODE_ADD(c, 1, 1);
CODE_ADD(c, go->width, 13);
CODE_ADD(c, 1, 1);
CODE_ADD(c, go->height, 13);
CODE_ADD(c, 0x2830, 14);
/* Byte-align */
i = 8 - (CODE_LENGTH(c) % 8);
CODE_ADD(c, 0, 1);
CODE_ADD(c, (1 << (i - 1)) - 1, i - 1);
i = CODE_LENGTH(c) + sizeof(head) * 8;
buf[0] = i & 0xff;
buf[1] = i >> 8;
return i;
}
static int gen_mpeg4hdr_to_package(struct go7007 *go,
__le16 *code, int space, int *framelen)
{
u8 *buf;
u16 mem = 0x3e00;
unsigned int addr = 0x19;
int i, off = 0, chunk;
buf = kzalloc(5120, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
framelen[0] = mpeg4_frame_header(go, buf, 0, PFRAME);
i = 368;
framelen[1] = mpeg4_frame_header(go, buf + i, 0, BFRAME_PRE);
i += 1632;
framelen[2] = mpeg4_frame_header(go, buf + i, 0, BFRAME_POST);
i += 1432;
framelen[3] = mpeg4_frame_header(go, buf + i, 0, BFRAME_BIDIR);
i += 1632;
mpeg4_frame_header(go, buf + i, 0, BFRAME_EMPTY);
i += 16;
mpeg4_sequence_header(go, buf + i, 0);
i += 40;
for (i = 0; i < 5120; i += chunk * 2) {
if (space - off < 32) {
off = -1;
goto done;
}
code[off + 1] = __cpu_to_le16(0x8000 | mem);
chunk = 28;
if (mem + chunk > 0x4000)
chunk = 0x4000 - mem;
if (i + 2 * chunk > 5120)
chunk = (5120 - i) / 2;
if (chunk < 28) {
code[off] = __cpu_to_le16(0x4000 | chunk);
code[off + 31] = __cpu_to_le16(addr);
if (mem + chunk == 0x4000) {
mem = 0x3e00;
++addr;
}
} else {
code[off] = __cpu_to_le16(0x1000 | 28);
code[off + 31] = 0;
mem += 28;
}
memcpy(&code[off + 2], buf + i, chunk * 2);
off += 32;
}
mem = 0x3e00;
addr = go->ipb ? 0x14f9 : 0x0af9;
memset(buf, 0, 5120);
framelen[4] = mpeg4_frame_header(go, buf, 1, PFRAME);
i = 368;
framelen[5] = mpeg4_frame_header(go, buf + i, 1, BFRAME_PRE);
i += 1632;
framelen[6] = mpeg4_frame_header(go, buf + i, 1, BFRAME_POST);
i += 1432;
framelen[7] = mpeg4_frame_header(go, buf + i, 1, BFRAME_BIDIR);
i += 1632;
mpeg4_frame_header(go, buf + i, 1, BFRAME_EMPTY);
i += 16;
for (i = 0; i < 5120; i += chunk * 2) {
if (space - off < 32) {
off = -1;
goto done;
}
code[off + 1] = __cpu_to_le16(0x8000 | mem);
chunk = 28;
if (mem + chunk > 0x4000)
chunk = 0x4000 - mem;
if (i + 2 * chunk > 5120)
chunk = (5120 - i) / 2;
if (chunk < 28) {
code[off] = __cpu_to_le16(0x4000 | chunk);
code[off + 31] = __cpu_to_le16(addr);
if (mem + chunk == 0x4000) {
mem = 0x3e00;
++addr;
}
} else {
code[off] = __cpu_to_le16(0x1000 | 28);
code[off + 31] = 0;
mem += 28;
}
memcpy(&code[off + 2], buf + i, chunk * 2);
off += 32;
}
done:
kfree(buf);
return off;
}
static int brctrl_to_package(struct go7007 *go,
__le16 *code, int space, int *framelen)
{
int converge_speed = 0;
int lambda = (go->format == V4L2_PIX_FMT_MJPEG || go->dvd_mode) ?
100 : 0;
int peak_rate = 6 * go->bitrate / 5;
int vbv_buffer = go->format == V4L2_PIX_FMT_MJPEG ?
go->bitrate :
(go->dvd_mode ? 900000 : peak_rate);
int fps = go->sensor_framerate / go->fps_scale;
int q = 0;
/* Bizarre math below depends on rounding errors in division */
u32 sgop_expt_addr = go->bitrate / 32 * (go->ipb ? 3 : 1) * 1001 / fps;
u32 sgop_peak_addr = peak_rate / 32 * 1001 / fps;
u32 total_expt_addr = go->bitrate / 32 * 1000 / fps * (fps / 1000);
u32 vbv_alert_addr = vbv_buffer * 3 / (4 * 32);
u32 cplx[] = {
q > 0 ? sgop_expt_addr * q :
2 * go->width * go->height * (go->ipb ? 6 : 4) / 32,
q > 0 ? sgop_expt_addr * q :
2 * go->width * go->height * (go->ipb ? 6 : 4) / 32,
q > 0 ? sgop_expt_addr * q :
2 * go->width * go->height * (go->ipb ? 6 : 4) / 32,
q > 0 ? sgop_expt_addr * q :
2 * go->width * go->height * (go->ipb ? 6 : 4) / 32,
};
u32 calc_q = q > 0 ? q : cplx[0] / sgop_expt_addr;
u16 pack[] = {
0x200e, 0x0000,
0xBF20, go->ipb ? converge_speed_ipb[converge_speed]
: converge_speed_ip[converge_speed],
0xBF21, go->ipb ? 2 : 0,
0xBF22, go->ipb ? LAMBDA_table[0][lambda / 2 + 50]
: 32767,
0xBF23, go->ipb ? LAMBDA_table[1][lambda] : 32767,
0xBF24, 32767,
0xBF25, lambda > 99 ? 32767 : LAMBDA_table[3][lambda],
0xBF26, sgop_expt_addr & 0x0000FFFF,
0xBF27, sgop_expt_addr >> 16,
0xBF28, sgop_peak_addr & 0x0000FFFF,
0xBF29, sgop_peak_addr >> 16,
0xBF2A, vbv_alert_addr & 0x0000FFFF,
0xBF2B, vbv_alert_addr >> 16,
0xBF2C, 0,
0xBF2D, 0,
0, 0,
0x200e, 0x0000,
0xBF2E, vbv_alert_addr & 0x0000FFFF,
0xBF2F, vbv_alert_addr >> 16,
0xBF30, cplx[0] & 0x0000FFFF,
0xBF31, cplx[0] >> 16,
0xBF32, cplx[1] & 0x0000FFFF,
0xBF33, cplx[1] >> 16,
0xBF34, cplx[2] & 0x0000FFFF,
0xBF35, cplx[2] >> 16,
0xBF36, cplx[3] & 0x0000FFFF,
0xBF37, cplx[3] >> 16,
0xBF38, 0,
0xBF39, 0,
0xBF3A, total_expt_addr & 0x0000FFFF,
0xBF3B, total_expt_addr >> 16,
0, 0,
0x200e, 0x0000,
0xBF3C, total_expt_addr & 0x0000FFFF,
0xBF3D, total_expt_addr >> 16,
0xBF3E, 0,
0xBF3F, 0,
0xBF48, 0,
0xBF49, 0,
0xBF4A, calc_q < 4 ? 4 : (calc_q > 124 ? 124 : calc_q),
0xBF4B, 4,
0xBF4C, 0,
0xBF4D, 0,
0xBF4E, 0,
0xBF4F, 0,
0xBF50, 0,
0xBF51, 0,
0, 0,
0x200e, 0x0000,
0xBF40, sgop_expt_addr & 0x0000FFFF,
0xBF41, sgop_expt_addr >> 16,
0xBF42, 0,
0xBF43, 0,
0xBF44, 0,
0xBF45, 0,
0xBF46, (go->width >> 4) * (go->height >> 4),
0xBF47, 0,
0xBF64, 0,
0xBF65, 0,
0xBF18, framelen[4],
0xBF19, framelen[5],
0xBF1A, framelen[6],
0xBF1B, framelen[7],
0, 0,
#if 0
/* Remove once we don't care about matching */
0x200e, 0x0000,
0xBF56, 4,
0xBF57, 0,
0xBF58, 5,
0xBF59, 0,
0xBF5A, 6,
0xBF5B, 0,
0xBF5C, 8,
0xBF5D, 0,
0xBF5E, 1,
0xBF5F, 0,
0xBF60, 1,
0xBF61, 0,
0xBF62, 0,
0xBF63, 0,
0, 0,
#else
0x2008, 0x0000,
0xBF56, 4,
0xBF57, 0,
0xBF58, 5,
0xBF59, 0,
0xBF5A, 6,
0xBF5B, 0,
0xBF5C, 8,
0xBF5D, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
#endif
0x200e, 0x0000,
0xBF10, 0,
0xBF11, 0,
0xBF12, 0,
0xBF13, 0,
0xBF14, 0,
0xBF15, 0,
0xBF16, 0,
0xBF17, 0,
0xBF7E, 0,
0xBF7F, 1,
0xBF52, framelen[0],
0xBF53, framelen[1],
0xBF54, framelen[2],
0xBF55, framelen[3],
0, 0,
};
return copy_packages(code, pack, 6, space);
}
static int config_package(struct go7007 *go, __le16 *code, int space)
{
int fps = go->sensor_framerate / go->fps_scale / 1000;
int rows = go->interlace_coding ? go->height / 32 : go->height / 16;
int brc_window_size = fps;
int q_min = 2, q_max = 31;
int THACCoeffSet0 = 0;
u16 pack[] = {
0x200e, 0x0000,
0xc002, 0x14b4,
0xc003, 0x28b4,
0xc004, 0x3c5a,
0xdc05, 0x2a77,
0xc6c3, go->format == V4L2_PIX_FMT_MPEG4 ? 0 :
(go->format == V4L2_PIX_FMT_H263 ? 0 : 1),
0xc680, go->format == V4L2_PIX_FMT_MPEG4 ? 0xf1 :
(go->format == V4L2_PIX_FMT_H263 ? 0x61 :
0xd3),
0xc780, 0x0140,
0xe009, 0x0001,
0xc60f, 0x0008,
0xd4ff, 0x0002,
0xe403, 2340,
0xe406, 75,
0xd411, 0x0001,
0xd410, 0xa1d6,
0x0001, 0x2801,
0x200d, 0x0000,
0xe402, 0x018b,
0xe401, 0x8b01,
0xd472, (go->board_info->sensor_flags &
GO7007_SENSOR_TV) &&
(!go->interlace_coding) ?
0x01b0 : 0x0170,
0xd475, (go->board_info->sensor_flags &
GO7007_SENSOR_TV) &&
(!go->interlace_coding) ?
0x0008 : 0x0009,
0xc404, go->interlace_coding ? 0x44 :
(go->format == V4L2_PIX_FMT_MPEG4 ? 0x11 :
(go->format == V4L2_PIX_FMT_MPEG1 ? 0x02 :
(go->format == V4L2_PIX_FMT_MPEG2 ? 0x04 :
(go->format == V4L2_PIX_FMT_H263 ? 0x08 :
0x20)))),
0xbf0a, (go->format == V4L2_PIX_FMT_MPEG4 ? 8 :
(go->format == V4L2_PIX_FMT_MPEG1 ? 1 :
(go->format == V4L2_PIX_FMT_MPEG2 ? 2 :
(go->format == V4L2_PIX_FMT_H263 ? 4 : 16)))) |
((go->repeat_seqhead ? 1 : 0) << 6) |
((go->dvd_mode ? 1 : 0) << 9) |
((go->gop_header_enable ? 1 : 0) << 10),
0xbf0b, 0,
0xdd5a, go->ipb ? 0x14 : 0x0a,
0xbf0c, 0,
0xbf0d, 0,
0xc683, THACCoeffSet0,
0xc40a, (go->width << 4) | rows,
0xe01a, go->board_info->hpi_buffer_cap,
0, 0,
0, 0,
0x2008, 0,
0xe402, 0x88,
0xe401, 0x8f01,
0xbf6a, 0,
0xbf6b, 0,
0xbf6c, 0,
0xbf6d, 0,
0xbf6e, 0,
0xbf6f, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0x200e, 0,
0xbf66, brc_window_size,
0xbf67, 0,
0xbf68, q_min,
0xbf69, q_max,
0xbfe0, 0,
0xbfe1, 0,
0xbfe2, 0,
0xbfe3, go->ipb ? 3 : 1,
0xc031, go->board_info->sensor_flags &
GO7007_SENSOR_VBI ? 1 : 0,
0xc01c, 0x1f,
0xdd8c, 0x15,
0xdd94, 0x15,
0xdd88, go->ipb ? 0x1401 : 0x0a01,
0xdd90, go->ipb ? 0x1401 : 0x0a01,
0, 0,
0x200e, 0,
0xbfe4, 0,
0xbfe5, 0,
0xbfe6, 0,
0xbfe7, fps << 8,
0xbfe8, 0x3a00,
0xbfe9, 0,
0xbfea, 0,
0xbfeb, 0,
0xbfec, (go->interlace_coding ? 1 << 15 : 0) |
(go->modet_enable ? 0xa : 0) |
(go->board_info->sensor_flags &
GO7007_SENSOR_VBI ? 1 : 0),
0xbfed, 0,
0xbfee, 0,
0xbfef, 0,
0xbff0, go->board_info->sensor_flags &
GO7007_SENSOR_TV ? 0xf060 : 0xb060,
0xbff1, 0,
0, 0,
};
return copy_packages(code, pack, 5, space);
}
static int seqhead_to_package(struct go7007 *go, __le16 *code, int space,
int (*sequence_header_func)(struct go7007 *go,
unsigned char *buf, int ext))
{
int vop_time_increment_bitlength = vti_bitlen(go);
int fps = go->sensor_framerate / go->fps_scale *
(go->interlace_coding ? 2 : 1);
unsigned char buf[40] = { };
int len = sequence_header_func(go, buf, 1);
u16 pack[] = {
0x2006, 0,
0xbf08, fps,
0xbf09, 0,
0xbff2, vop_time_increment_bitlength,
0xbff3, (1 << vop_time_increment_bitlength) - 1,
0xbfe6, 0,
0xbfe7, (fps / 1000) << 8,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0x2007, 0,
0xc800, buf[2] << 8 | buf[3],
0xc801, buf[4] << 8 | buf[5],
0xc802, buf[6] << 8 | buf[7],
0xc803, buf[8] << 8 | buf[9],
0xc406, 64,
0xc407, len - 64,
0xc61b, 1,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0x200e, 0,
0xc808, buf[10] << 8 | buf[11],
0xc809, buf[12] << 8 | buf[13],
0xc80a, buf[14] << 8 | buf[15],
0xc80b, buf[16] << 8 | buf[17],
0xc80c, buf[18] << 8 | buf[19],
0xc80d, buf[20] << 8 | buf[21],
0xc80e, buf[22] << 8 | buf[23],
0xc80f, buf[24] << 8 | buf[25],
0xc810, buf[26] << 8 | buf[27],
0xc811, buf[28] << 8 | buf[29],
0xc812, buf[30] << 8 | buf[31],
0xc813, buf[32] << 8 | buf[33],
0xc814, buf[34] << 8 | buf[35],
0xc815, buf[36] << 8 | buf[37],
0, 0,
0, 0,
0, 0,
};
return copy_packages(code, pack, 3, space);
}
static int relative_prime(int big, int little)
{
int remainder;
while (little != 0) {
remainder = big % little;
big = little;
little = remainder;
}
return big;
}
static int avsync_to_package(struct go7007 *go, __le16 *code, int space)
{
int arate = go->board_info->audio_rate * 1001 * go->fps_scale;
int ratio = arate / go->sensor_framerate;
int adjratio = ratio * 215 / 100;
int rprime = relative_prime(go->sensor_framerate,
arate % go->sensor_framerate);
int f1 = (arate % go->sensor_framerate) / rprime;
int f2 = (go->sensor_framerate - arate % go->sensor_framerate) / rprime;
u16 pack[] = {
0x200e, 0,
0xbf98, (u16)((-adjratio) & 0xffff),
0xbf99, (u16)((-adjratio) >> 16),
0xbf92, 0,
0xbf93, 0,
0xbff4, f1 > f2 ? f1 : f2,
0xbff5, f1 < f2 ? f1 : f2,
0xbff6, f1 < f2 ? ratio : ratio + 1,
0xbff7, f1 > f2 ? ratio : ratio + 1,
0xbff8, 0,
0xbff9, 0,
0xbffa, adjratio & 0xffff,
0xbffb, adjratio >> 16,
0xbf94, 0,
0xbf95, 0,
0, 0,
};
return copy_packages(code, pack, 1, space);
}
static int final_package(struct go7007 *go, __le16 *code, int space)
{
int rows = go->interlace_coding ? go->height / 32 : go->height / 16;
u16 pack[] = {
0x8000,
0,
0,
0,
0,
0,
0,
2,
((go->board_info->sensor_flags & GO7007_SENSOR_TV) &&
(!go->interlace_coding) ?
(1 << 14) | (1 << 9) : 0) |
((go->encoder_subsample ? 1 : 0) << 8) |
(go->board_info->sensor_flags &
GO7007_SENSOR_CONFIG_MASK),
((go->encoder_v_halve ? 1 : 0) << 14) |
(go->encoder_v_halve ? rows << 9 : rows << 8) |
(go->encoder_h_halve ? 1 << 6 : 0) |
(go->encoder_h_halve ? go->width >> 3 : go->width >> 4),
(1 << 15) | (go->encoder_v_offset << 6) |
(1 << 7) | (go->encoder_h_offset >> 2),
(1 << 6),
0,
0,
((go->fps_scale - 1) << 8) |
(go->board_info->sensor_flags & GO7007_SENSOR_TV ?
(1 << 7) : 0) |
0x41,
go->ipb ? 0xd4c : 0x36b,
(rows << 8) | (go->width >> 4),
go->format == V4L2_PIX_FMT_MPEG4 ? 0x0404 : 0,
(1 << 15) | ((go->interlace_coding ? 1 : 0) << 13) |
((go->closed_gop ? 1 : 0) << 12) |
((go->format == V4L2_PIX_FMT_MPEG4 ? 1 : 0) << 11) |
/* (1 << 9) | */
((go->ipb ? 3 : 0) << 7) |
((go->modet_enable ? 1 : 0) << 2) |
((go->dvd_mode ? 1 : 0) << 1) | 1,
(go->format == V4L2_PIX_FMT_MPEG1 ? 0x89a0 :
(go->format == V4L2_PIX_FMT_MPEG2 ? 0x89a0 :
(go->format == V4L2_PIX_FMT_MJPEG ? 0x89a0 :
(go->format == V4L2_PIX_FMT_MPEG4 ? 0x8920 :
(go->format == V4L2_PIX_FMT_H263 ? 0x8920 : 0))))),
go->ipb ? 0x1f15 : 0x1f0b,
go->ipb ? 0x0015 : 0x000b,
go->ipb ? 0xa800 : 0x5800,
0xffff,
0x0020 + 0x034b * 0,
0x0020 + 0x034b * 1,
0x0020 + 0x034b * 2,
0x0020 + 0x034b * 3,
0x0020 + 0x034b * 4,
0x0020 + 0x034b * 5,
go->ipb ? (go->gop_size / 3) : go->gop_size,
(go->height >> 4) * (go->width >> 4) * 110 / 100,
};
return copy_packages(code, pack, 1, space);
}
static int audio_to_package(struct go7007 *go, __le16 *code, int space)
{
int clock_config = ((go->board_info->audio_flags &
GO7007_AUDIO_I2S_MASTER ? 1 : 0) << 11) |
((go->board_info->audio_flags &
GO7007_AUDIO_OKI_MODE ? 1 : 0) << 8) |
(((go->board_info->audio_bclk_div / 4) - 1) << 4) |
(go->board_info->audio_main_div - 1);
u16 pack[] = {
0x200d, 0,
0x9002, 0,
0x9002, 0,
0x9031, 0,
0x9032, 0,
0x9033, 0,
0x9034, 0,
0x9035, 0,
0x9036, 0,
0x9037, 0,
0x9040, 0,
0x9000, clock_config,
0x9001, (go->board_info->audio_flags & 0xffff) |
(1 << 9),
0x9000, ((go->board_info->audio_flags &
GO7007_AUDIO_I2S_MASTER ?
1 : 0) << 10) |
clock_config,
0, 0,
0, 0,
0x2005, 0,
0x9041, 0,
0x9042, 256,
0x9043, 0,
0x9044, 16,
0x9045, 16,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
};
return copy_packages(code, pack, 2, space);
}
static int modet_to_package(struct go7007 *go, __le16 *code, int space)
{
bool has_modet0 = go->modet[0].enable;
bool has_modet1 = go->modet[1].enable;
bool has_modet2 = go->modet[2].enable;
bool has_modet3 = go->modet[3].enable;
int ret, mb, i, addr, cnt = 0;
u16 pack[32];
u16 thresholds[] = {
0x200e, 0,
0xbf82, has_modet0 ? go->modet[0].pixel_threshold : 32767,
0xbf83, has_modet1 ? go->modet[1].pixel_threshold : 32767,
0xbf84, has_modet2 ? go->modet[2].pixel_threshold : 32767,
0xbf85, has_modet3 ? go->modet[3].pixel_threshold : 32767,
0xbf86, has_modet0 ? go->modet[0].motion_threshold : 32767,
0xbf87, has_modet1 ? go->modet[1].motion_threshold : 32767,
0xbf88, has_modet2 ? go->modet[2].motion_threshold : 32767,
0xbf89, has_modet3 ? go->modet[3].motion_threshold : 32767,
0xbf8a, has_modet0 ? go->modet[0].mb_threshold : 32767,
0xbf8b, has_modet1 ? go->modet[1].mb_threshold : 32767,
0xbf8c, has_modet2 ? go->modet[2].mb_threshold : 32767,
0xbf8d, has_modet3 ? go->modet[3].mb_threshold : 32767,
0xbf8e, 0,
0xbf8f, 0,
0, 0,
};
ret = copy_packages(code, thresholds, 1, space);
if (ret < 0)
return -1;
cnt += ret;
addr = 0xbac0;
memset(pack, 0, 64);
i = 0;
for (mb = 0; mb < 1624; ++mb) {
pack[i * 2 + 3] <<= 2;
pack[i * 2 + 3] |= go->modet_map[mb];
if (mb % 8 != 7)
continue;
pack[i * 2 + 2] = addr++;
++i;
if (i == 10 || mb == 1623) {
pack[0] = 0x2000 | i;
ret = copy_packages(code + cnt, pack, 1, space - cnt);
if (ret < 0)
return -1;
cnt += ret;
i = 0;
memset(pack, 0, 64);
}
pack[i * 2 + 3] = 0;
}
memset(pack, 0, 64);
i = 0;
for (addr = 0xbb90; addr < 0xbbfa; ++addr) {
pack[i * 2 + 2] = addr;
pack[i * 2 + 3] = 0;
++i;
if (i == 10 || addr == 0xbbf9) {
pack[0] = 0x2000 | i;
ret = copy_packages(code + cnt, pack, 1, space - cnt);
if (ret < 0)
return -1;
cnt += ret;
i = 0;
memset(pack, 0, 64);
}
}
return cnt;
}
static int do_special(struct go7007 *go, u16 type, __le16 *code, int space,
int *framelen)
{
switch (type) {
case SPECIAL_FRM_HEAD:
switch (go->format) {
case V4L2_PIX_FMT_MJPEG:
return gen_mjpeghdr_to_package(go, code, space);
case V4L2_PIX_FMT_MPEG1:
case V4L2_PIX_FMT_MPEG2:
return gen_mpeg1hdr_to_package(go, code, space,
framelen);
case V4L2_PIX_FMT_MPEG4:
return gen_mpeg4hdr_to_package(go, code, space,
framelen);
default:
break;
}
break;
case SPECIAL_BRC_CTRL:
return brctrl_to_package(go, code, space, framelen);
case SPECIAL_CONFIG:
return config_package(go, code, space);
case SPECIAL_SEQHEAD:
switch (go->format) {
case V4L2_PIX_FMT_MPEG1:
case V4L2_PIX_FMT_MPEG2:
return seqhead_to_package(go, code, space,
mpeg1_sequence_header);
case V4L2_PIX_FMT_MPEG4:
return seqhead_to_package(go, code, space,
mpeg4_sequence_header);
default:
return 0;
}
case SPECIAL_AV_SYNC:
return avsync_to_package(go, code, space);
case SPECIAL_FINAL:
return final_package(go, code, space);
case SPECIAL_AUDIO:
return audio_to_package(go, code, space);
case SPECIAL_MODET:
return modet_to_package(go, code, space);
}
dev_err(go->dev,
"firmware file contains unsupported feature %04x\n", type);
return -1;
}
int go7007_construct_fw_image(struct go7007 *go, u8 **fw, int *fwlen)
{
const struct firmware *fw_entry;
__le16 *code, *src;
int framelen[8] = { }; /* holds the lengths of empty frame templates */
int codespace = 64 * 1024, i = 0, srclen, chunk_len, chunk_flags;
int mode_flag;
int ret;
switch (go->format) {
case V4L2_PIX_FMT_MJPEG:
mode_flag = FLAG_MODE_MJPEG;
break;
case V4L2_PIX_FMT_MPEG1:
mode_flag = FLAG_MODE_MPEG1;
break;
case V4L2_PIX_FMT_MPEG2:
mode_flag = FLAG_MODE_MPEG2;
break;
case V4L2_PIX_FMT_MPEG4:
mode_flag = FLAG_MODE_MPEG4;
break;
default:
return -1;
}
if (request_firmware(&fw_entry, GO7007_FW_NAME, go->dev)) {
dev_err(go->dev,
"unable to load firmware from file \"%s\"\n",
GO7007_FW_NAME);
return -1;
}
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
code = kcalloc(codespace, 2, GFP_KERNEL);
if (code == NULL)
goto fw_failed;
src = (__le16 *)fw_entry->data;
srclen = fw_entry->size / 2;
while (srclen >= 2) {
chunk_flags = __le16_to_cpu(src[0]);
chunk_len = __le16_to_cpu(src[1]);
if (chunk_len + 2 > srclen) {
dev_err(go->dev,
"firmware file \"%s\" appears to be corrupted\n",
GO7007_FW_NAME);
goto fw_failed;
}
if (chunk_flags & mode_flag) {
if (chunk_flags & FLAG_SPECIAL) {
ret = do_special(go, __le16_to_cpu(src[2]),
&code[i], codespace - i, framelen);
if (ret < 0) {
dev_err(go->dev,
"insufficient memory for firmware construction\n");
goto fw_failed;
}
i += ret;
} else {
if (codespace - i < chunk_len) {
dev_err(go->dev,
"insufficient memory for firmware construction\n");
goto fw_failed;
}
memcpy(&code[i], &src[2], chunk_len * 2);
i += chunk_len;
}
}
srclen -= chunk_len + 2;
src += chunk_len + 2;
}
release_firmware(fw_entry);
*fw = (u8 *)code;
*fwlen = i * 2;
return 0;
fw_failed:
kfree(code);
release_firmware(fw_entry);
return -1;
}
MODULE_FIRMWARE(GO7007_FW_NAME);